HW\#6: Symmetrical Components

10.4. The line-to-line voltages in an unbalanced three-phase supply are $V_{a b}=$ $1000 \angle 0^{\circ}, V_{b c}=866.0254 \angle-150^{\circ}$, and $V_{c a}=500 \angle 120^{\circ}$. Determine the symmetrical components for line and phase voltages, then find the phase voltages $V_{a n}$, $V_{b n}$, and $V_{c n}$.

First find the symmetrical components of line voltages, then find the symmetrical components of phase voltages. Use the inverse symmetrical components transformation to obtain the phase voltages. We use the following commands

```
a = -0.5+j*sqrt(3)/2;
Vabbcca=[1000 0 % Unbalanced line-to-line voltage
    866.0254 -150
    500 120];
VL012=abc2sc(Vabbcca); % Sym. comp. line voltages, rectangular
VL012p=rec2pol(VL012) % Sym. comp. line voltages, polar
Va012=[ 0 % Sym. comp. phase voltages, rectangular
    VL012(2)/(sqrt(3)*(0.866+j0.5))
    VL012(3)/(sqrt(3)*(0.866-j0.5))];
Va012p=rec2pol(Va012) % Sym. comp. phase voltage, polar
Vabc=sc2abc(Va012); % Unbalanced phase voltages, rectangular
Vabcp=rec2pol(Vabc) % Unbalanced phase voltages, polar
```

The result is
VL012 $\mathrm{p}=$
$0.0000 \quad 30.0000$
$763.7626-10.8934$
$288.6751 \quad 30.0000$
Va012p $=$
$0 \quad 0$
$440.9586-40.8934$
$166.6667 \quad 60.0000$

```
Vabcp =
    440.9586 -19.1066
    600.9252-166.1021
    333.3333 60.0000
```

Note: The necessary relationships were derived in the class as a part of a problem.
MATLAB has been used here in place of a calculator. Look inside and you will find all the relationships.
10.7. A three-phase unbalanced source with the following phase-to-neutral voltages

$$
\mathbf{V}^{a b c}=\left[\begin{array}{ll}
300 & \angle-120^{\circ} \\
200 & \angle 90^{\circ} \\
100 & \angle-30^{\circ}
\end{array}\right]
$$

is applied to the circuit in Figure 82. The load series impedance per phase is

FIGURE 82
Ciranit for Problem 10.7.
$Z_{s}=10+j 40$ and the mutual impedance between phases is $Z_{m}=j 5$. The load and source neutrals are solidly grounded. Determine
(a) The load sequence impedance matrix, $\mathbf{Z}^{012}=\mathbf{A}^{-1} \mathbf{Z}^{a b c} \mathbf{A}$.
(b) The symmetrical components of voltage.
(c) The symmetrical components of current.
(d) The load phase currents.
(e) The complex power delivered to the load in terms of symmetrical components, $S_{3 \phi}=3\left(V_{a}^{0} I_{a}^{0+}+V_{a}^{1} I_{a}^{1+}+V_{a}^{2} I_{a}^{2^{2}}\right)$.
(f) The complex power delivered to the load by summing up the power in each phase, $S_{3 \phi}=V_{a} I_{a}^{*}+V_{b} I_{b}^{*}+V_{c} I_{c}^{*}$.

We write the following commands

[300 -	-120	\% Phase-to-neutral voltages
20090		
$\begin{array}{cc}200 & 90 \\ 100 & -30]\end{array}$		
Zabc $=[10+j * 40$ j*5 j*5 \%Self and mutual impedances matrix		
j*5 10+j*40 j*5		
*5 j*5 10+j*40];		
$12=$ zabc2sc(Zabc) \% Symmetrical components of impedance		
V012 $=\mathrm{abc} 2 \mathrm{sc}$ (Vabc); \quad \% Symmetrical components of voltage		
V012p= rec2pol(V012) \% Converts rectangular phasors to polar		
I012 $=\operatorname{inv}($ Z012 $) *$ V012 ; \% Symmetrical components of current		
I012p= rec2pol(I012)		
Iabc $=\operatorname{sc2abc}($ I012); \quad \% Phase currents		
Iabcp $=$ rec2pol (Iabc) \% Converts rectangular phasors to polar		
S3ph=3*(V012.')*conj(IO12) \%Power using symmetrical components		
$\operatorname{Vabcr}=\operatorname{Vabc}(:, 1) \cdot *(\cos (\mathrm{pi} / 180 * \operatorname{Vabc}(:, 2))+\ldots$		
j*sin(pi/180*Vabc(:,2))) ;		
S3ph=(Vabcr.'))*conj(Ia	\%) \% Power using phase quantities

The result is

```
z012 =
        10.0+50.0i 0 0
        0 10.0 +35.0i 0
        0 0 10.0+35.0i
V012p =
    42.2650 -120.0000
    193.1852 -135.0000
    86.9473 -84.8961
IO12p =
            0.8289 161.3099
            5.3072 150.9454
            2.3886 -158.9507
Iabcp =
            7.9070 165.4600
            5.8190 14.8676
            2.7011 -96.9315
S3ph =
            1036.8+3659.6i
S3ph =
            1036.8+3659.6i
```

10.8. The line-to-line voltages in an unbalanced three-phase supply are $V_{a b}=$ $600 \angle 36.87^{\circ}, V_{b c}=800 \angle 126.87^{\circ}$, and $V_{c a}=1000 \angle-90^{\circ}$. A Y-connected load with a resistance of 37Ω per phase is connected to the supply. Determine
(a) The symmetrical components of voltage.
(b) The phase voltages.
(c) The line currents.

We use the following statements

```
Vabbcca=[\begin{array}{llll}{600}&{36.87 % Unbalanced line voltages}\end{array})
    800 126.87
    1000 -90];
VL012=abc2sc(Vabbcca); \% Sym. comp. line voltages, rectangular VL012p=rec2pol(VL012) \% Sym. comp. line voltages, polar Va012 \(=[0\)
VL012(2)/(sqrt(3)*(0.866+j*.5))
VL012(3)/(sqrt(3)*(0.866-j*.5))]; \% Sym. components of \(\%\) phase voltages, rectangular
Va012p=rec2pol(Va012) \% Sym. comp. of phase voltages, polar
Vabc=sc2abc(Va012);
Vabcp=rec2pol (Vabc) \% Phase voltages, rectangular
\% Phase voltages, polar
Iabc=Vabc/37;
Iabcp=rec2pol (Iabc)
\% Line currents, rectangular
\% Line currents, polar
```

which result in
\(\left.\begin{array}{rlr}VL012p= \& 0.0006 \& -179.9999

\& 237.0762 \& 169.9342

781.3204 \& 24.0621\end{array}\right]\)| | | |
| ---: | ---: | ---: |
| Va012p $=$ | 0 | 0 |
| | 136.8790 | 139.9335 |
| | 451.1055 | 54.0628 |
| Vabcp $=$ | | |
| | | |
| | 480.7542 | 70.5606 |
| | 333.3386 | 163.7411 |
| | 569.6111 | -73.6857 |
| Iabcp $=$ | | |
| | 12.9934 | 70.5606 |
| | 9.0092 | 163.7411 |
| | 15.3949 | -73.6857 |

10.9. A generator having a solidly grounded neutral and rated $50-\mathrm{MVA}, 30-\mathrm{kV}$ has positive-, negative-, and zero-sequence reactances of 25,15 , and 5 percent, respectively. What reactance must be placed in the generator neutral to limit the fault current for a bolted line-to-ground fault to that for a bolted three-phase fault?

The generator base impedance is

$$
Z_{B}=\frac{(30)^{2}}{50}=18 \Omega
$$

The three-phase fault current is

$$
I_{f 3 \phi}=\frac{1}{0.25}=4.0 \mathrm{pu}
$$

The line-to-ground fault current is

$$
I_{f L G}=\frac{3}{0.25+0.15+0.05+3 X_{n}}=4.0 \mathrm{pu}
$$

Solving for X_{n}, results in

$$
\begin{aligned}
X_{n} & =0.1 \mathrm{pu} \\
& =(0.1)(18)=1.8 \Omega
\end{aligned}
$$

