KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
Department of Electrical Engineering
EE 340 Electromagnetic
Homework 1 (Due Sat. Sep. 22)

1- Let $\bar{E}=3 \hat{a}_{y}+4 \hat{a}_{z}$ and $\bar{F}=4 \hat{a}_{x}-10 \hat{a}_{y}+5 \hat{a}_{z}$.
(a) Find the component of \bar{E} along \bar{F}.
(b) Detrmine a unit vector perpendicular to both \bar{E} and \bar{F}.

2-
(a) Convert points $P(1,3,5), T(0,-4,3), S(-3,-4,-10)$ from Cartesian to cylindrical and spherical coordinates.
(b) Transform vector

$$
\bar{Q}=\frac{\sqrt{x^{2}+y^{2}}}{\sqrt{x^{2}+y^{2}+z^{2}}} \hat{a}_{x}-\frac{y z}{\sqrt{x^{2}+y^{2}+z^{2}}} \hat{a}_{z}
$$

to cylindrical and spherical coordinates.
(C) Evaluate \bar{Q} at T in the three coordinate systems.

3- For the vector $\bar{F}=x^{3} \hat{a}_{x}+x^{2} y \hat{a}_{y}+x^{2} z \hat{a}_{z}$, determine the integral $\oiint_{s} \bar{F} \cdot \overline{d s}$ over a cylindrical surface of radius 4 and bounded by planes $z=0$ and $z=4$.

