KING FAHD UNIVERSITY OF PETROLEUM \& MINERALS

 ELECTRICAL ENGINEERING DEPARTMENTDr. Ibrahim Habiballah

EE 463
MAJOR EXAM \# 1
March 29, 2006

> 11:45am-1:00 pm

Key Solution

Section:

Student Name:

Student I.D.\#

Serial \#:

Question \# 1	
Question \# 2	
Question \# 3	
Total	

Q. 1) The one-line diagram of a 2-bus power system is shown below.

The reactance of each transmission line is $\mathrm{X}=20 \mathrm{Ohm}$. The generators and transformers are rated as follows:

G1: $\quad 20$ MVA, $12 \mathrm{kV}, \mathrm{X}=1.20$ per unit
G2: $\quad 60$ MVA, $13.8 \mathrm{kV}, \mathrm{X}=1.40$ per unit
G3: $\quad 50 \mathrm{MVA}, 13.2 \mathrm{kV}, \mathrm{X}=1.40$ per unit
T1: $\quad 25$ MVA, $12 / 69 \mathrm{kV}, \mathrm{X}=0.08$ per unit
T2: $\quad 75 \mathrm{MVA}, 13.8 / 69 \mathrm{kV}, \mathrm{X}=0.16$ per unit
T3: $\quad 60 \mathrm{MVA}, 13.2 / 69 \mathrm{kV}, \mathrm{X}=0.14$ per unit
T4: $\quad 75$ MVA, $13.8 / 69 \mathrm{kV}, \mathrm{X}=0.16$ per unit
a) Choose a power base of 100 MVA and a voltage base of 12 kV in the circuit of generator G1, and assume that the circuit breaker between transformer 4 and the load is open. Draw the reactance diagram showing all the values in per units according to the new selected base values.
b) Form the bus admittance matrix $\mathrm{Y}_{\text {bus }}$.

Solution:

a)

$$
\begin{aligned}
& \mathrm{X}_{\mathrm{G} 1}=1.2(100 / 20)=6.0 \text { p.u. } \\
& \mathrm{X}_{\mathrm{G} 2}=1.4(100 / 60)=2.333 \text { p.u. } \\
& \mathrm{X}_{\mathrm{G} 3}=1.4(100 / 50)=2.8 \text { p.u. } \\
& \mathrm{X}_{\mathrm{T} 1}=0.08(100 / 25)=0.32 \text { p.u. } \\
& \mathrm{X}_{\mathrm{T} 2}=0.16(100 / 75)=0.213 \text { p.u. } \\
& \mathrm{X}_{\mathrm{T} 3}=0.14(100 / 60)=0.233 \text { p.u. } \\
& \mathrm{X}_{\mathrm{T} 4}=0.16(100 / 75)=0.213 \text { p.u. } \\
& \mathrm{X}_{\mathrm{TL} 1}=\mathrm{X}_{\mathrm{TL} 2}=20 /\left(69^{2} / 100\right)=0.42 \text { p.u. }
\end{aligned}
$$

a) $x_{G_{1}}=1.2\left(\frac{1-0}{20}\right)=6$

$$
x_{6_{2}}=1.4\left(\frac{100}{60}\right)=2.333
$$

$$
x_{63}=1.4\left(\frac{100}{50}\right)=2.8
$$

$$
x_{T_{1}}=.08\left(\frac{100}{25}\right)=0.32
$$

b)

$$
x_{T_{2}}=0.16\left(\frac{10.7}{75}\right)=0.213
$$

$$
\begin{aligned}
& x_{T_{2}}=0.16 \\
& x_{T_{3}}=0.14\left(\frac{10}{6}\right)=0.233 \\
& \hline 00.213
\end{aligned}
$$

$$
\begin{aligned}
& x_{T_{3}}=0.14\left(\frac{10-}{6}\right)=0.233 \\
& x_{T_{4}}=0.16\left(\frac{1007}{75}\right)=0.213
\end{aligned}
$$

$$
Y_{\text {bus }}=j\left[\begin{array}{ll}
-5.313 & 4.762 \\
4.762 & -9.787
\end{array}\right]
$$

$$
x_{T L_{1}}=x_{T C_{2}}=\frac{20}{(69)^{2} / 1-0}=0.42
$$

c) $Y_{\text {naw }}=2 Y=1 d$
b) $\mathbf{Y}_{\text {bus }}=\mathrm{j}\left[\begin{array}{cc}-5.313 & 4.762 \\ 4.762 & -9.787\end{array}\right]$
Q.2) Write down the equations of the $7^{\text {th }}$ iteration, using Gauss-Seidel Iterative method with acceleration factor, of a nine-bus system for the following busses:
a) bus-3 (PQ-bus) connected to bus-1 (PQ-bus), bus-2 (slack-bus) and bus-6 (PV-bus).
b) bus-6 (PV-bus) connected to bus-2 (slack-bus), bus-3 (PQ-bus), bus-4 (PV-bus), and bus-9 (PQ-bus).
(Notice: define the voltage of a calculated PV-bus as $\mathrm{V}_{\text {corr }}$, and an accelerated voltage as $\mathrm{V}_{\text {acc }}$)

Solution:

a) $\quad V_{3}^{7}=\frac{1}{Y_{33}}\left[\frac{P_{3}-j Q_{3}}{V_{3 \text { acc }}^{6^{*}}}-\left(Y_{31} V_{1 \text { 1acc }}^{7}+Y_{32} V_{2}+Y_{36} V_{6 c o r r}^{6}\right)\right]$
$\Delta V_{3}^{7}=V_{3}^{7}-V_{3 a c c}^{6}$

$$
V_{3 a c c}^{7}=V_{3 a c c}^{6}+\alpha \Delta V_{3}^{7}
$$

b) $\quad V_{6}^{7}=\frac{1}{Y_{66}}\left[\frac{P_{6}-j Q_{6 c a l}}{V_{6 c o r r}^{6^{*}}}-\left(Y_{62} V_{2}+Y_{63} V_{3 a c c}^{7}+Y_{64} V_{4 c o r r}^{7}+Y_{69} V_{9 a c c}^{6}\right)\right]$
where

$$
\begin{aligned}
& Q_{6 c a l}=-\operatorname{Im}\left[V_{6 c o r r}^{6^{*}}\left(Y_{62} V_{2}+Y_{63} V_{3 a c c}^{7}+Y_{64} V_{4 c o r r}^{7}+Y_{66} V_{6 c o r r}^{6}+Y_{69} V_{9 a c c}^{6}\right)\right] \\
& \Delta V_{6}^{7}=V_{6}^{7}-V_{\text {6corr }}^{6} \\
& V_{\text {6acc }}^{7}=V_{6 c o r r}^{6}+\alpha \Delta V_{6}^{7} \\
& V_{6 c o r r}^{7}=\left|V_{6}\right| \angle \theta_{6 a c c}^{7}
\end{aligned}
$$

Q.3) The power flow of a 7-bus system is shown below

Assuming the following line losses :

Line	Real Power Loss (MW)
$2-4$	0
$2-6$	0
$3-4$	0
$5-7$	1
$6-7$	0
$6-7$	0

Find the real power in MW at the locations indicated with the empty rectangular boxes

Solution:

G1	$=$	106	MW
G6	$=$	200	MW
L3	$=$	110	MW
L7	$=$	201	MW
$2-6$	$=$	40	MW
$4-5$	$=$	15	MW
$7-5$	$=$	39	MW

