

Ministry of Higher Education

King Jahd University of Petroleum & Minerals

وزارة التعتيم المتابي جامعة الملك فحهد للبنروك و المعادن قسم الهندسة الكهربائية

Electrical Engineering Department

EE 445 – 072 Instructor: Dr. Alaa El-Din Hussein

Assignment # 3 Due Date: Saturday April 5, 2008 (in class)

Question 1:

For the shown instumentional amplifier:

- a) What are the voltage at the inverting terminals of opamps 1 and 2.
- b) Use those voltages to find the voltages at the output of opamps 1 and 2, V_{o1} and V_{o2} respectively.
- c) For op amp 3, find V_0 in terms of V_{01} for V_{02} grounded. What op amp configuration is this?
- d) For op amp 3, find V_0 in terms of V_{02} for V_{01} grounded. What opamp configuration does this resemble?
- e) By superposition, the total output V_0 of opamp 3 is the sum of the above two results. Find the complete input/output relationship of opamp 3. Using that relationship and the values of Vo1 and Vo2 found above, find Vo in terms of V_1 and V_2 .

Solve the following differential equation using opamp integrators and adder/subtractor. $\frac{d^2y}{dt^2} + 5\frac{dy}{dt} + 2y = 2\sin(2000\pi t)$ assuming that y(0)=0; and $\frac{dy}{dt}\Big|_{t=0} = -1$, and a sinusoidal source of frequency 1KHz is available.

Question 3:

Draw the waveform at V_{out} and V_f , and drive an expression for the frequency of oscillation.

Question 4:

Design a circuit to perform the following operation: $y(t)=3*x(t)^2$