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Motivation

m Higher demand for wireless
communications and limited bandwidth

— Frequency synthesizers require tighter
performance characteristics (lock time,
phase noise, and spurs) to accommodate
this increased demand

— Mobile devices need low-power design
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PLL Synthesizer Basics

T

The phase detector PD compares the reference frequency to the frequency
from a feedback divider N

PD controls the frequency of a voltage controlled oscillator VCO according to
the phase/frequency difference of its inputs

The output of the PD is pulsed and is translated to dc by the action of the
loop filter

The VCO frequency is divided back down to reference frequency by N divider
By changing the N divider the output frequency can be controlled
The output frequency resolution equals reference frequency (channel spacing)

Reference LPF Output
@—) Phase Detector—> 7%/ |—> VCO >
N
Divider

1/N [€




Frequency Synthesizer
- Implementation
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Classification of Frequency Synthesizers
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FS-PLL

Integer-N

Fuo = N *F

VvCO ref

——Fractional-N

Fuo = NFXF

vCO ref
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Integer-N PLL

f=fr
Fror Reference | " ef/ M
re Divider : M | =N"f.

—)l Divider : N I—

PFD

CP

A
.

H N is high for small channel spacing

B Slow switching time & poor phase noise characteristics (< N2)
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Fractional-N Frequency Synthesizer
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™

= ﬁ/co=|:N+T:K:| i

N/N+1
Divider

overflow
overﬂow
m-bit
k Accumulator

m-bit

Feo=(N+2) xFer \r
fm=[N+-k-]fr7- —=f-==========- o L

F
fVCO =N Xf;ef

- Problem : periodic change in instantaneous VCO frequency causes spurs at all
multiples of F=A/F 1.

=== Fractional Spur Reduction Scheme required.
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FN Synthesizer with Analog

Compensation
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Ref
G O

DAC

Overflow

Integer Selection

B Suppression is limited by analog mismatch
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Fractional-N Synthesizer using AX
Modulation

T

' PFD LPF VCO P /o

N/N+1
Divider
T Bit stream
k—/—>‘ DS modulator ‘

40 DB/decade

- Modulates divider ratio.
- Quantization noise problem.

fo = [N (Z) + F (Z)] fref + (1_ Z_l )n Qn (Z) fref Freguency (Hz)

Desired frequency Frequency fluctuation
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MASH 1-1-1 Architecture

| Accumulation 1-bit Quantizer
1

Y(2)=X(2)+(1-21)"Q,(2) —(T)—‘ e B
. (272')2 .4 2(n-1) —
S(Z)_12.f L-z \

e [OF
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@)l . af [ : ] [=

S(f)= 2sin( — _ 171 ©

()= 2. ( fr) E‘:] fT
For f << f, z 1 : :
5 2(n-1) <
s(f)~ 20 l2x( ) 0T —{h—l]
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Fractional-N FS Using MASH 1-1-1
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Programmable Frequency Divider

m The input is divided by
(P+1) for a cycles and by P
for (B-a) cycles thus giving

the total division ratio of the IN
Vi Dual-Modulus [¢—
dIVIder gl Prescaler
Niota = a(P+1) + (B-a)P P/P+1  MC|e
=pBP + a RESET
Where B 2 (04 o A 4 2
' P b P b
= The smallest possible | e g S
division ratio of a dual

A A

modulus prescaler is P(P-1) N
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Fractional-N FS Using MASH 1-1-1
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m Chip fabricated in
0.35um BICMOS

m Area=1.85x2.33mm?

‘ hb:t I:mg'ic‘
B“_f And ,. “a
- ﬁiﬁ'if‘l ?xt-a&l&

CHESEGE | Pams:
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Measured Spurious Performance
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Measured Phase Noise Performance
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Measured Current Distribution

T .

Ll Digital Circuits
| B Sigma-Delta

"l Charge Pump

B (o)) (o0]
v !

Current Distribution(m.A.)

N

0

First Order Second Order  Third Order

mf = 6.5MHz
H Loop BW = 30kHz
m Supply Voltage = 3.3V
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Experimental Results Summary
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GPRS Measured
Phase Noise @ 10kHz (dBc/Hz) -70 -80
Phase Noise @ 3MHz (dBc/Hz) -123 A
Power Supply (V) - 2.5-5.0
Fractional Spurs @0.4MHz (dBc) |-54 -60
Power Consumption (mW) - 27@3.3V
Lock Time (us) 200 95
Frequency Range (MHz) 880-915 |128-1200
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Feedback AX FS
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f o Phase Low-Pass
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B XA output is used as a dithering signal

ut
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Measured Output Spectrum
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ROM-Based FN Frequency
Synthesizer

Phase Lovv_ Pass VCO f.
Detector Filter
Dual-Modulus Divider

[ |
1

Fractional
Cham% ROM Counter
m

B Guaranteed Stability
H Higher Operating XA Frequency
B Lower Power Dissipation
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Experimental Setup
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Simulated AX Output Spectrum
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Measured Output Spectrum
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Measured Current Distribution
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Tapered MASH 1-2 AX FS
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Measured Output Spectrum
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= MASH 1-2 (Without tapering)
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Measured Current Distribution
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Analog-to-Digital Conversion
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m Do we need all the resolution range in
this case ?!

K2



Algorithm Flow Chart

m A = New Sample Input Signal (A)

s X = Analog value

corresponding to MSBs from Q 80 New x = x.0 —>

the last sample
m D =2™* Full scale voltage

= m = Resolution bits @ 0 5] New X =X |

Calculate LSB
From A-New X




Memory-Based A/D
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- ~
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A/D LSBs

36



Figures of Merit for A/D
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m Speed Figure of Merit = Power Figure of Merit

S_R103 PEM = 2ﬂ -SR
fC ch

— SR = Sampling rate
— f.= Cutoff frequency
— N = Resolution bits
— P = Power dissipation

SFM =
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Speed Figure of Merit
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Power Figure of Merit

Power Figure of Merit (PFM)
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Conclusions

s Enhancing the lock time, phase noise, and

reference spurs are possible with fractional-N
frequency synthesizers

A 1.2 GHz fractional-N frequency synthesizer is

presented with MASH architecture and pulse-
swallowed dual-modulus divider, in 0.35um BiCOMS

Measured performance meets the GPRS

requirements

— Lock Time =95us, in-band phase noise= -80 dBc/Hz, and
out-of-band phase noise= -125 dBc/Hz at 3MHz

AY. output may be used as a dithering signal to

reduce the spurs
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Conclusions

+

s ROM-Based AY frequency synthesizers enhance the
stability, speed, and power dissipation of the AX
architecture

m Tapering the AYX accumulators enhance the power
dissipation, and reduce the spurs of the frequency
synthesizer

m Using past history we can cut the required H/W for
ADCs

s A memory-based ADC architecture is proposed,
high level simulations verify the functionality and
stability of the proposed architecture
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Future Work
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m Multi-Standard frequency synthesizers

m Power dissipation reduction in
fractional-N frequency synthesizers

m Low phase noise VCO

m Integrating the VCO and the loop filter
for monolithic solution

m Increasing the dynamic range of the
memory-based ADC
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