KING FAHD UNIVERSITY OF PETROLEUM \& MINERALS
 ELECTRICAL ENGINEERING DEPARTMENT
 Dr. Ibrahim O. Habiballah
 EE-360
 Key Solution
 Quize \# 2 Serial \#
 Name:
 I.D.\#

The shell core shown below has a uniform cross section area of $5 \times 10^{-4} \mathrm{~m}^{2}$. If the magnetic flux density produced by I_{1} is 5 tesla and the magnetic flux density flowing from point B to A is 10 tesla, the current I_{2} is equal to (.....) and flux density flowing in the right leg of the core is (....).

a) $\mathrm{I}_{2}=2.63$ A entering terminal "a"; $\beta_{\mathrm{r}}=5$ tesla entering point "A" in the core
b) $\mathrm{I}_{\mathbf{2}}=\mathbf{2 . 6 3}$ A entering terminal " a "; $\beta_{\mathrm{r}}=5$ tesla entering point " B " in the core
c) $\mathrm{I}_{2}=7.89 \mathrm{~A}$ entering terminal " b "; $\beta_{\mathrm{r}}=15$ tesla entering point "A" in the core
d) $\mathrm{I}_{2}=7.89$ A entering terminal " b "; $\beta_{\mathrm{r}}=15$ tesla entering point " B " in the core

