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A Novel Nonparaxial Time-Domain
Beam-Propagation Method for Modeling

Ultrashort Pulses in Optical Structures
Husain M. Masoudi

Abstract—In this paper, a new nonparaxial time-domain
beam-propagation method (TD–BPM) based on Padé approxi-
mant for modeling ultrashort optical pulses has been proposed
and verified. The high efficiency of the technique in modeling
long device interaction comes from solving the TD wave equation
along one direction and allowing the time window to follow the
evolution of the pulse. The accuracy of the method was tested
in three different environments of homogenous and nondispersive
medium, metallic, and dielectric waveguides and then was applied
to model ultrashort pulse propagation in a directional-coupler
device. The characterization of the technique shows excellent
performance in terms of accuracy, efficiency, and stability, which
the conventional paraxial TD–BPM failed to achieve. The new
TD–BPM is particularly well suited for the study of unidirectional
propagation of compact ultrashort temporal pulses over long
distances in waveguide structures.

Index Terms—Beam propagation method (BPM), finite-
difference (FD) analysis, modeling, numerical analysis, optical
waveguide theory, Padé approximant, partial differential equa-
tion, ultrashort pulse propagation.

I. INTRODUCTION

O PTICAL-communication-circuit designs are moving to-
ward integrating a large number of devices on a single

substrate. This process creates new difficulties in understand-
ing the complicated interaction behavior between circuit el-
ements and in improving the efficiency of these circuits. In
this context, modeling plays a very important role that helps
solve these complexities. On the other hand, there are also a
number of challenges in modeling today’s and future optical-
communication circuits. The first challenge is the fact that most
of these devices are designed based on time-domain (TD) in-
teraction rather than continuous wave (CW), where the analysis
of TD are much more complicated than CW analysis due to the
involvement of a large number of frequency spectra. Unfortu-
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nately, most of the techniques developed in the literature are for
CW operations, and very few are for the TD study. The second
challenge is that most of these circuits involve a large number
of elements that have different geometries of 3-D guidance
mechanisms, and sometimes, they are designed on nonlinear
optical interaction of χ(2) or χ(3) responses of the material.
The third challenge, and maybe the most difficult, is that most
of these devices are designed for interaction over long optical
distances, usually on the order of thousands of wavelengths.
Accordingly, modeling techniques have to be very efficient and
must run easily on ordinary computer resources; otherwise,
they are less useful if they require a special computer, such
as supercomputers, to which very few people have access.
The finite-difference TD (FDTD) is a well-known technique
developed and used in many applications to model both TD
and CW problems, but it requires huge computer resources,
and more importantly, it is not suited for long optical-pulse
interaction [1]–[8]. Over the past few years, there have been
many attempts to develop new TD techniques to solve these
problems [9]–[17]. It was observed that the majority of these
techniques are very similar in their approach to the original
FDTD. They can be classified in two categories. The first
category is called slowly varying envelope methods, where the
stepping mechanism uses the first-order time derivative after
neglecting the second-order derivative [9]–[14]. Clearly, these
techniques are not suited for short optical-pulse propagation. As
a matter of fact, they are more suited to CW analysis than TD.
The second category is similar to the first group in its standard
approach; however, they use higher order approximation, such
as Padé relations, to account for the neglected second derivative
of time [15]–[17]. Unfortunately, most of these techniques
proved to be inferior to FDTD in terms of computer-resource
consumption [17]. One-way propagation techniques, such as
the beam-propagation method (BPM), are well suited for long
device interaction [18]–[21]. However, most of the BPMs were
developed for CW operations. Previously, we proposed two
paraxial TD–BPM techniques to model optical-pulse propa-
gation in waveguide structures [22], [23]. The techniques are
based on an explicit FD (EFD) approach [24], [25], and they
proved to be very efficient in modeling optical-pulse propa-
gation in long device interaction. The same EFD approaches
were also used efficiently in modeling long CW nonlinear-
wave interaction [26], [27]. On the other hand, the parabolic
TD–BPM in [22] and [23] showed limitation in modeling
ultrashort pulses due to the paraxial approximation involved.

0733-8724/$25.00 © 2007 IEEE



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 25, NO. 10, OCTOBER 2007

One has to notice that modeling ultrashort pulses is difficult due
to the fast variation of the pulse envelope during propagation.
Based on the same principle, another technique has recently
been developed using the finite-element method to model short
pulses [28]. The method uses Padé recurrence approximation
with the negligence of a few operator derivatives. In addition,
there are a few reported techniques in the literature proposed for
TD solution of higher order parabolic equations in nonoptical
fields, such as seismology and underwater acoustics (see [29]
and [30] and some of the references in [31]).

In this paper, we propose a new nonparaxial TD–BPM using
the same approach of the paraxial TD–BPM given in [22] and
[23]. The new TD–BPM involves writing the TD wave equation
as a one-way equation for propagation along the axial direction
z while keeping all time variations intact by treating them
as another transverse variable, in addition to the other spatial
dimensions. This arrangement leads to a one-way propagation
of a BPM-style approach. The advantage of this mechanism is
to allow the numerical time window to follow the evolution
of the pulse and, thus, minimize the computer storage of the
problem as well as the execution time. The new nonparaxial
operator uses the recently developed rational complex coeffi-
cient approximation of the well-known Padé approximant to
break the paraxial limitation [31]–[34]. Although the resulting
numerical operator is an implicit equation, this gives a very
robust and stable operator that enables the propagation of
ultrashort optical pulses in different geometries. One major
advantage of using the Padé approximant operator is that it
allows evanescent modes to properly be eliminated by simply
rotating the original real-axis branch cut through an angle. It
is to be said that implicit techniques are usually very stable
as compared to conditionally stable explicit techniques, where
some of these explicit methods lose their stability criterion and
become unconditionally unstable when new features are added
to the problem, such as a perfectly matched layer (PML) or
metallic layers [23]. An early result of the new TD–BPM op-
erator has been reported briefly in quick communications using
1-D and homogenous simple models [35], [36]. In this paper,
we expand the operator to model ultrashort pulse propagation
in dispersive waveguide structures and test the convergence
of important numerical parameters. We use this approach to
show details of accuracy, efficiency, and stability analysis. In
addition, comparisons with the paraxial TD–BPM technique
are given thoroughly. For the benefit of convenience, we use
a similar verification strategy and analysis used in [22] and
[23] for assessment and comparison purposes. In order to
highlight fundamental characterization issues of the technique,
all structures used in the following analysis have been chosen
to have analytical closed-form formulations. In the next section,
the new nonparaxial TD–BPM equations will be derived from
the wave equation, and the expansion of the operator in terms
of the Padé approximant is shown. Section III shows numerical
implementations and rigorous testing for the new technique
using three different problems. Initially, the technique was
examined using propagation of pulsed Gaussian beams in a
nondispersive and a homogenous medium, and then, the results
were compared with the analytical solution. Second, the method
was applied to dispersive linear guided-wave structures of

metallic and dielectric waveguides using the propagation of
pulsed guided beams. Again, the results were examined against
analytical predictions. Additionally, the results of the parabolic
TD–BPM were included in all aforementioned analysis for
comparison reasons. Section IV shows the application of the
new technique to model a practical GaAs directional-coupler
structure. A general conclusion is also given at the end of
this paper.

II. THEORY

We start the formulation of the new technique with the TD
wave equation. Assuming a 2-D optical structure (x and z) with
the TD wave equation described as

∂
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For TE fields, r = 1, s = n2, and ψ = Ey represents the elec-
tric field; for TM fields, r = 1/n2, s = 1, and ψ = Hy repre-
sents the magnetic field; co is the wave velocity in free space;
z is the propagation direction; and n = n(x) is the position-
dependent refractive-index variation. It is more convenient to
extract a carrier frequency ω and a propagation coefficient
k = kono in the direction of propagation from ψ as

ψ = Ψexp(−jkz) exp(jωt) + Ψ∗ exp(jkz) exp(−jωt) (2)

where ko = ω/co, no is a reference refractive index, and ∗
means the complex conjugate. After substitution, (1) can be
written in terms of Ψ as
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One of the motivating features of the TD–BPM is the appli-
cation of the moving time window for efficiency purposes. A
compact pulse eventually disappears from the window after a
certain number of propagation steps, where it requires the com-
putational window to be adjusted in time at each propagation
step. The adjustment, in fact, moves at the group velocity of the
pulse envelope. Therefore, the substitution of a moving time
coordinate τ = t− ν−1

g z with arbitrary νg changes (3) to [22],
[23], [35], [36]
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To arrive to the parabolic TD–BPM technique equation [22],
[23], one can simply neglect the first term in (4) that has the
second derivative along the direction of propagation z. On the
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other hand, to derive the equation for the wide-angle TD–BPM
(Broadband) technique, we define the pseudodifferential
square-root operator L given by (5), shown at the bottom of the
page at the same time, we can also write (4) in a product form
as [31],

r

{
∂

∂z
− jkono[1 − L]

} {
∂

∂z
− jkono[1 + L]

}
Ψ = 0. (6)

We may notice that the first operator in (6) is responsible for
forward propagation of the pulse, while the second operator
is responsible for the backward propagation. Concentrating on
the forward propagation of Ψ, write the formal solution with
respect to the initial field Ψ(0) as

Ψ(z) = exp {jkono(1 − L)z}Ψ(0)

= exp
{
jkono(1 −

√
1 + X)z

}
Ψ(0). (7)

In the literature, there are a number of approximations for the
square-root operator based on Taylor or rational approximation.
Recently, a complex rational coefficient approximation based
on the well-known Padé approximant was examined rigorously
using different applications [31]–[34]. The square-root operator
can be approximated as

√
1 + X ≈

p∏
i=1

1 + gp
i X

1 + hp
i X

(8)

where g and h are called Padé coefficients, and p is the Padé
order. It has been established in scattering problems that evanes-
cent modes are not properly eliminated if real Padé coefficients
are used in (8). It was observed that the related error from
these modes could be mostly reduced by simply rotating the
original real-axis branch cut through an angle [31]–[34]. At
the same time, it has also been shown that this technique is
equivalent to choosing a complex reference wavenumber [34].
In the following analysis, the FD approach was used as a
descritization scheme for both x and τ derivatives. The central
difference equations

∂f

∂α
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2∆α
, (α = x, τ) (9-a)
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fm+1 − 2fm + fm−1

∆α2
(9-b)

have been employed to replace the derivatives in (5). Equation
(8) was then easily implemented numerically, where the numer-
ator is a simple application on the field, while the denominator

was applied using the implicit Gaussian elimination technique.
The next section shows the implementations and the charac-
terization of the new technique for modeling ultrashort pulse
propagation in a variety of environments.

III. IMPLEMENTATIONS AND DISCUSSIONS

The new technique described before has been implemented
numerically using the Padé approximant operator. In order to
characterize the method fully, we apply it to the modelling of
ultrashort optical-pulse propagation in different materials and
structures. As in the previous analysis, comparisons are made
with structures that have closed-form analytical formulation,
such as propagation of pulsed optical beams in homogenous
and nondispersive material and pulsed guided beams in metallic
and dielectric waveguides. In addition, a close assessment with
the parabolic-counterpart results will be shown. We try to focus
on important numerical parameters that affect convergence,
stability, and accuracy. In the following simulations, the input
field of the form

Ψ(x, z = 0, τ) = Ψo(x)G(τ) (10)

has been considered throughout. G(τ) is the Gaussian pulsed
beam of the initial temporal distribution, which is defined as

G(τ) = exp

{
−
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)2
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(11)

where Ψo(x) is the transverse spatial profile of the pulsed beam,
and στo scales the duration of the initial pulse in the TD at
z = 0. During numerical simulation, boundary conditions for
the optical field are necessary in the transverse spatial and TDs.
PML can be used to absorb boundary conditions at the spatial
ends of the transverse numerical window. Substituting a lossy
spatial coordinate as [37], [38]
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where np is the refractive index of the PML medium, which
can be chosen to be equal to that of the medium next to the
PML layer, and σx is the conductivity of the PML layer. In
the PML region, the graded conductivity distribution of the
form σx = σmax(ζ/δ)2 can be used, where ζ is the distance
measured from the interface between the PML layer and the
computational space, and δ is the thickness of the PML layer on
one side. σmax is the maximum conductivity that can be found
by requiring the theoretical reflection coefficient for a plane
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wave incident on the interface perpendicular to x (PML re-
gion) R(0) = exp(−2/3np

√
µo/εoσmaxδ) to be smaller than a

given value [38]. In addition, it is also necessary to compensate
for the displacement of the pulse in the time window as the
pulse moves forward due to the motion of the envelope Ψ at the
group velocity. In practical terms, there are two methods that
allow tracking of the time-window movement. The first is called
the moving-time-window technique. This technique is simply
described by setting zero boundary conditions at the edges of
the relative time window (coordinate τ ) and moving in the
absolute time enclosure (coordinate t) with the group velocity
of the pulse. The movement is performed such that the relative
motion of the pulse in the time window is eliminated. However,
in some complex situations, the desired group velocity νg is
not known prior to simulation and has to be computed during
propagation development. In such a case, a second technique
can be used that depends on the idea of periodic boundary
conditions. A pulse leaving one side of the relative time window
is basically forced to reenter at the other side of the numerical
window. Both of these techniques were tested numerically
using the new TD–BPM and proved to be very powerful as an
efficient numerical tool. One has to note that these techniques
are fundamental in terms of saving computer resources, in
which they allow the time window to be of a finite amount,
which is a multiple of the optical pulsewidths.

A. Homogenous and Nondispersive Medium

The first performance test to be carried out on the new
technique involves the propagation of pulsed optical Gaussian
beams in a homogenous and nondispersive medium, in which
it can be described and compared using a known analytical
formulation [39]. One can find the evolution of a pulsed
Gaussian beam in homogenous space by taking the inverse
Fourier transform of the product of Φ̃ and the Fourier transform
of the initial pulse that can be written as

Φ(r, ϕ, z, t) =
1
2π

∞∫
−∞

G̃(ω)Φ̃(r, ϕ, z, ω)e−jωtdω (13)

where Φ̃ is defined in (14), G̃(ω) is the Fourier transform of
the initial pulse, and r and ϕ are the radial and the azimuthal
parameters, respectively. Considering a linearly polarized elec-
tric field with an initial spatial Gaussian waist wo at z = 0,
we can use the well-known frequency-domain representation
of an azimuthally symmetric Gaussian beam in a homogeneous
medium. The propagation in homogenous space of each fre-
quency component of the spectrum of the wavefunction can be
written in the frequency domain as [22], [23], [28], [39]
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Fig. 1. Percentage error comparison between this technique and the parabolic
TD–BPM for different initial short pulsewidths and different time-step sizes.
(a) and (c) Parabolic method. (b) and (d) Current technique. (a) and (b) Initial
στo = 50 fs. (c) and (d) Initial στo = 10 fs.

where the waist, the radius of curvature, the phase term, and the
diffraction length, respectively, are given by
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The above approach was used to validate results of the new
method in this section. For simplicity, the medium was taken to
be free space, and the wavelength of the carrier frequency was
set as λ = 1.0 µm. The reference refractive index was chosen
to be unity and the initial spatial waist wo = 2.5 µm. Fig. 1
shows the percentage-error comparison between the present
technique and the parabolic TD–BPM [23] for different initial
short pulsewidths and different time-step sizes. The pulse was
propagated to a distance of Z = 30 µm with p = 2, ∆z =
0.1 µm, and ∆x = 0.5 µm. In this case, the group velocity
of the optical pulse νg = co. The same parameters were used
for the parabolic technique, except ∆z = 0.1 µm when ∆τ =
1.0 fs, while ∆z was reduced to 0.05 µm when ∆τ = 0.5 fs
to meet the stability condition. For initial pulsewidths of στo =
50 fs, both techniques showed similar behavior, in which the
error decreases when the time-step size was reduced. These are
shown in Fig. 1(a) and (b). However, Fig. 1(c) and (d) shows
a diverse behavior for a smaller initial pulse of στo = 10 fs,
where the parabolic results are not affected by the reduction of
the time-step size with an error around 50%. The reason for
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Fig. 2. Power ratios comparison between this technique and the parabolic
TD–BPM for different initial short pulse propagation and different time-step
sizes. Other parameters are the same as those of Fig. 1.

this is that the paraxial-approximation errors are dominant over
the numerical time-step-size errors for ultrashort pulsewidths.
On the other hand, the present technique shows that its error
depends on the time-step size for ultrashort pulsewidths. It
should be understood that, in modeling ultrashort optical pulses,
small time-step sizes are needed to represent the rapid variation
of the pulse envelope. Fig. 2 shows power ratios in comparison
between this technique and the parabolic TD–BPM for the same
parameters of Fig. 1. The strong stability of the present tech-
nique is clearly demonstrated in the figure shown. Conversely,
the figure shows the divergence of the parabolic method, while
this divergence is reduced by decreasing the time-step size.
However, one has to remember that the reduction of the time-
step size is also accompanied by a large reduction in the initial
propagation step size for the method to remain stable.

B. Metallic Waveguide

In this section, we examine the new technique for the propa-
gation of ultrashort optical pulses in metallic-waveguide struc-
tures. The reason for this choice is that the metallic-waveguide
theory has an exact analytical formulation for the measurement
of pulse spreading due to dispersion. This will help tune up
the numerical parameters of the new method more effectively.
Initially, we introduce the theoretical background that is used
for verification principles, and then, we show the numerical
implementation and comparison between the present technique
and the parabolic results. It is known that the propagation of
optical beams in a 2-D (x and z) metallic waveguide, with a
width of d, gives a cutoff frequency that depends on the width
as [23], [40]

ωc =
iπν

d
, i = 1, 2, 3, . . . (15)

where ν = (εµ)−1/2, and the cutoff wavelength λc = 2d/i,
which is measured at the velocity of light in the material be-

tween the two metallic-waveguide boundaries. For simplicity, a
free-space material between the two mirrors was considered. In
this case, the phase velocity of the guided mode is given as

νp =
ω

β
=

ν√
1 − (ωc/ω)2

(16)

with a propagation constant

β =
ω

ν

√
1 − (ωc/ω)2 (17)

and the exact group velocity of the pulse beam can be found as

νg =
dω

dβ
= ν

√
1 − (ωc/ω)2. (18)

Considering a pulsed first guided mode (i = 1) to propagate
inside the metallic structure, the temporal pulsewidth, at a
distance z, can be measured as [23], [40]

στ (z) = στo

√
1 +

(
2z
σ2
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d2β

dω2

)2

(19)

where the dispersion term in (19) can be calculated using the
following relation:

d2β

dω2
=

−(ω2
c/ω

3)

ν [1 − (ωc/ω)2]3/2
. (20)

We consider the propagation of optical pulses in a waveguide
with a width of d = 1.0 µm, a cutoff wavelength λc = 2 µm,
and a first guided mode in the transverse direction x that
can be described as Ψo(x) = sin(πx/d). In order to analyze
the technique for convergence, stability, and accuracy in this
structure, we consider the propagation of a pulsed beam with an
initial temporal waist of στo = 50 fs and a carrier wavelength of
λ = 1.0 µm. The reference propagation coefficient was chosen
to be equal to the propagation coefficient β and νg = 0.866 co.
Fig. 3 shows the convergence of the technique with the lon-
gitudinal step size ∆z for different time-step sizes using a
Padé order of p = 2. The figure shows the percentage-relative
time waist error of the pulsewidth, the percentage maximum
transverse field error, and the power ratio of the pulsed beam
after a distance of Z = 50 µm. It is clear from the figure
that the technique converges with a longitudinal step size
around ∆z = 1.0 µm. The technique also shows very small
error in the transverse direction. From Fig. 3, we notice
the strong stability of the method with the change of ∆z.

Fig. 4 shows the convergence of the technique with the
transverse step size ∆x for different time-step sizes using
different Padé orders of p = 2 and 4. The definitions and the
parameters are the same of those used in Fig. 3. We notice
the convergence of the technique for the two Padé orders used,
with the two curves on top of each other. The same conclusion,
which is made in Fig. 3, can be observed in this analysis.
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Fig. 3. Convergence of the technique with the longitudinal step size ∆z for different time-step sizes. (a) Percentage-relative time waist error. (b) Percentage
maximum transverse-field error. (c) Power ratio of the pulsed beam.

Fig. 4. Convergence of the technique with the transverse step size ∆x for different time-step sizes and different Padé orders. (a) Percentage-relative time
waist error. (b) Percentage maximum transverse-field error. (c) Power ratio of the pulsed beam.

A comparison between the new technique and the parabolic
TD–BPM for different initial short pulse propagation is shown
in Fig. 5. The figure shows the percentage-relative time waist
error versus the operating-carrier wavelength. The results of the
parabolic TD–BPM are those appearing in the study in [23].
The parameters used in these results are p = 2, Z = 332 µm,
∆z = 0.1 µm, and ∆z = 0.01 µm for the parabolic results.
We should notice that increasing the carrier wavelength will
increase the propagation angle of the guided plane waves,
forming the mode inside the waveguide that can be described as

θ = arcsin(λ/λc), with respect to the axial direction; therefore,
this makes the mode less paraxial. In addition, we should also
notice that increasing the wavelength decreases the number
of carrier cycles under the temporal pulse. It is clear from
Fig. 5 that the relative error of the parabolic technique increases
by increasing the axial angle. This should be understood, as
the error associated with the paraxial approximation becomes
more dominant over other errors. The figure also shows that
increasing the initial pulsewidth decreases the overall error.
Here, it is clear that the paraxial error is reduced due to wider
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Fig. 5. Comparison between the new technique and the parabolic TD–BPM
for different initial short pulse propagation. The percentage-relative time waist
error versus the operating carrier wavelength.

initial optical pulsewidth, which can be interpreted as having
more carrier cycles under the pulse envelope. Comparison
between the two techniques shows the superiority of the present
technique as compared to the parabolic counterpart for both
pulsewidths used, in which the errors in both cases are very
small and are not affected by the change in λ.

C. Dielectric Waveguide

In this section, we continue the characterization of the new
technique by considering the propagation of temporal pulsed
optical beams in dielectric waveguides. We assume symmetric-
slab waveguides with the following parameters: a core re-
fractive index ng = 1.2, a cladding and a substrate refractive
indexes nc = ns = 1.0, and λ = 1.0 µm. The waveguide was
excited with its respected pulsed first guided mode, and the
pulse was propagated to a distance of Z = 50 µm with p = 2,
∆x = 0.2 µm, νg = 0.822 co, ∆z = 0.1 µm, and ∆z =
0.01 µm for the parabolic results. The results of the two tech-
niques were verified against the theoretical value of (19), where
the dispersion term was computed numerically from the disper-
sion relation of a dielectric-slab-waveguide theory [23], [41].
Fig. 6 shows a comparison between the new technique and the
parabolic TD–BPM for different initial ultrashort pulsewidths
στo and different waveguide core thicknesses a. In the figure,
the percentage-relative time waist errors versus the initial-time
pulsewidths are plotted. One has to note that changing the
width of the waveguide modifies the angle of the guided mode
with respect to the axial axis. With slab widths of 0.5 and
4.0 µm shown, they correspond to mode angles of 23.7◦ and
5.3◦, respectively. In general, the comparison between the two
techniques shows again the superiority of the new technique
as compared with the parabolic method for modeling ultrashort
pulse propagation in dielectric waveguides. In the case of the
parabolic method, it is clear from Fig. 6 that the error connected
with the initial pulsewidth is much more obvious than that
associated with the mode angle. One has to note again that as

Fig. 6. Comparison between the new technique and the parabolic TD–BPM
for different initial ultrashort pulse propagation and different waveguide-core
thicknesses a. The percentage-relative time waist error versus the initial time
pulsewidth. (a) Parabolic. (b) New technique.

Fig. 7. GaAs directional-coupler structure used in the analysis.

the initial pulsewidth στo decreases, the number of cycles under
the temporal pulse also decreases. While the effect of the initial
time-step size ∆τ is not very critical in case of the parabolic
case, but it is shown in the figure that it is very crucial in the case
of the new technique. Therefore, we may once again conclude
that the error in the new technique is mainly associated with
the initial time-step size ∆τ rather than the mode angle. It is
also understandable from the results of Fig. 6 that ultrashort
pulsewidths such as 5 fs require very small time-step sizes to
account for the fast variation of the pulse envelope.

The efficiency of the new TD–BPM technique is also quite
remarkable for modeling ultrashort pulses; this is in addition
to the robust stability and the large propagational step sizes
that have been demonstrated in the previous analysis for the
variation of numerical parameters. It was observed that the
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Fig. 8. Input field used in the directional-coupler analysis. The field consists of a pulsed first guided mode of an isolated single waveguide. The two horizontal
dotted lines show the position of the two waveguides forming the directional coupler.

Fig. 9. Evolution of the pulsed optical beam inside the directional-coupler structure at several distances along the longitudinal direction with xs = 0.4 µm,
p = 2, ∆x = 0.05 µm, ∆z = 0.1 µm, and ∆τ = 2.0 fs. A moving time window was used to follow the pulse.

technique converges to values around 100 times the values of
the explicit FD TD–BPM [23]. The present technique takes
around 0.6 s/step when p = 2 and 60 × 150 mesh points of
spatial and time discretizations, respectively, while running on
an ordinary laptop computer with a 2.1-GHz speed processor.
On the other hand, it is known that the parabolic technique
is very efficient per propagational step due to the use of the
explicit FD approach, but the method is conditionally stable
where propagation step size depends inversely on the square
of the spatial and the time-step sizes. The decrease of these

parameters results in a further reduction in the longitudinal step
size with typical values in the range of 0.01 µm.

IV. APPLICATION: DIRECTIONAL COUPLER

After the establishment of accuracy and stability of the new
TD–BPM method in the previous detail analysis, we use the
technique to model ultrashort pulse propagation in a GaAs
directional-coupler structure, as shown in Fig. 7. The parame-
ters used for the device are as follows: n1 = ns = n4 = 3.4,
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Fig. 10. Normalized power of the two symmetric sides of the spatial window
of the directional coupler for different spacing dimensions. Curves starting from
one belong to the right half of the spatial window, where the input was excited.
Curves starting from zero belong to the left half of the spatial window. Dashed-
dotted line is for xs = 0.4 µm, dashed lines are for xs = 0.5 µm, and solid
lines are for xs = 0.6 µm. Other parameters are the same as those of Fig. 9.

n2 = n3 = 3.6, x1 = x5 = 5.0 µm, x2 = x3 = 1.0 µm, and
λ = 1.55 µm. The input of the structure was excited with
a pulsed first guided mode of the isolated single waveguide
with an initial pulsewidth of 50 fs. This field distribution is
shown in Fig. 8.

Fig. 9 shows the evolution of the pulsed first guided mode of
Fig. 8 inside the directional-coupler device with a waveguide
separation xs = 0.4 µm. The figure shows a complete ex-
change of energy between the two waveguides over a length
around 100 µm. Note that the moving-time-window technique
was used to follow the pulse propagation with νg = 0.277co.
Fig. 10 shows the normalized power calculated over the two
symmetric sides of the spatial window of the directional cou-
pler. In this analysis, the total normalized power of the right-
hand side of the spatial window and the left-hand side of the
spatial window are plotted for three different separation dis-
tances xs. As expected, when the separation distance between
the two waveguides increases, the complete power coupling
takes effect over a longer distance.

V. CONCLUSION

A novel TD–BPM to model long interaction of ultrashort
pulsed beams in optical structures has been proposed and
analyzed fully. The technique is an extension to the parabolic
TD–BPM, which solves the TD wave equation by marching
the field along one direction. It uses the Padé approximant to
account for the fast envelope pulse propagational variations.
The verification process involved comparison with structures
that have analytical solutions for rigorous analysis purposes.
The technique was validated in homogenous and nondispersive
material, metallic and dielectric waveguides, and, later, was ap-
plied to a practical optical-communication device. The results
of the new technique were also compared systematically with
the parabolic TD–BPM. It was concluded that the new method

is efficient, very stable, and accurate. It was also observed
that the new TD–BPM is particularly well suited to the study
of unidirectional propagation of compact temporal pulses over
long distances in a guided-wave environment. Future work will
include the extension of the technique to examine problems
involving material dispersion and nonlinear parametric optical
interactions of χ(2) and χ(3), where the TD method is essential
in order to study the propagation of intense ultrashort pulses.
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