KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS

ELECTRICAL ENGINEERING DEPARTMENT
EE 201 Major Exam I

TIME: 08:00P.M. - 09:30 P.M.
DATE: Monday October 30, 2006
Key Solution
Student's Name: \qquad
Student's I.D. Number: \qquad
Section Number: \qquad
Serial Number: \qquad

	Grade	Max. Grade
Problem 1		5
Problem 2		5
Problem 3		5
Total		15

Problem 1 (5 Points)

(a) Find $\boldsymbol{i}_{\mathbf{s}}$ for the circuit shown.
(b) Find $\mathbf{v}_{\mathbf{s}}$ for the circuit shown.

Use Ohm's LAW, KCL, and KVL only.
Do not use Mesh or Nodal Analysis

Solution:
Apply kcl at $c:+i-3 c+c x=0 \Rightarrow i_{x}=2 i$

Apply KVL in the upper loop:

$$
\begin{aligned}
& \text { Apply KVL in the upper loop: } \\
& -3(2 i)+10 i+(i-3) \times 1=0 \Rightarrow 5 i=3 \Rightarrow i=0.6 A
\end{aligned}
$$

Apply ice at A:

$$
\begin{aligned}
& \text { ply } \mathrm{kce} \text { at } A: \\
& -i_{s}-(c-3)-2 i=0 \Rightarrow i_{s}=1.2 \mathrm{~A}
\end{aligned}
$$

Apply kUN ot the bottom left loop

$$
v_{s}=-(c-3) \times 1+c \Rightarrow v_{s}=8.4 \mathrm{~V}
$$

ANSWERS:

$$
\left\{\begin{array}{l}
i_{s}=1.2 \mathrm{~A} \\
v_{s}=8.4 \mathrm{~V}
\end{array}\right\}
$$

Problem 2 (5 Points)

Figure (1)

Figure (2)
(a) For the circuit shown in Figure (1), calculate the equivalent resistance $R_{a b}$.
(b) For the circuit shown in Figure (1), calculate the equivalent resistance $\mathrm{R}_{\text {cd }}$.
(c) For the circuit shown in Figure (2), calculate the voltage V_{cd}.
5Ω

Solution
a
(a) $\mathrm{R}_{\mathrm{ab}}=5+[(2+4+6+8) \|(14+10)]+12=\mathbf{2 7 . 9} \boldsymbol{\Omega}$
14Ω
(b) $\mathrm{R}_{\mathrm{cd}}=3+\left[(2+14+10) \stackrel{\mathrm{R}_{\mathrm{ab}}}{\|(4+6+8)]+9=\mathbf{2 2 . 6 3} \boldsymbol{\Omega}}\right.$
10Ω

(c) $\mathrm{i}_{1}=\frac{(14+10)}{(14+10)+(2+4+6+8)} 10=\frac{60}{11}=5.45 \mathrm{~A}$

$$
\mathrm{i}_{2}=\frac{(2+4+6+8)}{(2+4+6+8)+(14+10)} 10=\frac{50}{11}=4.45 \mathrm{~A}
$$

KVL on the upper loop

$$
\begin{aligned}
& 2 i_{1}+3(0)-v_{c d}+9(0)-24 i_{2}=0 \\
& \Rightarrow v_{c d}=2 i_{1}-24 i_{2}=2\left(\frac{60}{11}\right)-24\left(\frac{50}{11}\right)=\frac{-1080}{11}=-98.18
\end{aligned}
$$

OR KVL on the lower loop

$$
\begin{aligned}
& v_{c d}+3(0)+18 i_{1}+9(0)=0 \\
& \Rightarrow v_{c d}=-18 i_{1}=-18\left(\frac{60}{11}\right)=\frac{-1080}{11}=-98.18
\end{aligned}
$$

Problem 3 (5 Points)

For the circuit shown below, use mesh analysis to find the power (absorbed or delivered) by each of the three sources.

Solution

Mesh equations:

$$
\begin{aligned}
& 25 i_{1}-5 i_{2}-2.5 i_{3}=0 \\
& 75=-5 i_{1}+12.5 i_{2}-7.5 i_{3}
\end{aligned}
$$

Constraint equations:

$$
\begin{aligned}
& i_{3}=0.2 v_{\Delta} \\
& v_{\Delta}=5\left(i_{2}-i_{1}\right)
\end{aligned}
$$

Solving, $i_{1}=3.6 \Lambda_{i} \quad i_{2}=13.2 \mathrm{~A}_{i} \quad i_{3}=9.6 \mathrm{~A}$

$$
\begin{aligned}
& v_{\mathrm{c}}=125-v_{\Delta}-2.5\left(i_{3}-i_{1}\right)=125-48-2.5(9.6-3.6)=62 \mathrm{~V} \\
& p_{\mathrm{ve}}=(62)(9.6)=595.2 \mathrm{~W}^{\prime}(\mathrm{ubs})
\end{aligned}
$$

