King Fahd University of Petroleum and Minerals Electrical Engineering Department

EE200: Digital Logic Circuit Design First Semester 2010-2011 (101)

A. Course Information	
-----------------------	--

Text Book:	Digital Design (4 th Edi	ition) b	y M. M. Mano					
Course	Name			Office	Phe	one	Sections	
Coordinator:	Dr. Mohammad S. Sharawi, msharawi@kfupm.edu.sa			59/1091	48	10		
Instructors:	Your Section Instructor is	5:						
	Dr. Alaa El-Din Hussein ,			59/0058	48	68	8	
	husseina@kfupm.edu.sa							
	Office Hours: 10:00 am- 10:55 am, SMW		5 am, SMW					
	Or by appointment							
Lab	Name		Office	Phone		Sections		
Coordinator:	Dr. Essam Hassan,			59-2100	23	370		
	ehassan@kfupm.edu.sa	ı						
Grading:	Assignments and	I	aboratory	Design Project	Two I	Majors	Final	
Ũ	Quizzes							
	15%		20%	5%	30)%	30%	
	First Major	Sec	cond Major	Lab Fina	1		Final	
Exams Dates:	Mon. October 25, 2010	Mon. D	December 13, 2010	January 8- 12,	2011	Per tl	he schedule	
Exams Times:	7 – 9 PM	7 – 9 PM		Your Lab time		from the registrar's		
Exams Places:	To be announced	To be announced		In your Lab			office	
Important	Last day to drop the co	course Last day to d		course Last day to dr		rop the course	Last day to drop all courses	
Dates:	without a permanent re	record with '		V" grade	with "WP/WF" Thru			
					R	egistrar's	s office.	
	October 6, 2010		Novembe	er 3, 2010	J	anuary 9	, 2011	

- **Note #1:** Final Exam is <u>coordinated</u> and <u>comprehensive</u> (i.e. it is common for all sections and covers chapter 1-7 as described in the syllabus and class notes). Lab Final will be given by the Lab instructor in the Lab during the normal Lab session. <u>Major Exams are also coordinated</u>.
- **Note #2:** According to the rules and regulations of KFUPM, attendance is **MANDATORY**. More than **8** unexcused absences will be reported to the registrar office and result in a **GRADE of DN** regardless of the student's grade.
- **Note #3:** It is your responsibility to solve the *practice problems* as soon as the material is covered in the class. Solution will be posted on <u>WebCT(http://ocw.kfupm.edu.sa/</u>). The *practice problems* set will not be collected.
- **Note #4:** Your instructor will give you other home work assignments which will be collected and graded. Quizzes will be given regularly based on the homework and the *practice problems*..
- Note #5: A design project will be assigned around week 10 and will be due at the end of week 14.
- **Note #6:** Class notes, announcements and HW solutions will be posted on the class webpage at: <u>http://faculty.kfupm.edu.sa/EE/mmdawoud/</u> it is your responsibility to check announcements regularly.

B. Course Details.

1. Course (Catalog) Description

Number systems & codes. Logic gates. Boolean Algebra. Karnaugh maps. Analysis and synthesis of combinational systems, decoders, multiplexers, adders and subtractors, PLA's. Types of flip-flops. Memory concept. Registers. Introduction to sequential circuit design.

2. Prerequisites(s)

Calculus I (MATH 101) General Physics I (PHYS 101)

3. Course objectives are to

- 1. Introduce the students to the the digital principles with emphasis on logic design.
- 2. Familiarize the students with the necessary mathematical tools such as number systems, codes, and Boolean algebra.
- 3. learn the principles of analysis and design of combinational logic circuits
- 4. learn the principles of analysis and design of sequential logic circuits.

4. Learning Outcomes

After successfully completing the course, the students will be able to

Outcome1:	apply knowledge of number systems, codes and Boolean algebra to the analysis and design of digital logic circuits.
Outcome 2:	identify, formulate, and solve engineering problems in the area of digital logic circuit design.
Outcome 3:	use the techniques, skills, and modern engineering tools such as logic works, necessary for engineering practice.
Outcome 4:	to function on multi-disciplinary teams through digital circuit experiments and projects.
Outcome 5:	to design a digital system, components or process to meet desired needs within realistic constraints.

5. Topics Covered

- Binary Numbers, Number Base Conversions,
- Complements, Signed Binary Numbers, Binary Codes,
- Binary Logic, Boolean Algebra and digital logic gates,
- Forms of logic functions and K-map simplification,
- Analysis and design of combinational logic circuits,
- Adders, Multipliers, Magnitude Comparator, Decoders, Multiplexers,
- Programmable logic devices,
- Flip-flops and sequential circuits,
- Registers and counters.

6. References.

• *Fundamentals of Digital Logic with Verilog Design*, S. Brown and Z. Vranesic, 2nd Edition, McGraw Hill, 2008.

• Logic and Computer Design Fundamentals, M. Morris Mano and C. R. Kime, 4th Edition, Prentice Hall, 2008.

Week	Date	Topics	Sections	Labs/Prob. Sessions	
1	Sep. 25	Binary Numbers, Number Base Conversions,	1.1-1.3	No Lab.	
2		Octal & Hexadecimal Numbers, Complements,	1.4-1.7	Introduction to Lab.	
	Oct. 2	Signed Binary Numbers, Binary Codes		Equipment, Exp#1: Binary	
				& Decimal Numbers	
		Binary Logic, Boolean Algebra: Axioms, Theorems	1.9,	No Lab.	
3	Oct. 9	& Properties. Boolean functions, Digital Logic	2.1-2.4		
		Gates	2.7-2.8		
	Oct. 16	Canonical & Standard Forms, More Logical	2.5-2.6	Exp#2: Digital Logic Gates	
4		Operations, Simplification of Boolean functions	3.1-3.5		
		Using K-Maps, Product of Sums Simplification.			
		Don't-care Conditions, NAND, NOR, and Other	3.6-3.9	Exp#3: Introduction to	
5	Oct. 23	Two Level Implementations, Exclusive-OR		LogicWorks	
		Function.		Exam # 1	
6	Oct. 30	Combinational Logic: Analysis and Design	4.1-4.4	Exp#4: Boolean Algebra	
		Procedures, Code Conversion, Adder circuits.			
7	Nov. 6	Subtractors, Decimal Adder, binary multiplier,	4.5-4.8	Exp#5: Simplification	
		Magnitude Comparator, Decoders.			
		EID Al-Fitr Break	40.444		
8	Nov. 27	Encoders and Multiplexers, Random Access	4.9-4.11,	Exp#6: Code Conversion	
		Memory.	7.2, 7.3		
10	Dec. 4	Programmable Logic, PLD'S, ROM, Programmable	7.5-7.7	Exp#7: Adders/Subtractors	
		Logic Array, Programmable Array Logic.	5154		
11	Dec. 11	Sequential Circuits, Latches, Flip-flops,	5.1-5.4	Exp#8: Multiplexers	
		Characteristic Tables			
12	Dec. 18	Analysis of Clocked Sequential Circuits, State	5.5, 5.7	Exp#9: Design with ROM's	
		Reduction and Assignment.	5.0		
13	Dec. 25	Flip-flop Excitation Tables, Design Procedure,	5.8	Exp#10: Flip-flops	
		Synthesis using different flip flops.			
14	Jan. 1	Desisters and Shift Desisters	6160	Eventti 1: Countons &	
		Registers and Shift Registers	0.1, 0.2	Sequential Logic	
				Sequential Logic	
<u> </u>		Ripple Counters, Synchronous Counters and other	63-65	Lah Final	
15	Jan. 8	rupple counters, Synemonous counters and other	0.5 0.5		
	Jan. o	counters			

C. Tentative Course Outline and Schedule

D. Practice Problems

Chapter 1:	5,7,9,18,20,29,35
Chapter 2:	2, 8,12,15,18,20
Chapter 3:	2,7,12,15,19,24
Chapter 4:	5,11,13,20,25,29,31,35
Chapter 7:	15,18,19,21,25
Chapter 5:	2,6,9,12,19
Chapter 6:	5,7,8,12,21