## KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS

## Department of Electrical Engineering

EE 340 Electromagnetic
Homework 2 (Due Wednsday October 24)

1- A line charge with the shape shown below lies in the $\mathrm{x}-\mathrm{y}$ plane. Its charge density is $\rho_{l} C / m$.
Find the magnitude and direction of the electric in the $x-y$ plane. Its charge density is $\rho_{l} C / m$.
Find the magnitude and direction of the electric field intensity at the origin.


3- A long cylinder of radius 0.2 m lies along the $z$ axis and carries a uniform surface charge density of $10 \mathrm{mC} / \mathrm{m}^{2}$. Calculate the flux passing through a window at $\rho=2 \mathrm{~m}, \pi / 4 \leq \phi \leq 3 \pi / 4$, and $2 \leq z \leq 4$.

4- A charge distribution of the following form is set up in air:
$\rho_{v}=10^{-6} e^{-r} \mathrm{C} / \mathrm{m}^{3}$, where $r$ is the radial distance of he spherical coordinates.
Find the electric field intensity $\bar{E}$ everywhere.

5- Given the volume charge distribution in cylindrical coordinates as

$$
\rho_{v}= \begin{cases}12 \rho \quad n C / m^{3}, & 1<\rho<2 \\ 0, & \text { otherwise }\end{cases}
$$

Calculate the electric field intensity $\bar{E}$ everywhere.

6- Three concentric spherical shells $r=1, r=2, r=3 \mathrm{~m}$, respectively, have charge distriutions $2,-4$ and $5 \mu \mathrm{C} / \mathrm{m}^{2}$.
a. Calculate the flux through $r=1.5 \mathrm{~m}$ and $r=2.5 \mathrm{~m}$.
b. Find $\bar{D}$ at $r=0.5 \mathrm{~m}, r=2.5 \mathrm{~m}$, and $r=3.5 \mathrm{~m}$.

7- The charge density in free space is given as a function of a spherical radius as $\rho_{v}=\left\{\begin{array}{cc}\rho_{0} r & 0<r \leq a \\ 0 & r>a\end{array}\right.$ Find $\bar{E}$.

