Design and Analysis of Fractional-N Frequency Synthesizers For Wireless Communications

Alaa Hussein

Outline

- Motivation
- Background
- Novel Fractional-N Frequency Synthesizers
- Novel Analog-to-Digital Architecture
- Conclusions

Motivation

Higher demand for wireless communications and limited bandwidth

- Frequency synthesizers require tighter performance characteristics (lock time, phase noise, and spurs) to accommodate this increased demand
- Mobile devices need low-power design

Outline

Motivation

- Background
- Novel Fractional-N Frequency Synthesizers
- Novel Analog-to-Digital Architecture
- Conclusions

Wireless Transceiver

Wireless Frequency Standard

Wireless Standard	Frequency Band (MHz)	Channel Bandwidth	Channel Spacing	Switching Time	F _{vco} (MHz)	F _{vco} / F _{ref} (=N)
AMPS	Rx:869 ~ 894 Tx:824 ~ 849	30 kHz	30 kHz	~10 ms	954.39 ~ 979.35	31813 ~ 32645
IS-95	Rx:869 ~ 894 Tx:824 ~ 849	1.25 MHz	10 kHz	< 500 μs	954.39 ~ 979.35	161962 ~ 164962
PCS (US)	Rx : 1930 ~ 1990 Tx : 1850 ~ 1910	1.25 MHz	10 kHz	~5 ms	1719.62 ~ 1779.62	171962 ~ 177962
GSM	Rx:925 ~ 960 Tx:880 ~ 915	200 kHz	200 kHz	577 μs	1150 ~ 1230	5750 ~ 6150
GPRS	Rx : 925 ~ 960 Tx : 880 ~ 915	200 kHz	200 kHz	200 µs	1150 ~ 1230	5750 ~ 6150
DCS-1800	Rx : 1805 ~ 1880 Tx : 1710 ~ 1785	200 kHz	200 kHz	-	1530 ~ 1610	7650 ~ 8050
DECT	Rx : 1880 ~ 1900 Tx : 1880 ~ 1900	1.728 MHz	-	450 μs	-	-

PLL Synthesizer Basics

- The phase detector PD compares the reference frequency to the frequency from a feedback divider N
- PD controls the frequency of a voltage controlled oscillator VCO according to the phase/frequency difference of its inputs
- The output of the PD is pulsed and is translated to dc by the action of the loop filter
- The VCO frequency is divided back down to reference frequency by N divider
- By changing the N divider the output frequency can be controlled
- The output frequency resolution equals reference frequency (channel spacing)

Frequency Synthesizer Implementation

Integer-N PLL

N is high for small channel spacing
 Slow switching time & poor phase noise characteristics (∞ N²)

Fractional-N Frequency Synthesizer

- Problem : periodic change in instantaneous VCO frequency causes spurs at all multiples of f = k/F f_{ref}

Fractional Spur Reduction Scheme required.

FN Synthesizer with Analog Compensation

Suppression is limited by analog mismatch

Fractional-N Synthesizer using $\Delta\Sigma$ Modulation

13

10'

Second Order Third Order

 10^{10}

10⁶

MASH 1-1-1 Architecture

$$Y(z) = X(z) + (1 - z^{-1})^{n} Q_{n}(z)$$

$$S(z) = \frac{(2\pi)^{2}}{12 \cdot f_{r}} |1 - z^{-1}|^{2(n-1)}$$

$$S(f) = \frac{(2\pi)^{2}}{12 \cdot f_{r}} |2\sin(\frac{\pi \cdot f}{f_{r}})|^{2(n-1)}$$
For $f \ll f_{r}$

$$S(f) \approx \frac{(2\pi)^{2}}{12 \cdot f_{r}} |2 \cdot \pi(\frac{f}{f_{r}})|^{2(n-1)}$$

Outline

- Motivation
- Background
- Novel Fractional-N Frequency Synthesizers
- Novel Analog-to-Digital Architecture
- Conclusions

Fractional-N FS Using MASH 1-1-1

Programmable Frequency Divider

 The input is divided by (P+1) for α cycles and by P for (β-α) cycles thus giving the total division ratio of the divider as

$$N_{total} = \alpha(P+1) + (\beta-\alpha)P$$
$$= \beta P + \alpha$$

where $\beta \ge \alpha$

 The smallest possible division ratio of a dual modulus prescaler is P(P-1)

Fractional-N FS Using MASH 1-1-1

 Chip fabricated in 0.35µm BiCMOS
 Area=1.85x2.33mm²

Measured Spurious Performance

Spurs for 1/65 Fractional

■ f_{ref} = 6.5MHz
 ■ Loop BW = 30kHz
 ■ Fractionality = 65

Spurs for 4/65 Fractional

Measured Phase Noise Performance

Phase Noise for 1/65 Fractional

■ f_{ref} = 6.5MHz
 ■ Loop BW = 30kHz
 ■ Fractionality = 65

Phase Noise for 4/65 Fractional

Measured Current Distribution

Experimental Results Summary

	GPRS	Measured
Phase Noise @ 10kHz (dBc/Hz)	-70	-80
Phase Noise @ 3MHz (dBc/Hz)	-123	-125
Power Supply (V)	_	2.5-5.0
Fractional Spurs @0.4MHz (dBc)	-54	-60
Power Consumption (mW)	_	27@3.3V
Lock Time (µs)	200	95
Frequency Range (MHz)	880-915	128-1200

Feedback $\Delta \Sigma$ **FS**

 \blacksquare $\Sigma \triangle$ output is used as a dithering signal

Measured Output Spectrum

f_{ref} = 6.5MHz
 Loop BW = 30kHz
 Fractional Channel = 1/65

14dB Spur Reduction

ROM-Based FN Frequency Synthesizer

- Guaranteed Stability
- **Higher Operating** $\Sigma \Delta$ Frequency
- Lower Power Dissipation

Experimental Setup

Data Generator (HP 8180A)

Simulated $\Delta \Sigma$ Output Spectrum

Measured Output Spectrum

■ f_{ref} = 6.5MHz
 ■ Loop BW = 30kHz
 ■ Fractionality = 65

Measured Current Distribution

56% Power Reduction in $\Delta \Sigma$

Tapered MASH 1-2 $\Delta \Sigma$ **FS**

Lower Power DissipationLower Spurs

Measured Output Spectrum

f_{ref} = 6.5MHz
 Loop BW = 30kHz
 Fractional Channel = 4/65

15dB Spur Reduction

Measured Current Distribution

■ f_{ref} = 6.5MHz
 ■ Loop BW = 30kHz
 ■ Fractionality = 65

36% Power Reduction in $\Delta \Sigma$

Outline

Motivation

- Background
- Novel Fractional-N Frequency Synthesizers
- Novel Analog-to-Digital Architecture
- Conclusions

Analog-to-Digital Conversion

Do we need all the resolution range in this case ?!

Algorithm Flow Chart

- A = New Sample
- X = Analog value corresponding to MSBs from the last sample
- $D = 2^{-m} *$ Full scale voltage
- m = Resolution bits

Memory-Based A/D

Figures of Merit for A/D

Speed Figure of Merit
 Power Figure of Merit

 $SFM = \frac{SR}{f_c} \cdot 10^3$

 $PFM = \frac{2^n \cdot SR}{f_c \cdot P}$

- SR = Sampling rate

- $-f_c =$ Cutoff frequency
- -N = Resolution bits
- -P = Power dissipation

Speed Figure of Merit

Power Figure of Merit

Outline

- Motivation
- Background
- Novel Fractional-N Frequency Synthesizers
- Novel Analog-to-Digital Architecture
- Conclusions

Conclusions

- Enhancing the lock time, phase noise, and reference spurs are possible with fractional-N frequency synthesizers
- A 1.2 GHz fractional-N frequency synthesizer is presented with MASH architecture and pulseswallowed dual-modulus divider, in 0.35µm BiCOMS
- Measured performance meets the GPRS requirements
 - Lock Time = 95μ s, in-band phase noise = -80 dBc/Hz, and out-of-band phase noise = -125 dBc/Hz at 3MHz
- $\Delta\Sigma$ output may be used as a dithering signal to reduce the spurs

Conclusions

- ROM-Based $\Delta\Sigma$ frequency synthesizers enhance the stability, speed, and power dissipation of the $\Delta\Sigma$ architecture
- Tapering the $\Delta\Sigma$ accumulators enhance the power dissipation, and reduce the spurs of the frequency synthesizer
- Using past history we can cut the required H/W for ADCs
- A memory-based ADC architecture is proposed, high level simulations verify the functionality and stability of the proposed architecture

Future Work

Multi-Standard frequency synthesizers

- Power dissipation reduction in fractional-N frequency synthesizers
- Low phase noise VCO
- Integrating the VCO and the loop filter for monolithic solution
- Increasing the dynamic range of the memory-based ADC

Publications

- A. E. Hussein and M. I. Elmasry, "A ROM Based Fractional-N Frequency Synthesizer for Wireless Communication," in Proc. of Midwest Symposium on VLSI, August 2002, Tulsa, U.S.A.
- A. E. Hussein and M. I. Elmasry, "A Fractional-N Frequency Synthesizer for Wireless Communications," in Proc. of IEEE International Symposium on Circuits and Systems, vol.4, pp.513-516, May 2002, Arizona, U.S.A.
- A. E. Hussein and M. I. Elmasry, "Low Power Analog-to-Digital Converter for Wireless Communication," in Proc. of 10th ACM Great Lakes Symposium on VLSI, March 2000, Chicago, U.S.A.
- A. E. Hussein, M. A. Hasan, and M. I. Elmasry, "A New Algorithm for the Division in the Residue Number System (RNS) For Low Power Applications," in Proc. of CCECE'98, vol.1, pp.205-208, May 1998, Waterloo, ON, Canada.
- A. E. Hussein and M. I. Elmasry, "A Novel Fractional-N Frequency Synthesizers for Wireless Communications," IEEE Journal of Solid-State Circuits (in preparation)
- A. E. Hussein and M. I. Elmasry, "A Low Power Analog-to-Digital Converter for Wireless Communication," IEEE Transactions on Circuits and Systems II (in preparation)