
Figure 5 Measured radiation patterns for the proposed antenna at
1790 MHz

Good radiation characteristics for the two operating frequen-
cies have also been observed.
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ABSTRACT: Second-order nonlinearity in optical media acts as a
source for harmonics generation. We set up a time-domain model that
accounts not only for the second harmonic, but also for the higher
harmonics that are induced by a beam propagation. The model is sol�ed
numerically using a second-order explicit scheme based on the exact
solution of the nonlinear difference equation. The power spectrum of the
generated harmonics is also presented. � 2002 John Wiley & Sons, Inc.
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1. INTRODUCTION

Second-order nonlinearity in optical media has extensive
applications that are based on frequency conversion. Such
conversion can serve as a laser source that has potential
applications in data storage and display technology.

Modeling the second-order nonlinear effects has increas-
ing importance in designing optical devices. There have been
enormous attempts to model such effects using frequency-

� �domain representation; see, for example, 3�5, 7�9 . Many
approximations and assumptions were utilized for the analyti-
cal and numerical treatment of such models. In particular,
systems are confined in advance to particular frequencies.

� �Alsunaidi, Masoudi, and Arnold 1 proposed a time-do-
Ž .main model for second-harmonic generation SHG in optical

waveguides. However, the simulation is based on a simplified
version of the model, and thus significant contributions of the
nonlinearity were not accounted for.

� �Furati, Alsunaidi, and Masoudi 6 presented and vali-
dated an algorithm that avoids the simplifying assumptions

� �on the time derivatives imposed in 1 . Doing so, the time-do-
main numerical solution preserves the characteristics of the
nonlinearity as well as coupling, and can be extended to
arbitrary input waveform conditions such as pulsed optical
beams. By considering the phase-matched propagation of a
field of power 107 V�m, the model is excellent in simulating
the evolution of the SHG since the effects of the higher
harmonics are negligible.

� �In this paper, we extend the model in 6, 1 to study the
generation of higher harmonics in second-order nonlinear
optical media. The model is rederived by distinguishing be-
tween all even and odd frequencies generated due to the
nonlinear polarization, which couples all harmonic fields. We
derive a second-order explicit finite-difference scheme for the
coupled nonlinear wave equations, and analyze the unique-
ness of the numerical solution.

Next, we set up and scale the mathematical model. Then,
we discretize the model, and analyze the solutions of the
discrete equations. Finally, we run the algorithm for the
planar-wave case, and analyze the spectrum of the solution.

2. MATHEMATICAL MODEL

The beam propagation in a second-order nonlinear medium
is described by

c2�E � n2� E � � Ptt t t

P � ! Ž2.EE

where E and P are the electric field and nonlinear polariza-
tion, respectively. n is the material refractive index, and c is
the speed of light. ! Ž2. is the second-order susceptibility
� �2, 11 . The operator � is the spatial Laplacian.

We are interested in processes in which a beam of fre-
quency � is incident upon the medium that occupies the half
space z � 0, and the beam is normal to the plane z � 0. As
the beam propagates into the medium, the nonlinear polar-
ization term generates the higher harmonics 2�, 3�, . . . .
Because of the differentiation, the zero-frequency field is not
generated.

Let E denote the field of frequency k�. Define the fieldsk

� �

E � E , E � E .Ý Ýo 2 k�1 e 2 k
k�1 k�1

We refer to E and E as odd- and even-harmonics fields.o e
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We decompose the total field into

E � E � Ee o

� �and, as in 2, 11 , we assume that the nonlinear polarization is
a result of the interaction of two odd-harmonics fields with an
even-harmonics field:

Ž2. Ž .P � ! E E � 2 E E .o o o e

We assume that ! Ž2. is frequency independent.
Note that the term E E generates even frequencies,o o

while the term E E generates odd frequencies. By groupingo e
terms of the same frequency type, the propagation equation
can be split into

2 2 Ž2. Ž .c �E � n � E � 2! � E Eo o tt o tt o e

2 2 Ž2. Ž . Ž .c �E � n � E � ! � E E . 1e e t t e t t o o

We assume that the medium is initially unexcited, and
consider incident waves of the form

Ž . Ž . Ž .E x , y , z � 0, t � A x , y cos � t � �in

Ž . 2Ž 2.where � is the phase and A x, y is in L R , the space of
square integrable functions. Such a sinusoidal input is used in

� �typical practical problems 1, 9 .
Thus, we can write the initial and boundary conditions for

Ž .1 as

Ž . Ž .E x , y , z , 0 � 0, � E x , y , z , 0 � 0, a � e, oa t a

and

Ž . Ž . Ž . Ž .E x , y , 0, t � A x , y cos � t � � , E x , y , 0, t � 0o e

respectively.

3. SCALING

Let I denote the energy applied to the boundary, and let it
2 Ž .be defined by the L norm of A x, y . Let  be the wave-

length 2� c��. If we apply the change of variables

ct
x� � x�, y� � y�, z� � z�, t� �

n o

�n o�E � E �I , A� � A�I , �� �a a c

and then remove the primes, we get the dimensionless
initial-boundary value problem:

Ž .�E � � E � 2
� E Eo tt o tt o e

Ž .�E � r� E � 
� E Ee tt e t t o o

Ž . Ž . Ž . Ž .E x , y , 0, t � A x , y cos � t � � , E x , y , 0, t � 0o e

Ž . Ž . Ž .E x , y , z , 0 � 0, � E x , y , z , 0 � 0, a � e, o 2a t a

where r � n2�n2 and 
 � ! Ž2.I�n2 .e o o
Ž .Note that, when r � 1 phase matching , all of the fre-

quencies will propagate at the same speed.

4. DISCRETIZATION

Ž .The system 2 is fully nonlinear and coupled. Using central
differencing, the finite-difference equations are also nonlin-
ear; however, they can be decoupled.

Ž .We discretize 2 by replacing each derivative by its cen-
tral difference approximation. We consider a uniform dis-
cretization of time by a time step of size dt. Let EE n, a � e, o,a
denote the approximation of E at the time t � ndt.a

Using these approximations, we obtain the finite-dif-
ference equations:

EE n�1 � 2 EE n � EE n�1
o o on� EE �o 2dt

EE n�1 EE n�1 � 2 EE nEE n � EE n�1 EE n�1
o e o e o e Ž .� 2
 32dt

EE n�1 � 2 EE n � EE n�1
e e en� EE � re 2dt

EE n�1 EE n�1 � 2 EE nEE n � EE n�1 EE n�1
o o o o o o Ž .� 
 42dt

where � nEE denotes the central difference approximation ofa
�E at t � ndt.a

Ž . n�1 Ž .Using 4 to eliminate EE from 3 , we get the cubice
polynomial in EE n�1:o

3n�1 n�1Ž . Ž .EE � b EE � c � 0 5o n o n

with the coefficients

r rl n
e nb � � � � 	n oo2 
2


rl n r	 n
o oe Ž .c � � 6n 2 
2�

where

l n � 2 EE n � EE n�1 � dt 2� nEE , 	 n � EE nEE n � 2 EE n�1 EE n�1 ,a a a a ab a b a b

a � o , e.

If we let

�b cn n
Q � , R �n n3 2

then we have

6
 2Q � r � 2 r
 l n � 2
 2	 n
n e oo

2 Ž . 2� r � 2 r
 � 6
 � 1 � 2
 r � 6


and

22 2 2 n n� �R 27r 
 l � 2
	n o oe Ž .� . 73 3n 2 nQ � �n 2 r � 2
 rl � 2
 	e oo

Note that, for sufficiently small 
 , Q is positive, and then
ratio R2�Q3 is less than 1. It follows that D � R2 � Q3 	 0,n n n n n

Ž .and as a result, the polynomial 5 has the following three
Ž � �.real solutions cf. 10, pp. 178�180 :

n�1y � �2 Q cos " , i � 1, 2, 3'i n ni

where

� � 2� � � 2� �n n n
" � , " � , " �n1 n2 n33 3 3
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and

3'� � arccos R � Q .n n nž /
5. UNIQUENESS OF THE NUMERICAL SOLUTION

Ž . Ž 2 3.Note that lim � � ��2 since, from 7 , lim R �Q
� 0 n 
 � 0 n n
� 0. Consequently, we have

� 5� �
lim " � � , lim " � , lim " � .n1 n2 n32 6 6
�0 
�0 
�0

This implies that, for i � 2, 3,

lim y n�1 � �i

�0

since lim cos " � 0, and lim Q � �.
� 0 ni 
 � 0 n
On the other hand, lim cos " � 0, and thus,
� 0 n1

lim y n�1 is an undetermined form. By applying
� 0 1
L’Hopitals rule, we get

cos "n1n�1lim y � �2 lim1 �3�2Q
�0 
�0 n

4 Q3�2
n n� � lim � � sin " � l�n n1 ož /3 Q
�0 n

since

'3 6
� nlim sin " � �1, lim � � � l ,n1 n o'
�0 
�0 2 r

3�2 'Q rn
lim � � .� 'Q
�0 2 6n

n�1 Ž .Accordingly, we only admit y as the solution of 51
since it is the only one that converges to the solution of the
linear equation. Therefore, for the numerical solution, we
have the formula

� � 2�nn�1 Ž .EE � �2 Q cos . 8'o n ž /3

Once EE n�1 is calculated, EE n�1 is calculated explicitlyo e
Ž .from 4 .

The time step can be chosen based on the CFL condition.
For example, one can use a uniform time step corresponding
to the maximum of the propagation speeds:

1 1
, .½ 5' '1 � 2
 r

6. NUMERICAL EXAMPLE

To demonstrate the validity of the derivation and the pre-
dicted behavior, we assume the incident beam to be a plane
wave of compact support and the propagation in the medium
to be along the positive z-direction only. In this case, the

Ž .model 2 can be considered as one dimensional.
As an example, consider the boundary condition

Ž .E 0, t � sin 2� t .o

In this case, we have �� 2� , and the generated frequencies
Ž .should be 2, 3, 4, . . . . We run the algorithm 8 for r � 1, and


 � 0.005. We use the space resolution dz � 0.01 and time
step dt � 0.009.

Figure 1 Wave propagation at the normalized time t � 41.4
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Figure 2 Time evolution of the fields at the normalized distances z � 15, 20, 25, 30

Figure 3 Time spectrum of the fields at the normalized distances z � 15, 20, 25, 30
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Figure 1 shows the wave propagation at t � 41.4. The
dashed and solid curves are the graphs of the numerical
approximations of E and E , respectively. The energy ex-o e
change to the generated harmonics increases with the travel-
ing distance.

Figure 2 shows the time evolution at the points z � 15, 20,
25, 30. The curve of larger amplitude is the graph of the
odd-harmonic field numerical values. The other one is the
graph of the even-harmonic field numerical values.

Figure 3 show the spectrum at the above-mentioned dis-
tances. The spectrum of the odd-harmonic field produces
peaks at the frequencies �� 1, 3, 5, . . . . The spectrum of the
even-harmonic field produces peaks at the frequencies ��
2, 4, 6, . . . .

These graphs show that, as the fields propagate inside the
medium, higher harmonics are generated, and more energy is
exchanged to these harmonics.

7. CONCLUSION

The mathematical model considered in this work can be used
to describe more accurately the frequency conversion process
that takes place in second-order nonlinear optical media. The
finite-difference scheme derived retains all of the nonlinear
effects, while maintaining the second-order accuracy. By ap-
plying the above model and method to practical optical
structures, one can better understand the nonlinear effects
that have been observed experimentally.
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ABSTRACT: The use of dual-stage gain-clamped erbium-doped fiber
( )amplifier GC�EDFA ha�ing a pump laser diode and 16-channel

( )wa�elength-di�ision multiplexing WDM of 0.8 nm spacing in the
C-band of 1545�1560 nm wa�elength was demonstrated in a burst
packet-mode optical switching system through an experimental setup.
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I. INTRODUCTION

In case some channels are added�dropped from a WDM
network due to any reconfiguration or any partial failure of
the network, the input signal, which is transmitted to an

Ž .erbium-doped fiber amplifier EDFA from the WDM net-
work, is varied, which in turn causes an undesirable power

� �transient or output variation 1 to take place in the surviving
channels. Therefore, the WDM packet-mode optical switch-
ing system, where the traffic input condition is varied in
burst, is required to have an amplifier having a characteristic
of amplifying the signal constantly irrespective of the tran-
sient due to any variation in some channels. A conventional
EDFA would experience gain transients for the deletion or
addition of one or more channels due to channel failure or
burst traffic. These transients are reflected in the remaining
channels, and may cause a substantial degradation in the
system’s bit-error rate. Transient effects, as well as gain
fluctuation resulting in degradation of signal quality in the
surviving channel, should be suppressed, and thus a gain
clamping is required. This configuration is referred to as the
GC�EDFA. The GC�EDFA is provided with a dynamic gain
and flatness control arrangement that is fast enough to en-
sure reliable services continuously in the surviving channels,
when one or more channels are suddenly dropped or added,
as may be experienced when a system reconfiguration or fault
interrupts some of the channels. The conventional EDFA,
which is generally used in the transmission system, is subject
to the characteristic definition that the input signal traffic is
kept uniformly or constantly, and it is, therefore, unavailable
for the burst packet-mode WDM optical switching system.
We have demonstrated that the GC�EDFA comprising a

Ž .double-pump laser diode LD and an electrical automatic
Ž .gain controller AGC is available for the packet-mode opti-

cal switching system.

II. PROPOSED GC – EDFA

The problem of dynamic gain saturation dependent on the
input power has been successfully overcome by using either
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