KING FAHD UNIVERSITY OF PETROLEUM \& MINERALS

ELECTRICAL ENGINEERING DEPARTMENT

Dr. Ibrahim O. Habiballah

EE 360

MAJOR EXAM \# 1

October 20, 2005
1:30-2:30 pm
Key Solution

Section:

Student Name:

Student I.D.\#

Serial \#

Question \# 1	
Question \# 2	
Total	

Q. 1) The magnetic circuit shown below has a uniform cross-sectional area of $5 \times 10^{-4} \mathrm{~m}^{2}$ and a mean length of 0.4 m . Three coils (A, B, C) are wound on the cast steel core. Coil A has 200 turns and carries a current of 0.5 A . Coil B has 400 turns and carries a current of 0.75 A . Coil C has 100 turns. The relative permeability of the ferromagnetic material is 950 .
a) Determine the magnitude and direction of the current flowing in coil C in order to produce a magnetic flux of 0.45×10^{-3} webers in a counterclockwise direction.
b) What should be the magnitude and direction of the current flowing in coil C in order to reverse the direction of the magnetic flux produced in part (a).

(50 Marks)

Solution:

a) From Amper's Law

$$
200 *(0.5)+400 *(0.75)+100 * \mathrm{I}_{\mathrm{c}}=-\frac{0.4}{950 * 4 * \Pi * 10^{-7} * 5 * 10^{-4}} * 0.45 * 10^{-3}
$$

$I_{C}=-7 A$ (i.e., Coil C should carry a current of 7 A entering terminal "a")
b) $I_{C}=-1$ A (i.e., Coil C should carry a current of 1 A entering terminal "a")
Q. 2) A $15-\mathrm{kVA}, 2400 / 240 \mathrm{~V}$, transformer has a series equivalent impedance of $\mathrm{Z}_{\mathrm{e} 1}=6+\mathrm{j}$ 8.5 Ohm referred to the high voltage side. The shunt magnatizing branches are $\mathrm{R}_{\mathrm{c} 1}=50$ kOhm , and $\mathrm{X}_{\mathrm{m} 1}=15 \mathrm{kOhm}$ referred to the high voltage side.
a) If the transformer delivers rated current to a load at 240 V and 0.8 lagging power factor, calculate the primary voltage of the transformer referred to the high voltage side.
b) If the transformer delivers rated current to a load at 240 V and 0.8 lagging power factor for 12 hours, and delivers 75% of the rated current to the same load for the remaing 12 hours. Calculate the daily kilowatthour energy consumbtion by the load.

Solution:

a) $\mathrm{V}_{2}=240 \angle 0^{\circ} \mathrm{V}\left(\right.$ or $\left.\mathrm{V}_{2}^{\prime}=2400 \angle 0^{\circ} \mathrm{V}\right)$
$\mathrm{I}_{2}=\frac{15000}{240} \angle-\cos ^{-1} 0.8=62.5 \angle-36.9^{\circ} \mathrm{A}\left(\right.$ or $\left.\mathrm{I}_{2}^{\prime}=6.25 \angle-36.9^{\circ} \mathrm{A}\right)$

Cosidering the excitation branch between the secondary voltage and $\mathbf{Z}_{\text {eq }}$

$\mathrm{I}_{1}=6.25 \angle-36.9^{\circ}+\left(2400 \angle 0^{\circ}\right) *\left(\frac{1}{50000}+j \frac{1}{15000}\right)=5.046-j 3.913=6.385 \angle-37.8^{\circ} \mathrm{A}$
$\mathrm{V}_{1}=2400 \angle 0^{\circ}+\left(6.385 \angle-37.8^{\circ}\right)^{*}(6+j 8.5)=2463.6 \angle 0.45^{\circ} \mathrm{V}$
OR cosidering the excitation branch between the primary voltage and $\mathrm{Z}_{\text {eq }}$
$\mathrm{V}_{1}=2400 \angle 0^{\circ}+\left(6.25 \angle-36.9^{\circ}\right) *(6+j 8.5)=2462 \angle 0.47^{\circ} \mathrm{V}$
b) Load Energy $=(12)^{*}(240)^{*}(62.5)^{*}(0.8)+(12)^{*}(240)^{*}(0.75 * 62.5)^{*}(0.8)$

$$
=144+108=252 \mathrm{kWh}
$$

