
Figure 5 VSWR at two input ports

Figure 6 Isolation between two iput ports

4. CONCLUSION

A new low-cost dual-polarized array of corner-fed patches is
presented. Its advantages are small size, low cost, higher
isolation, lower cross polarization, etc. The radiation patterns
for both co- and cross polarizations are formulated and
calculated. Its S-parameters are found by using the CAD-
oriented EMN method for thin microstrip antennas, which
combines the cavity model, the multiport network model, and
segmentation and desegmentation techniques. The theoreti-
cal results are validated by comparison with experimental
results. The measured isolation of the 4 = 4 array is 26.5 dB
at 12.0 GHz, which is obviously better than that of the
classical ones.

The dual-polarized array presented in this paper can be
improved further by means of corrections in the feeder width
and length, corporate feed design, etc. They are promising for
practical applications.
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ABSTRACT: We implement the Du Fort]Frankel modified explicit
( )finite-difference beam propagation method MEFD to model three-

dimensional optical de¨ices using parallel computers. Accuracy compar-
isons with other parallel FD]BPMs are made, and we obser̈ e that the
MEFD is ¨ery accurate and efficient. The parallel implementation of
MEFD shows a large run-time computer sa¨ings compared to other
parallel FD]BPM algorithms. Q 2000 John Wiley & Sons, Inc. Mi-
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I. INTRODUCTION

As we come to the stage of integrating many optical process-
ing elements onto one substrate, the optical circuit is becom-
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ing large and complicated. Very efficient modeling tech-
niques are essential in this area. The beam propagation

Ž .method BPM is one of the methods that provide accurate
w xand simple predictions for a variety of optical devices 1]2 .

However, there are several versions of BPM, with the
finite-difference BPMs being the simplest, the most flexible,

w xand efficient 1]5 . For three-dimensional devices on the
order of several thousand wavelengths in length, the problem

Ž .becomes very large for conventional computers serial to
w xexecute efficiently 3]5 . The best way to model a large

problem efficiently is to use parallel processing. However, not
all algorithms are suitable for parallel processing in terms of
speed up and efficiency. Those algorithms that use fewer
communications between processors are said to be highly
parallel, for example, the explicit finite-difference BPM and
the real space BPM. In earlier work, we showed implementa-
tions and comparisons between these methods in the parallel

w xdomain 4]5 . We observed from the comparison that the
parallel EFD is more efficient than the RS because it is faster
per propagation step, and the two methods relatively con-
verge using the same propagational step. Also, the EFD was
found to be very efficient in analyzing 3-D devices of second-

wharmonic generation using second-order nonlinearities 3,
x6]7 . The only disadvantage with the EFD is that it is

conditionally stable, which restricts the propagational step to
a very small value when the transverse mesh spacing is
reduced. On the other hand, a modification to the EFD using

w xthe Du Fort]Frankel approach 8 shows two advantages over
w xthe EFD 3, 9 . The first is that the propagation step can be

relaxed compared to that of the stability value of the EFD,
and the second is that the total number of computations can
be reduced by half by using a leapfrog arrangement. In
addition, the MEFD remains explicit, and hence highly paral-
lel. In a recent communication, we analyzed the 2-D MEFD,

w xand compared it with the most popular FD]BPMs 10 . The
only precaution with the MEFD is that it introduces a weak
spurious field that is coupled to the true field. In the previous
analysis, we showed some numerical solutions to reduce or
eliminate these problems. In this work, we extend the MEFD
to three dimension using parallel-processing implementa-
tions. In addition, a verification of the accuracy of the method
is made by analyzing a 3-D rib waveguide, and the results are
compared to the accuracy of the parallel EFD and the
parallel RS.

II. NUMERICAL METHOD

Starting with the scalar parabolic equation for a three-dimen-
sional field f:

f  2f  2f
2 2 2Ž . Ž .2 jk n s q q k n y n f 10 0 0 02 2 z  x  y

where n is a reference refractive index, k is the free-space0 0
Ž .wavenumber, and n x, y, z is the refractive index, and using

the central finite-difference approximations for the partial
w xderivatives leads to the discrete EFD equation 11 :

Ž . Ž . w Ž . Ž .xf z q D z sf zyD z qa f z qf zi , m i , m x iy1, m iq1, m

w Ž . Ž .x Ž . Ž .q a f z q f z q b f z 2y i , my1 i , mq1 i , m i , m

where

Ž . w 2 Ž 2 2 . 2 2 xb s D zrjk n k n y n y 2rD x y 2rD yi , m 0 0 0 i , m 0

Ž 2 .a s D zr jk n D xx 0 0

Ž 2 .a s D zr jk n D y .y 0 0

i and m represent the discretization of the transverse coordi-
nates x and y, respectively, with transverse mesh sizes D x

Ž .and D y, and D z is the longitudinal step size. Equation 2 is
w xstable if 11

wŽ 2 . Ž 2 . 2 < 2 2 < xD z - 2k n 4rD x q 4rD y q k n y n .max0 0 0 i , m 0

For accurate modeling of a typical optical device, D x and D y
have to be kept much smaller than the optical wavelength,
resulting in a very small propagation step size D z according

Ž .to the above condition. However, if the field f z ini, m
Ž . w xEq. 2 is replaced by its average value 8

Ž . w Ž . Ž .xf z s f z q D z q f z y D z 2i , m i , m i , m

Žthis leads to the Du Fort]Frankel method or the MEFD in
. w xshort 3, 8]10 :

Ž .f z q D zi , m

Ž . x w Ž . Ž .xs c f z y D z q d f z q f zi , m i , m i , m iy1, m iq1, m

y w Ž . Ž .x Ž .q d f z q f z 3i , m i , my1 i , mq1

where

Ž . Ž .c s 2 q b r 2 y bi , m i , m i , m

x Ž .d s 2 a r 2 y bi , m x i , m

y Ž .d s 2 a r 2 y b .i , m y i , m

The Du Fort]Frankel method is unconditionally stable in a
uniform medium with n2 s n2, in contrast to the conditional0

Ž . w xstability of the standard explicit discretization 2 10 . Exami-
nation of the EFD and the MEFD shows that the two
methods require two initial fields to start the propagation. As

w xreported earlier 10 , the MEFD produces spurious fields if
the two initial fields are equal or excited with other BPMs.
We have suggested two numerical solutions to reduce or
eliminate the spurious field. If the initial field is a guided

Ž . Ž .mode, two initial fields f 0 and f D z spaced by D z can be
Ž .found by multiplying f 0 with the appropriate phase factor

Ž .to obtain f D z , assuming that the medium in the longitudi-
nal direction does not change. The other technique is to use
two equal initial fields with a very small initial step size D z,
increasing gradually to the desired D z. Experiments with this
method show that, as the initial D z decreases, the error of
the spurious field reduces.

III. RESULTS

We have implemented the three-dimensional MEFD using
domain decomposition on an MIMD parallel processing ma-

Ž .chine a 64-processor Parsytec transputer array . The imple-
mentation of the MEFD is similar to that of the EFD and the

w xRS in 3]5 . The processor array is configured in a 2-D grid
technology, and the transverse mesh points are divided into a
2-D grid of equal blocks of data. Each block of data is
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Figure 1 Rib waveguide used in the computations with n s 3.44g
and n s 3.34 and a wavelength of 1.55 mmsub

Figure 2 Speed, speed up, and efficiency of the parallel MEFD as
Ž . Ž .a function of the total mesh points M M s M . a Speed.x y x

Ž . Ž .b Speed up. c Percentage efficiency

assigned to one of the processors in the 2-D processor array;
this arrangement ensures that the system loading is balanced.
In all of the following results, the rib waveguide in Figure 1
has been used to test the MEFD. Figure 2 shows the speed,
the speed up, and the efficiency in using the multiprocessor
array as a function of the number of mesh points. For

Ž .simplicity, the number of mesh points in the x-direction Mx
Ž .and the y-direction M are equal. From the figure, for ay

fixed number of mesh points, the speed of the MEFD in-
creases as the number of processors increases. The figure
also shows that some of the implementations of the MEFD
approach 100% efficiency. The serial implementation could
not be continued beyond M s 200 due to the memory limit.x
As expected, the results in Figure 2 are similar to those of

w xparallelizing the EFD in 4]5 because the number of opera-
tions for the two methods is close. We also expect that the
implementation of the MEFD on an SIMD machine will

Žproduce a similar speed up to that of the EFD this has not
been implemented due to the unavailability of an SIMD

.machine . Figure 3 shows a comparison of the accuracy
among the parallel EFD, the parallel RS, and the parallel
MEFD as a function of D z for different transverse mesh
spacings. The results of the parallel EFD and the parallel RS

w xare those appearing in 4]5 . The power spectral method has
been used to calculate the mode indexes from the BPM fields
w x12 . First, the correlation function between the input and the
marched field is evaluated numerically during the course of

Figure 3 Convergence of the MEFD, EFD, and RS as a function
Ž . Ž .of the longitudinal step size D z. a D x s D y s 0.1 mm. b D x s

Ž .D y s 0.05 mm. c D x s D y s 0.025 mm

propagation; then the result is multiplied with a Hanning
window function and Fourier transformed. The propagation
constant is computed by locating the peak of the spectrum.
This figure shows the convergence of the three methods by
reducing D z, where D z for the EFD is constrained by the
stability condition of the algorithm. Comparison between the

Ž .EFD and the MEFD of Figure 3 c shows that the MEFD
can use D z about ten times larger than EFD with very little
degradation in accuracy. In addition, using the leapfrog ar-

w xrangement 3, 9]10 , the total mesh points of the MEFD can
Ž .be divided into two equal sets even and odd , in which only

one set could be used in the computation while retaining the
same accuracy. This gives the MEFD a further 50% increase
in the speed per propagational step over the EFD. Figure 4
shows a 3-D plot for the first guided mode of the waveguide
in Figure 1 computed using the MEFD. At the end, it has to
be mentioned that all of the results shown in this work were
written in Fortran with a double-precision accuracy under the
PARIX operating environment software.

IV. CONCLUSION

Ž .In conclusion, the modified explicit finite-difference MEFD
BPM has been extended to three dimensions using an MIMD

Figure 4 Three-dimensional field plot of the first guided mode of
the rib waveguide of Figure 1 computed using the MEFD
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parallel-processing machine. This method is very similar to
the known EFD in being simple and highly parallel. A very
high efficiency of parallelizing the MEFD has been recorded,
due to the explicit nature of the method, which keeps the
communication overhead between processors to a minimum.
In addition, the accuracy of the parallel MEFD has been
verified and compared with the parallel EFD and the parallel
RS. Comparisons among these three methods show that the
MEFD is much more efficient than both of the other tech-
niques. Finally, the solution of the parabolic equation, dis-
cussed in this work, is common for many large major mathe-
matical applications where the same implementations of the
parallel MEFD technique could be used to speed up their
execution time.
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ABSTRACT: A solution for coupling through a double slit between two
parallel-plate wa¨eguides is obtained in analytic series form. The Fourier
transform is used to express the scattered field in the spectral domain in
terms of wa¨eguide modes. The simultaneous equations for the modal
coefficients are sol̈ ed to obtain the transmission and reflection coeffi-
cients in simple, rigorous, and numerically efficient series. Numerical
computations are performed to illustrate the coupling and directï ity
characteristics of a double-split coupler. Q 2000 John Wiley & Sons,
Inc. Microwave Opt Technol Lett 24: 182]185, 2000.
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1. INTRODUCTION

Electromagnetic wave coupling between rectangular wave-
guides is an important subject due to its directional coupler
applications. Coupling by slits between rectangular wave-
guides has been investigated by various approximations and

w xnumerical approaches 1]5 . The purpose of this paper is to
show that an analytic, rigorous solution exists for a certain
multiple-aperture directional coupler of the rectangular-
waveguide type. In this paper, we examine the behavior of
TE-wave coupling through a double slit between two parallel-
plate waveguides. The understanding of this type of coupling
behavior is, in particular, useful for the study of a practical
directional coupler which has coupling elements in the com-
mon narrow wall of the rectangular waveguide. The Fourier
transform technique and mode matching are used to obtain a
solution in rigorous, analytic form of a rapidly convergent
series which is numerically efficient.

2. FIELD REPRESENTATIONS

Consider the problem of wave coupling through a thick
double slit between two metallic parallel-plate waveguides
Ž . Ž .see Fig. 1 . Assume that a TE transverse-electric-to-z-axis
wave is incident on slits from port 1, and that the eyiv t time

Žconvention is suppressed throughout. In region I yd - x -1
.0 , the total E-field consists of the incident and scattered

fields:

i Ž . ik z s z Ž . Ž .E x , z s e sin k x 1y xs

1 `
I I y iz z˜Ž . Ž . Ž . Ž .E x , z s E z sin k x e dz 2Hy y2p y`

Ž . Ž .where 0 - s - kd rp , k s 2prl, k s sprd , k s1 x s 1 z s
2 2 2 2 Ž''k y k , and k s k y z . In region II yd - x -xs 2

. Žyd , ya y a - z - ya q a , region III yd - x - yd ,1 2 2 2 1
. Ž .b y a - z - b q a , and region IV yd - x - yd , the3 3 2 2

E-fields are

`
II Ž . Ž . Ž . Ž .E x , z s a x sin a z q a q a 3Ýy m 2 m 2

ms 1
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