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A Hammerstein Model is composed of a static nonlinear part followed by a

linear dynamic part. While identification of single input single output (SISO)

hammerstein models has been dealt with efficiently, identification of multi-input

multi-output (MIMO) systems is a more complex and difficult issue. In this thesis,

identification is carried out by modeling the static nonlinearity with radial basis

function neural network (RBFNN), while a state-space model is used to model the

linear dynamic part.

Two new algorithms have been proposed in this thesis. The first algorithm

makes use of least mean square (LMS) principle for identification of RBFNN

weights and subspace identification for identifying state-space models. A second
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algorithm uses particle swarm optimization (PSO) for estimating the weights of

RBFNN and subspace identification for updating the state-space models.

For MIMO systems, update equations have been derived for two distinct cases

i.e. when the nonlinearity is separate as well as for the case when the nonlinearity

is combined. Simulations have been carried out and proposed algorithms have

been validated.
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CHAPTER 1

INTRODUCTION

1.1 System Identification

The aim of system identification is to construct mathematical models from mea-

sured input and output data. A successful identification consists of four steps

namely experiment design, choice of a proper model structure, parameter esti-

mation and model validation. Experimental design requires selection of various

parameters like sampling time and excitation signal. Once these parameters are

selected, the system is excited and data is obtained. The next step involves selec-

tion of a proper model structure. Actual identification experiment is then carried

out and model parameters are estimated. Lastly, the identified model is verified

by being excited with a fresh set of data. The generated output is compared with

the measured output and in case of a mismatch between them, parameter estima-

tion is repeated iteratively until a goal of minimum error between measured and

estimated output is achieved.
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Figure 1.1: A dynamic system with input u(t), output y(t) and disturbance e(t)

System identification techniques have been extensively applied in various fields

of science and engineering. For example, in the area of communications, it has

been applied to effectively build reconstruction mechanisms [3]. In power sys-

tems, it has been credited to modeling of consumer loads [4]. Several studies and

applications can be found in control engineering where the key goal is in output

prediction for control purposes [5], [6], [7]. Another major field of science in which

system identification has found rich applications is the biomedical area [8], [9].

Real life systems are usually nonlinear in nature. So in order to identify a

system, usually an operating point is sought around which the system exhibits

linear behavior. A lot of research has been done on system identification using

linear models [10] . However, a linearized estimate does not completely model a

system, and such a model may not behave perfectly outside the linear region of

operation.

Nonlinear system identification has been a subject of considerable research
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in the recent past [11], [12]. Over the time, several different model structures

and techniques have been used to identify nonlinear systems. Genetic algorithms

[40], [50] particle swarm [64], neural networks [42], adaptive filters and neuro-fuzzy

networks [56], [57], [58], [82] have been used recently to identify nonlinear systems.

1.2 Block Oriented Approach

An approach that has proved very promising is based on the assumption that the

identified system consists of relatively simple subsystems, and that the structure

of the system is known. This is known as Block Oriented Approach. Based on this

approach, a system can be broken down into linear and nonlinear parts, separate

from each other. The subsystems are then identified on the basis of the input-

output signals of the whole system and the a priori information about the system.

The idea of block oriented identification is present in the literature in papers as

early as those of Narendra and Gallman [27], Gardiner [14], Webb [15], Brilinger

[16], Billings and Fakhouri [17].

Block oriented models have been applied to represent physical and biological

systems such as a distillation column [18], [19], [20], pH control system [21], [22], an

electrical generator [23], an electrical drive [24], communication bandpass circuits

[25] and visual cortex [26].
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1.2.1 Hammerstein Model

Block oriented identification focuses attention mainly on two types of systems,

i.e., the Hammerstein Model and the Wiener Model. In the first, a nonlinear

memoryless subsystem is followed by a linear dynamic one while the latter consists

of the same subsystems connected in the reverse order. This thesis mainly focuses

on the identification of Hammerstein Model.

Figure 1.2: Block Diagram of a Hammerstein Model

The Hammerstein model is a very flexible representation of a non linear system

as the nonlinearity is completely separate from the easily realizable linear parts.

As shown in figure 1.2, the static nonlinear element scales the input u(t) and

transforms it to v(t) through a non linear arbitrary function f(u). The dynamics

of the system are modeled by a linear transfer function, whose output is ŷ(t).
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1.2.2 Literature Review on Hammerstein Model Identifi-

cation

So far a lot of attention has been paid to the identification of Hammerstein systems

in the literature . In this section a detailed look is taken at the developments that

have taken place in the identification of Hammerstein model over the time. While

a number of identification algorithms have been proposed to identify the linear

part of the Hammerstein Model, recovering the nonlinearity has appeared to be a

much more difficult problem.

One of the earliest literature on Hammerstein model was apparently by Naren-

dra & Gallman [27] in 1966, who estimated separately and sequentially the linear

dynamic transfer function and the memory less nonlinear polynomial by iterative

least square scheme.

Francis Chang & Luus showed in [28] in 1971 that using a non-iterative method

developed by Hsia using a Hammerstein model with no zeros could be extended

on to Hammerstein models having zeros with much lesser computation time than

by the iterative methods proposed by Narendra & Gallman, while the accuracy

of the estimates was comparable.

Billings and Fakhouri [29] in 1980 identified closed loop nonlinear systems

using correlation analysis based on pseudo random inputs. They also discussed

different methods of selecting pseudo random inputs.

In 1986 Greblicki and Pawlak [30], [31] presented an identification technique to

identify discrete time Hammerstein model with a non parametric kernel estimate of
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the regression function calculated from a dependent data. Greblicki also proposed

[32] in 1989, identification of a Hammerstein functional with algorithms derived

from trigonometric and Hermite orthogonal series. Greblicki and Pwlak in 1994

[33] proposed new algorithm for the identification of nonlinear subsystem in a

Hammerstein model, in which the input observation is rearranged in increasing

order. This results in identification of fourier coefficients of the unknown system

in a certain combination of order statistics.

Sandeep, Wolodkin and Poolla [34] proposed that iterative and state space

methods had up to ten times lesser error in estimating nonlinear systems than

correlation methods.

Sun, Liu and Sano [35] proposed a new least squares type of identification al-

gorithm for hammerstein models based on an over-sampling scheme. The authors

claimed that by estimating the intermediate input to the linear part explicitly,

one can identify an arbitrary continuous function type of nonlinear element as

well as the unknown linear transfer function model. The authors proved that this

method of identification showed consistent approximation of parameters of the

linear part.

Zhu [37] identified a SISO Hammerstein system with a modified least squares

method in 1998.

Gomez and Baeyens [38] used a numerically robust least squares estimation and

single value decomposition based algorithm. They showed that using orthonormal

bases to represent the linear part can help identify the linear sub system more

6



efficiently. Also, they claimed that using orthonormal bases functions gives the

possibility of incorporating prior knowledge of the system in identification.

Westwick and Kearney [39] identified hammerstein model of an EMG using

separable least squares. An iterative technique was proposed which alternatively

estimated the linear element from a cross-correlation, and then fitted a polynomial

to the nonlinearity via linear regression. In this way, a separable least squares

optimization methods was proposed as a means of simultaneously estimating both

the linear and nonlinear elements.

Hatanaka and Uosaki [40] showed that Hammerstein models can be identified

using genetic programming. The unknown parameters of linear dynamic block and

the nonlinear static block given by each individual were estimated with a least

square method. The fitness is evaluated by AIC (Akaike information criterion).

The authors claimed the usefulness of genetic programming over conventional

methods for estimating the Hammerstein model.

Al-Duwaish [42], [43] proposed the use of multi-layer feed forward neural net-

work (MFNN) and auto-regressive moving average (ARMA) model to model the

static nonlinearity and dynamic linear parts of the hammerstein model respec-

tively. The proposed method used recursive algorithm to update the weights of

MFNN and parameters of ARMA.

Al-Duwaish also proposed a genetic approach to identify hammerstein models

in [44]. Parameters of the hammerstein models were estimated using genetic algo-

rithms from the input-output data by minimizing the error between the outputs
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of the true and identified models. The author was also able to identify systems

having non-minimum phase characteristics.

Marchi and Coelho [45] presented a comprehensive comparison of several para-

metric and structural methods of nonlinear system identification. Among the

methodologies compared were linear mathematical models, volterra models, ham-

merstein models, and bilinear models. Two different structural models consisting

of neural networks were used, one employing multilayer perceptron and the other

using radial basis function. Results were validated and compared on a fan and

plate process. The results showed that bilinear and hammerstein models pro-

vided a better tracking of the output than linear model. Structural models were

found to be more computationally complex but showed better performance than

parametric models. Radial basis function approximated the nonlinearities in the

system better than the multilayer perceptron.

Darouach and Boutayeb [46] proposed a simple method for recursive identifi-

cation of multi-input single-output (MISO) Hammerstein model in the presence

of unknown but bounded disturbances. The authors claimed that the estimated

parameters were consistent with the measurements and the noise constraints. The

authors used Lyapunov approach to enhance convergence.

Al-Duwaish and Saad Azhar Ali [47] identified Wiener and Hammerstien mod-

els using Radial Basis Neural Network, and ARMA model.

In 2001, Hassouna and Ouvrard [48] presented an identification scheme using

volterra series expansion. Identification model consisted of a volterra series with

8



its first term truncated. Volterra kernels were expanded on multidimensional

orthonormal bases. The authors claimed accurate approximation of nonlinear

systems, provided the nonlinearities were continuous and smooth.

Bai used a blind approach for hammerstein model identification in [49]. It

was shown that identification of linear part can be can be achieved based only

on the output measurements. This meant that hammerstein model identification

could be made possible without knowing the structure of the nonlinearity and

the internal variable. Nonlinear part was estimated easily once linear part was

approximated accurately.

A. Akramizadeh, A. Ali and K. Hamid proposed using Genetic Algorithm for

the identification of a Hammerstein Model in [50]. The author proposed Genetic

Algorithm to find out the nonlinear function parameters as well as the poles and

zeros of the linear function. The authors also proposed a new method to increase

the speed of the search by introducing a dynamic mutation rate. The authors

parameterized the linear part as an ARMA model and used evolutionary LMS

algorithm.

Luo and Leonessa [51] identified MIMO nonlinear dynamic systems containing

the cascade of a linear dynamic system with static nonlinearities at both the

input and feedback loop. A subspace instrumental variable identification method

was used for the closed loop system. The authors claimed accurate identification

results using numerical examples.

Kozek and Jovanovic [52] identified Hammerstein Model using Extended
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Kalman Filters, which was used for parameter identification of Hammerstein sys-

tems. For efficient estimation of unknown nonlinearities, linear parametrizations

with linear static mappings and basis function expansions were proposed and the

EKFs for these cases were established. The authors claimed efficiency and vali-

dated their proposal through simulation results.

Hatanaka and Uosaki [53] proposed identification by Evolutionary Computa-

tional Approach like Genetic Algorithm (GA) or Evolutionary Strategies (ES).

Voros [41] showed that hammerstein models with discontinuous nonlinearities

containing dead zones can be estimated using recursive least squares identification

supplemented with estimation of model internal variables. The author claimed

that this method could be extended to other types of static nonlinearities like

multisegment piecewise linear nonlinearities.

Bai [54] showed that the linear part can be decoupled from the nonlinear part

in hammerstein model identification. Therefore, identification of the linear part

for a Hammerstein model becomes a linear problem and accordingly enjoys the

same convergence and consistency results as if the unknown nonlinearity is absent.

A. Janczak [55] proposed four different gradient calculation algorithms for

identification of neural network based hammerstein models. Besides these, other

algorithms that combined steepest descent algorithm with recursive least squares

(RLS) were also proposed. Computation complexity of these algorithms were

analyzed and compared.

In 2004, Chiu, Jia and Ge [56] proposed a Neuro-Fuzzy based method for
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hammerstein identification. The authors proposed a similar algorithm [57] for

hammerstein model identification, but used an Adaptive method for that. The

algorithm was developed using Lyapunov Stability theory and the authors claimed

that the algorithm showed better results than a simple Neuro-Fuzzy method.

Neuro-fuzzy hammerstein model (NFHM) and Polynomial approximation

hammerstein model (PAHM) approaches were used to identify a hammerstein

model in [58]. The first approach used a fuzzy model while the second approach

used a polynomial to estimate the parameters of static nonlinearity. Both ap-

proaches used least squares parameter estimation to estimate parameters of the

linear dynamic part. Promising results were shown by identifying a complex non-

linear system.

Hhachino, Deguchi and Takata [59] proposed an identification method using

Radial Basis Neural Network and Genetic Algorithm (GA). Unknown nonlinear

static part was estimated by an RBF network. The weighting parameters of

the RBF network and the system parameters of the linear dynamic part were

estimated by the linear least-squares method. The adjusting parameters for the

RBF network structure, i.e. the weights, centers and widths of the RBF were

properly determined using Genetic Algorithm.

In 2005, Goethals, Pelckmans, Suykens and De Moor [60] used Subspace Iden-

tification and Least Squares Support Vector Machines to identify Hammerstein

Systems. The authors reduced this to a constrained optimization problem, which

was solved with Lagrangian Multiplier. The algorithm was then extended to

11



Hammerstein FIR models.

Chen and Hu [61] identified hammerstein systems using their own nonpara-

metric approach. The approach used stochastic approximation.

Greblicki in 2006 [62] again proposed a method for Continuous-Time Hammer-

stein Identification from sampled data. A continuous-time Hammerstein system

was driven by a random signal and identified from observations sampled in time.

Westwick [63] presented another approach for identification of hammerstein

systems. This time it dealt with time varying hammerstein models, i.e. hammer-

stein systems in which parameters of linear and nonlinear parts varied with time.

The algorithm expanded the system’s time varying parameters into finite sets of

basis sequences transforming the identification problem into a time-invariant one.

Results were obtained from a simulation study of a time varying hammerstein

system, and algorithm was verified.

Zang & Liu [64] used PSO for identification of hammerstein models.

In 2007, Wenxiao [65] identified hammerstein system using extended least

squares Algorithm. The nonlinear static function was expressed as a linear com-

bination of basic functions with unknown coefficients. The author claimed strong

consistency of the estimates and good convergent rates.

Hong & Mitchel [66] identified a Hammerstein System using Bezier-Bernstein

approximation. The nonlinear static function was characterized using this ap-

proximation. The identification method was based on a hybrid scheme including

least squares algorithm and Gauss−Newton algorithm subject to constraints.
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1.3 Motivation for present work

For the identification of a multi-input multi-output (MIMO) system, computa-

tional complexity is an overwhelming issue. As a MIMO system has complex

internal structure, parameterization becomes complicated and affects the esti-

mation of all polynomial models. To estimate a polynomial model for a MIMO

system, a particular model parameterization is needed first. Furthermore, to make

the iterative optimization successful, one might have to provide an accurate initial

estimate. However, providing any of these two prerequisites might be hard.

On the other hand, a state-space model represents an unknown system with

state vectors. One only needs to provide the order of a system, which can come

from prior knowledge of the system or which can be obtained by calculating singu-

lar values of an information matrix. After choosing the system order, a one-time

algorithm can be implemented to estimate all the parameters without involving

complex iterative nonlinear optimization. Therefore state-space models are by far

more suitable for identifying a MIMO system.

The advantages of a state-space model include: only one structural decision to

make, no iterative optimization involved, and less computational complexity.

The motivation for present work stems from the above stated ease and effi-

ciency of modeling a MIMO linear system by a state-space model. This thesis

proposes a method for identification of MIMO hammerstein systems by modeling

its linear dynamic part with a state-space model.
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1.4 Thesis Contribution

This thesis proposes a novel method for identification of MIMO Hammerstein

Systems. The linear dynamics of the hammerstein system are modeled using state-

space models and the non linearities are modeled by radial basis function neural

network (RBFNN). An algorithm based on least mean square (LMS) principle and

subspace identification is derived. Another algorithm is derived which is based on

particle swarm optimization (PSO) and subspace identification.

Total contributions of this thesis includes:

• Development of training algorithm for a general hammerstein system using

least mean squares (LMS) principle and subspace identification. Then based

on this algorithm,

– Derivation of update equation for SISO hammerstein system.

– Derivation of update equation for MIMO hammerstein system with

separate non linearities.

– Derivation of update equation for MIMO hammerstein system with

combined non linearities.

• By using particle swarm optimization (PSO) and subspace identification,

– Development of training algorithm for SISO hammerstein system.

– Development of training algorithm for MIMO hammerstein system with

separate non linearities.
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– Development of training algorithm for MIMO hammerstein system with

combined non linearities.

• Validation of above mentioned algorithms by means of implementation on

different systems and examples.

1.5 Thesis Organization

This thesis has been organized in the following manner. Chapter 2 describes the

proposed identification structure, and gives details of all the models and tools used

in the thesis, namely State-space Models, Subspace Identification for State-space

Models, Radial Basis Function Neural Network (RBFNN), and Particle Swarm

Optimization (PSO).

Chapter 3 describes the proposed algorithm for identification of SISO systems,

and takes a look at the mathematical working to obtain update equations for LMS

based algorithm. PSO based algorithm is also investigated.

Chapter 4 describes the proposed algorithm for identification of MIMO sys-

tems, and takes a look at the mathematical working to obtain update equations for

LMS based algorithm. PSO based algorithm is also investigated and compared.

In chapter 5, these algorithms are validated by carrying out simulations on

different examples and systems. These simulation results are analyzed, and the

results are investigated.

Finally, in chapter 6, a conclusion is drawn and possibilities of future enhance-

ments are discussed.

15



CHAPTER 2

PROPOSED IDENTIFICATION

STRUCTURE

The proposed identification structure consists of a Radial Basis Function Neural

Network (RBFNN) for modeling the static nonlinearity of the system, and a State

Space Model for modeling the linear dynamic part.

In the identification of hammerstein model, it is desired that the error between

the actual output and the estimated output be minimized for accurate identifi-

cation. Therefore, in a way this becomes an optimization problem where a cost

index is to be minimized. Least mean square (LMS) principle is therefore used to

train the RBFNN for minimum error. Particle Swarm Optimization (PSO) is also

used for the same purpose. Subspace identification is used to estimate the system

matrices of the state space model.

16



Figure 2.1: Proposed Identification Structure

2.1 Problem Statement

The hammerstein model identification problem therefore becomes the following:

Given a set of (N ) noisy inputs u(t)N−1
t=0 and outputs y(t)N−1

t=0

• Find the weights of RBF neural network and

• Find the matrices of the state space system

Since the output y(t) is nonlinear in relation to the input u(t), the problem

is nontrivial. Therefore, a recursive algorithm is to be developed to update the

weights of the neural network for each set of input and output data. LMS prin-

ciple is therefore used, which is one of the famous gradient methods found in the

literature where a pre defined cost index is minimized, and a minimum is sought

in the negative direction of the gradient of that cost index. PSO is also used to

train the neural network because of its efficient optimization capabilities.
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2.2 Radial Basis Function Neural Network

Radial Basis Function Neural Network is a type of neural network that uses radial

basis function as activation functions. They are ideal for applications like func-

tion approximation and pattern recognition. In these networks, learning usually

involves only one layer with lesser computations. Therefore, the training time for

RBFNN is much less than that of MFNN [67].

These features make RBFNN attractive in many practical problems. RBFNN

model in its most basic form consists of three layers. An input layer that connects

the network to its environment. The second layer, often called the hidden layer

performs a fixed nonlinear transformation with no adjustable parameters. The

output layer then implements a linear weightage and supplies the response of the

network to the output. Thus, the only adjustable parameters are the weights of

this layer [67], [68]. Figure 2.2 shows a basic RBFNN with Q neurons in the

hidden layer.

Each of the input node is connected to all the nodes in the hidden layer through

unity weights. The nodes of the hidden layer however are connected to the output

node through some weights. Every neuron performs a nonlinear transformation

of the distance between the input and the center of the neuron. The nonlinearity

within an RBF network can be chosen from a few typical nonlinear functions. The

radial basis function has a maximum of 1 when its input is 0. As the distance

between the input and the center of the neuron decreases, the output increases.

Thus, a radial basis neuron acts as a detector that produces 1 whenever the input
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Figure 2.2: A three layer RBFNN with Q neurons

is identical to the center of the neuron.The output of an RBFNN has the following

general form

v(t) =

Q∑
i=1

wiφ‖u(t)− ci‖ (2.1)

where Q is the number of neurons in the hidden layer, ci is the chosen center for

each neuron, wi is the corresponding weight that connects the particular neuron

node to the output layer, φ is an arbitrary generally nonlinear function known

as radial basis function, and ‖.‖ denotes the norm that is usually Euclidean [67].

Therefore we can write
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V (t) = WΦ(t)

where

W = [w1 w2 w3 · · · wQ]

Φ(t) = [φ‖u(t)− c1‖ φ‖u(t)− c2‖ · · · φ‖u(t)− cQ‖]T

2.3 State Space Model

As mentioned above, the proposed identification structure models the dynamic

linear part with the famous state-space model. The equations for a discrete time

state-space representation are given by

x(t + 1) = Ax(t) + Bu(t) + w(t) (2.2)

y(t) = Cx(t) + Du(t) + z(t) (2.3)

where u(t) ε < m and y(t) ε < l are the vectors for m inputs and l outputs of

the system observed at discrete time instant t. Vector z(t) ε < l×1 is called the

measurement noise and w(t) ε < n×1 is called the process noise.

Matrix A ε < n×n is called the system matrix of order n. It describes the

dynamics of the system. B ε < n×m is the input matrix which represents the

linear transformation by which the deterministic inputs influence the next state.

C ε < l×n is the output matrix which describes how the internal state is transferred
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to the outside world. The term with the matrix D ε < l×m is called the direct

feedthrough term.

2.4 Subspace Identification Method for State

Space Models

2.4.1 Why Subspace Identification?

One of the earliest publications on system identification was by Aström and Bohlin

in 1965 [1], which proposed a stochastic method known as the maximum likelihood

method to estimate ARMAX models. Many papers have been published after

that on various stochastic methods, most of which fall under the category of

Prediction Error Methods (PEM). This has resulted in a well established theory

for identification of SISO systems.

Identification of MIMO systems however is a problem which has not been

dealt with satisfactorily by PEM where identification is carried out on the basis

of minimization of predicted error. Identification based on PEM is a complicated

function of the system parameters, and has to be solved by iterative descent

methods which may get stuck into local minima. Moreover, optimization methods

need an initial estimate for a canonical parametrization model, which might not

be easy to provide. PEM have therefore inherent difficulties for MIMO systems.

Around 1965, Ho and Kalman published their paper [2] and introduced the

state-space representation. The solution of this deterministic realization problem
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was later extended by Akaike and others in 1974 to stochastic realizations. This

technology was extended in the nineties to subspace state-space identification.

Subspace identification methods (SIM) do not need nonlinear optimization

techniques, nor does it need to impose to the system a canonical form. Subspace

methods therefore do not suffer from the inconveniences encountered in applying

PEM methods to MIMO system identification.

2.4.2 N4SID Numerical Algorithm

In the category of subspace identification schemes, the most commonly used al-

gorithm is Numerical algorithm for Subspace State Space System Identification

(N4SID) . It was proposed by Peter Van Overschee and De Moor [70], [71] in

1994.

For a large number of input u(t) ε < m and output y(t) ε < l measurements

generated by the unknown system of eqs. 2.2 and 2.3, the objective is to determine

the order n of the system, the system matrices A ε < n×n, B ε < n×m, C ε < l×n and

D ε < l×m and if required, the Kalman gain matrix K, without any prior knowledge

of the structure of the system. Figure 2.3 shows a block diagram representation of

this algorithm. On the left hand side, subspace method approach is shown where

the kalman filter states are first estimated directly from input and output data,

then the system matrices are obtained. The right hand side shows the classical

approach in which the system matrices are found first and then the estimate of

the states. Mathematical details of N4SID algorithm are described in Appendix
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A of this thesis.

Figure 2.3: General method for All Subspace Algorithms

2.5 Particle Swarm Optimization

Particle Swarm Optimization is one of many heuristic search based optimization

technique inspired by biological behavior of organisms in nature. It was first

proposed and developed by Kennedy and Eberhart [79]. It is a technique based

on swarm intelligence method [78].

PSO is inspired by behavior of a swarm of several particles like school of fish or

flock of birds, where each particle position indicates the behavior of an individual

fish or bird. Each particle position can be thought of as being a state of mind of

that particular individual. This state of mind represents the individual’s beliefs

and attitudes. The movement of the particles thus correspond to the change of

these beliefs. Swarms or social groups adjust their beliefs and attitudes by eval-
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Figure 2.4: Flowchart for PSO algorithm

uating the stimuli from the environment around them and comparing it to their

existing knowledge. If these stimuli or values are found to be more fit, they replace

their existing values. These three properties of animal social behavior i.e., evalu-

ation, comparison, and imitation, are what forms the basis for the particle swarm

optimization algorithm. PSO uses these concepts in solving complex minimization

problems.
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PSO is closely related to swarm intelligence where there is no central control

and no one gives orders, rather each particle acts as an individual upon local

information. The swarm, as a whole, is able to perform tasks much more complex

than an individual can do. The interactions among the particles makes it possible

for the whole swarm to perform optimization of complex functions.

Figure 2.4 shows the basic algorithm of PSO. In this thesis, PSO is used to

search for optimum weights of the RBFNN output layer. Details of the algorithm

can be found in appendix A of this thesis.
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CHAPTER 3

TRAINING ALGORITHM FOR

SISO HAMMERSTEIN

MODELS

3.1 Training Algorithm using LMS principle and

Subspace Identification

This section discusses the training algorithm developed for identification of a

single input single output (SISO) system. The algorithm is based on the famous

least mean squares principle. LMS principle was first proposed by Widrow and

Hoff in [81]. It is a type of gradient search technique known as the steepest

descent algorithm in which the weights of the nonlinear function are updated in

the negative direction of the gradient of a cost function. Ideally, the identified

system is supposed to give an output identical to the output of the actual system,
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but in reality, this does not happen. Therefore an optimization criterion such as

the squared error is sought to be minimized.

I = e2(t)

= [y(t)− ŷ(t)]2 (3.1)

where y(t) is the actual output and ŷ(t) is the estimated output at time t. Hence,

the weights of the nonlinearity are updated at every data point in the negative

direction of the gradient of equation 3.1 [81], [67].

As mentioned in the identification structure proposed in the previous chapter,

the static nonlinearity is modeled by an RBFNN which is followed by a dynamic

linear part modeled by a state-space model. Hence the objective is to develop

an algorithm, which updates not only the weights of the RBFNN, but also the

matrices of the state space model. Weights of the RBFNN are updated using the

LMS principle while supspace identification is used for identifying the matrices of

the state space model.

The parameters of the nonlinearity (weights of the RBFNN) are updated by

minimizing the cost index given in equation 3.1. The weights are adjusted in the

negative direction of the gradient of the cost function as

W (k + 1) = W (k)− η
∂I

∂W
(3.2)

where η is the learning rate of the RBFNN, and is usually a small number, W ε
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<1×Q is the weight vector for RBFNN and is given by

W = [w1 w2 w3 · · · wQ]

where Q is the number of neurons in the network. Using equation 3.2, we derive

the partial derivatives of the cost function w.r.t. W as

∂I

∂W
=

∂e2(t)

∂W

= 2e(t)
∂e

∂W

= 2e(t)
∂

∂W

[
y(t)− ˆy(t)

]

= 2e(t)

[
∂y(t)

∂W
− ∂ ˆy(t)

∂W

]

= −2e(t)
∂ŷ(t)

∂W

= −2e(t)
∂

∂W
[Cx(t) + Dv(t)]

= −2E(t)T ∂

∂Wi

[C{Ax(t− 1) + Bv(t− 1)}+ Dv(t)]
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= −2e(t)
∂

∂W
[C (Ax(t− 1) + Bv(t− 1)) + Dv(t)]

= −2e(t)

[
∂CAx(t− 1)

∂W
+

∂CBv(t− 1)

∂W
+

∂Dv(t)

∂W

]

= −2e(t)

[
∂CBv(t− 1)

∂W
+

∂Dv(t)

∂W

]

= −2e(t)

[
∂CBf (u, t− 1)

∂W
+

∂Df (u, t)

∂W

]

= −2e(t)

[
∂CBWΦ(t− 1)

∂W
+

∂DWΦ(t)

∂W

]

where

W = [w1 w2 w3 · · · wQ]

Φ(t− 1) = [φ‖u(t− 1)− c1‖ φ‖u(t− 1)− c2‖ · · · φ‖u(t− 1)− cQ‖]T

Φ(t) = [φ‖u(t)− c1‖ φ‖u(t)− c2‖ · · · φ‖u(t)− cQ‖]T

⇒ ∂I

∂W
= −2e(t){CBΦ(t− 1) + DΦ(t)}

W (k + 1) = W (k) + 2e(t)η{CBΦ(t− 1) + DΦ(t)} (3.3)
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Figure 3.1: Identification of hammerstein system using LMS principle and sub-
space identification

The developed algorithm can be summarized as follows

1. Initialization of neural network with random weights.

2. Estimation of state space matrices A,B,C and D from original non linear

data using subspace identification. This would be an initial estimate.

3. Generation of output ˆy(t) from the estimated system.

4. Calculation of error and updation of weights according to equation (3.3)

5. Estimation of neural network outputs v(t) once the weights of the neural

network are updated for all data points.
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6. Estimation of state space matrices A,B,C and D from the new output of

neural network v(t) (which is also the input to the linear system) and original

system output y(t). This estimate of linear system would be much closer to

the original system than the previous estimate.

7. Regeneration of output ˆy(t) from the new estimate of the system.

8. If the mean square error between y(t) and ˆy(t) is not less than the required

goal, repetition of steps 4 to 8.
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Figure 3.2: Flowchart for SISO Hammerstein Identification Algorithm using LMS
principle and Supspace Identification
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3.2 Training Algorithm using PSO and Sub-

space Identification

As noted above, for the identification of hammerstein model, we are keen to

minimize error between the desired output and the observed output as given in

equation 3.1.

In this second approach, particle swarm optimization is used instead of the

least mean square principle for optimization of our cost function, and to find

optimum weights of nonlinearity. PSO performs a heuristic search on a possible

population of nonlinearity weights. The smaller the output error, the greater is the

fitness of the particle. Based on this principle, the algorithm can be summarized

in the following steps

1. Estimation of state space matrices A,B,C and D from original non linear

data using subspace identification. This would be an initial estimate.

2. Initialization of PSO to find optimum weights for the neural network.

3. Obtaining a global best set of weights which minimizes the cost index given

in equation 3.1.

4. Estimation of neural network outputs v(t) once optimum weights of neural

network are obtained.

5. Estimation of state space matrices A,B,C and D from the new output of

neural network v(t) (which is also the input to the linear system) and original

33



Figure 3.3: Identification of hammerstein system using PSO and subspace identi-
fication

system output y(t). This estimate of linear system would be much closer to

the original system than the previous estimate.

6. Regeneration of output ˆy(t) from the new estimate of the system.

7. If the mean square error between y(t) and ˆy(t) is not less than the required

goal, repetition of steps 2 to 6.
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Figure 3.4: Flowchart for SISO Hammerstein Identification Algorithm using PSO
and Supspace Identification
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CHAPTER 4

TRAINING ALGORITHM FOR

MIMO HAMMERSTEIN

MODELS

This chapter discusses the training algorithm developed for identification of a

multi input multi output (MIMO) system. In MIMO hammerstein systems, static

nonlinearity can either be separate or combined. The following subsections take

a look at both of them one by one.

4.1 MIMO System with Separate Nonlinearities

Consider a P input, R output general hammerstein system. The system has P

nonlinearities separate from each other. These nonlinearities have P outputs. The

linear part has R outputs. Therefore inputs U(t) ε < P×1, nonlinear outputs V (t)
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Figure 4.1: A P-input R-output Hammerstein Model with seperate nonlinearities

ε < P×1, and system outputs Ŷ (t) ε < R×1 are given by

U(t) = [u1(t) u2(t) · · · uP (t)]T (4.1)

V (t) = [v1(t) v2(t) · · · vP (t)]T (4.2)

Ŷ (t) = [ŷ1(t) ŷ2(t) · · · ŷR(t)]T (4.3)

Error between desired and observed outputs E(t) ε <R×1 is given by

E(t) = [(y1(t)− ŷ1(t)) (y2(t)− ŷ2(t)) · · · (yR(t)− ŷR(t))]T

= [e1(t) e2(t) · · · eR(t)]T (4.4)
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4.1.1 Training Algorithm using LMS principle and Sub-

space Identification

Like its SISO counter part derived earlier, this algorithm is also based on least

mean square principle. The cost function I is given by

I = E(t)T E(t) (4.5)

For P inputs and R outputs, the dimensions of the state space matrices for an

nth order system will be A ε < n×n, B ε < n×P , C ε < R×n, and D ε < R×P

For P inputs, There are P separate nonlinearities. The weights Wi of the

RBFNN for ith particular nonlinearity are updated in the negative direction of

the gradient of cost function given in equation 4.5

Wi(k + 1) = Wi(k)− η
∂I

∂Wi

(4.6)

Now finding the partial derivative of eq 4.5 w.r.t Wi, corresponding to the ith

nonlinearity

∂I

∂Wi

=
∂

∂Wi

E(t)T E(t)

= 2E(t)T ∂

∂Wi

E(t)
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= 2E(t)T ∂

∂Wi

E(t)

= 2E(t)T ∂

∂Wi

[(y1(t)− ŷ1(t)) (y2(t)− ŷ2(t)) · · · (yR(t)− ŷR(t))]T

= 2E(t)T ∂

∂Wi

[−ŷ1(t) − ŷ2(t) · · · − ŷR(t)]T

= −2E(t)T ∂

∂Wi

[Cx(t) + DV (t)]

= −2E(t)T ∂

∂Wi

[C{Ax(t− 1) + BV (t− 1)}+ DV (t)]

= −2E(t)T

[
∂CAx(t− 1)

∂Wi

+
∂CBV (t− 1)

∂Wi

+
∂DV (t)

∂Wi

]

= −2E(t)T

[
∂CBV (t− 1)

∂Wi

+
∂DV (t)

∂Wi

]

= −2E(t)T

[
∂CBf (U, t− 1)

∂Wi

+
∂Df (U, t)

∂Wi

]
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= −2E(t)T ∂

∂Wi







c11 · · · c1n

c21 · · · c2n

...
. . .

...

cR1 · · · cRn







b11 · · · b1P

b21 · · · b2P

...
. . .

...

bn1 · · · bnP







v1(t− 1)

v2(t− 1)

...

vP (t− 1)




+




d11 · · · d1P

d21 · · · d2P

...
. . .

...

dR1 · · · dRP







v1(t)

v2(t)

...

vP (t)







= −2E(t)T







cb11 · · · cb1P

cb21 · · · cb2P

...
. . .

...

cbR1 · · · cbRP







∂
∂Wi

v1(t− 1)

∂
∂Wi

v2(t− 1)

...

∂
∂Wi

vP (t− 1)




+




d11 · · · d1P

d21 · · · d2P

...
. . .

...

dR1 · · · dRP







∂
∂Wi

v1(t)

∂
∂Wi

v2(t)

...

∂
∂Wi

vP (t)






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= −2E(t)T







cb11 · · · cb1P

cb21 · · · cb2P

...
. . .

...

cbR1 · · · cbRP







∂
∂Wi

W1Φ1(t− 1)

∂
∂Wi

W2Φ2(t− 1)

...

∂
∂Wi

WP ΦP (t− 1)




+




d11 · · · d1P

d21 · · · d2P

...
. . .

...

dR1 · · · dRP







∂
∂Wi

W1Φ1(t)

∂
∂Wi

W2Φ2(t)

...

∂
∂Wi

WP ΦP (t)







= −2E(t)T







cb1iΦi(t− 1)

cb2iΦi(t− 1)

...

cbRiΦi(t− 1)




+




d1iΦi(t)

d2iΦi(t)

...

dRiΦi(t)







= −2[e1(t) e2(t) · · · eR(t)]




cb1iΦi(t− 1) + d1iΦi(t)

cb2iΦi(t− 1) + d2iΦi(t)

...

cbRiΦi(t− 1) + dRiΦi(t)




= −2 [e1(t){cb1iΦi(t− 1) + d1iΦi(t)} + · · · + eR(t){cbRiΦi(t− 1) + dRiΦi(t)}]
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⇒ ∂I

∂Wi

= −2
R∑

j=1

ej(t){cbjiΦi(t− 1) + djiΦi(t)}

Wi(k + 1) = Wi(k) + 2η
R∑

j=1

ej(t){cbjiΦi(t− 1) + djiΦi(t)} (4.7)

where ej(t) corresponds to error at the jth output at discrete time instant t, η is

the learning rate of the RBFNN, Wi is the vector for the weights of ith nonlinearity,

Φi(t − 1) and Φi(t) are vectors for basis function of ith nonlinearity at discrete

time instants (t-1 ) and t respectively.

Wi = [w1 w2 w3 · · · wQ]

Φi(t− 1) = [φ‖ui(t− 1)− c1‖ φ‖ui(t− 1)− c2‖ · · · φ‖ui(t− 1)− cQ‖]T

Φi(t) = [φ‖ui(t)− c1‖ φ‖ui(t)− c2‖ · · · φ‖ui(t)− cQ‖]T

4.1.2 Training Algorithm using PSO and Subspace Iden-

tification

Like the SISO counterpart, MIMO hammerstein system with separate nonlinear-

ities is also identified using PSO based algorithm. Same steps are followed as

those mentioned for the SISO case, with the only difference of updating P sets of

weights for P separate RBF networks, each one estimating a separate nonlinearity.
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4.2 MIMO System with Combined Nonlineari-

ties

Consider a hammerstein model with P inputs and R outputs. However, instead

of P separate nonlinearities, consider a system with a single combined nonlin-

earity. Figure 4.2 shows a general hammerstein model with combined nonlinearity.

Figure 4.2: A P-input R-output Hammerstein Model with combined nonlinearity

As mentioned earlier, the static nonlinearity is modeled by an RBFNN, but unlike

the previous case where a single input was fed to a single RBF network, in this case

a complete vector of inputs is fed to a single RBF network at each time instant.

Similarly every output node is connected to the same RBF network through a set

of linear weights.

Therefore a set of weights Wi for every output vi of the RBF network is up-

dated. Figure 4.3 shows an RBFNN with P inputs and P outputs.
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Figure 4.3: A P-input P-output RBFNN

4.2.1 Training Algorithm using LMS principle and Sub-

space Identification

Using LMS principle like before, the update equation is given by

Wi(k + 1) = Wi(k)− η
∂I

∂Wi

(4.8)

where weights Wi correspond to the ith output vi of the neural network. Cost

index is given by

I = E(t)T E(t) (4.9)

As the linear block has P inputs and R outputs, the dimensions of the state space

matrices will be A ε < n×n, B ε < n×P , C ε < R×n, and D ε < R×P . Now finding
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the partial derivative of eq 4.9 w.r.t any weights Wi

∂I

∂Wi

=
∂

∂Wi

E(t)T E(t)

= 2E(t)T ∂

∂Wi

E(t)

= 2E(t)T ∂

∂Wi

[(y1(t)− ŷ1(t)) (y2(t)− ŷ2(t)) · · · (yR(t)− ŷR(t))]T

= 2E(t)T ∂

∂Wi

[−ŷ1(t) − ŷ2(t) · · · − ŷR(t)]T

= −2E(t)T ∂

∂Wi

[Cx(t) + DV (t)]

= −2E(t)T ∂

∂Wi

[C{Ax(t− 1) + BV (t− 1)}+ DV (t)]

= −2E(t)T

[
∂CAx(t− 1)

∂Wi

+
∂CBV (t− 1)

∂Wi

+
∂DV (t)

∂Wi

]

= −2E(t)T

[
∂CBV (t− 1)

∂Wi

+
∂DV (t)

∂Wi

]

= −2E(t)T

[
∂CBf (U, t− 1)

∂W
+

∂Df (U, t)

∂W

]
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= −2E(t)T ∂

∂Wi







c11 · · · c1n

c21 · · · c2n

...
. . .

...

cR1 · · · cRn







b11 · · · b1M

b21 · · · b2M

...
. . .

...

bn1 · · · bnM







v1(t− 1)

v2(t− 1)

...

vM(t− 1)




+




d11 · · · d1M

d21 · · · d2M

...
. . .

...

dR1 · · · dRM







v1(t)

v2(t)

...

vM(t)







= −2E(t)T







cb11 · · · cb1M

cb21 · · · cb2M

...
. . .

...

cbR1 · · · cbRM







∂
∂Wi

v1(t− 1)

∂
∂Wi

v2(t− 1)

...

∂
∂Wi

vM(t− 1)




+




d11 · · · d1M

d21 · · · d2M

...
. . .

...

dR1 · · · dRM







∂
∂Wi

v1(t)

∂
∂Wi

v2(t)

...

∂
∂Wi

vM(t)






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= −2E(t)T







cb11 · · · cb1M

cb21 · · · cb2M

...
. . .

...

cbR1 · · · cbRM







∂
∂Wi

W1Φ(t− 1)

∂
∂Wi

W2Φ(t− 1)

...

∂
∂Wi

WMΦ(t− 1)




+




d11 · · · d1M

d21 · · · d2M

...
. . .

...

dR1 · · · dRM







∂
∂Wi

W1Φ(t)

∂
∂Wi

W2Φ(t)

...

∂
∂Wi

WMΦ(t)







= −2E(t)T







cb1iΦ(t− 1)

cb2iΦ(t− 1)

...

cbRiΦ(t− 1)




+




d1iΦ(t)

d2iΦ(t)

...

dRiΦ(t)







= −2[e1(t) e2(t) · · · eR(t)]




cb1iΦ(t− 1) + d1iΦ(t)

cb2iΦ(t− 1) + d2iΦ(t)

...

cbRiΦ(t− 1) + dRiΦ(t)




= −2 [e1(t){cb1iΦ(t− 1) + d1iΦ(t)} + · · · + eR(t){cbRiΦ(t− 1) + dRiΦ(t)}]
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⇒ ∂I

∂Wi

= −2
R∑

j=1

ej(t){cbjiΦ(t− 1) + djiΦ(t)}

Wi(k + 1) = Wi(k) + 2η
R∑

j=1

ej(t){cbjiΦ(t− 1) + djiΦ(t)} (4.10)

where ej(t) corresponds to error at the jth output at discrete time instant t, η

is the learning rate of the RBFNN, Φ(t − 1) and Φ(t) are the vectors for the

basis function at discrete time (t-1) and t, and Wi is the vector for the weights

corresponding to the ith nonlinear output vi(t).

4.2.2 Training Algorithm using PSO and Subspace Iden-

tification

PSO based algorithm is used to estimate MIMO hammerstein system with com-

bined nonlinearity. Again, the same steps are followed as mentioned for the SISO

case, with the difference that P different sets of weights are updated. Unlike the

separate nonlinearities’ case, these P sets of weights are sets for a single RBF

network, and not for P separate networks. Each set of weights Wi represents

weights for ith output of the neural network.

48



CHAPTER 5

SIMULATION RESULTS

5.1 Results for SISO system

5.1.1 Example 1: Square root nonlinearity

The first example considers the following hammerstein type nonlinear process

whose static nonlinearity is given by

v(t) = sign (u(t))
√
|u(t)|

The dynamic linear part is given by a third order discrete time state-space system




x1(t + 1)

x2(t + 1)

x3(t + 1)




=




1.80 1 0

−1.07 0 1

0.21 0 0







x1(t)

x2(t)

x3(t)




+




4.80

1.93

1.21




v(t)
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y(t) =

[
1 0 0

]




x1(t)

x2(t)

x3(t)




The linear dynamic part of the system has eigen values at

λ1 = 0.7, λ2 = 0.6 and λ3 = 0.5

The identification structure comprises of RBFNN cascaded with a state-space

system given by

x(t + 1) = Ax(t) + Bv(t)

ˆy(t) = Cx(t) + Dv(t)

Results using LMS based algorithm

The original system is excited using uniformly distributed random numbers in

the interval [−1.75, 1.75] to generate the data. The centers for the RBFNN are

distributed evenly in the above mentioned interval. The famous k-means method is

employed to generate the centers of the RBFNN. The spread of the basis function

and learning rate of the neurons is selected to have an optimum value of 0.65 and

10−5 respectively after hit and trial.

The proposed algorithm employing LMS principle and subspace identification

is used to identify the system. With an RBF network of 10 neurons, the mean
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Figure 5.1: Square root nonlinearity for hammerstein model of example 1 identified
by LMS based algorithm

squared error between normalized values of actual and estimated outputs con-

verges to 2 × 10−4 in just 25 iterations. The comparison of the identified and

actual nonlinearity is shown in figure 5.1. The linear dynamic part is also identi-

fied with accuracy. Eigen values of the estimated linear part of the system are

λ1 = 0.7173, λ2 = 0.5428 + 0.0539i and λ3 = 0.5428− 0.0539i

which are very close to the original eigen values. Step response of the linear

dynamic part is shown in figure 5.2. The mean squared error plot is shown in

figure 5.3.
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Figure 5.2: Step response of linear dynamic part of hammerstein model of example
1 identified by LMS based algorithm
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Figure 5.3: Squared error for hammerstein model of example 1 identified by LMS
based algorithm
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Figure 5.4: Step response of complete hammerstein system of example 1 identified
by LMS based algorithm

The magnitude of response of the estimated nonlinearity is shifted from the mag-

nitude of response of the actual nonlinearity by a factor. The same is true for

the response of the dynamic linear part. But naturally, the factor by which the

magnitude of the nonlinear response is shifted is reciprocal of the factor by which

the linear response is shifted. Hence, the total response of the estimated system

is the same as that of the original system.

This idea is verified by the fact that when we excite the original and estimated

systems with a step input, output responses are very close. Figure 5.4 shows the

step response of the complete systems. It should be noted that this step response

is not to be confused with the step response shown in figure 5.2 which is the step

response of only the linear dynamic part and not of the complete system.
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Results using PSO based algorithm

The second algorithm employing PSO and subspace identification is then used to

identify the same system. The same generated data is used. An RBF network of 10

neurons is initialized with centers evenly distributed in the interval [−1.75, 1.75].

Within 13 iterations the mean squared error between the normalized values of

original and estimated outputs converges to 4 × 10−4. Figures 5.5 and 5.6 show

the estimation of static noninearity and dynamic linearity respectively. Figure

5.7 shows the convergence of the mean squared error. The eigen values of the

estimated linear part are

λ1 = 0.6811, λ2 = 0.6481 and λ3 = 0.4639

which are again quite close to the eigen values of the original system.

Comparison of results

Both algorithms have estimated the nonlinearity with fairly good accuracy. The

output mean squared error has converged to a much smaller value when estimation

using LMS based algorithm is carried out. Moreover LMS algorithm has taken

much lesser time than PSO based identification, as each iteration of the former

algorithm takes much less time than each iteration of the later.
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Figure 5.5: Square root nonlinearity for hammerstein model of example 1 identified
by PSO based algorithm
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Figure 5.6: Step response of linear dynamic part of hammerstein model of example
1 identified by PSO based algorithm
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Figure 5.7: Squared error for hammerstein model of example 1 identified by PSO
based algorithm
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Figure 5.8: Step response of complete hammerstein system of example 1 identified
by PSO based algorithm
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5.1.2 Example 2: Exponential/tanh nonlinearity

The second example considers the following hammerstein type nonlinear pro-

cess whose static nonlinearity is much difficult to learn and is given in [82] by

v(t) = tanh [2u(t)] 1.5 ≥ u(t)

v(t) =
exp(u(t))− 1

exp(u(t)) + 1
4 > u(t) > 1.5

The dynamic linear part is given by the following second order discrete time

state-space system




x1(t + 1)

x2(t + 1)


 =




1 1

−0.5 0







x1(t)

x2(t)


 +




1

0.5


 v(t)

y(t) =

[
1 0

]



x1(t)

x2(t)




The linear part of the system has eigen values at

λ1 = 0.5 + 0.5i

λ2 = 0.5− 0.5i
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Figure 5.9: Exponential/tanh nonlinearity for hammerstein model of example 2
identified by LMS based algorithm

Results using LMS based algorithm

The system is excited using uniform random numbers in the interval [0, 4] and

data is generated. The identification structure is composed of an RBFNN for the

nonlinear part. The linear part is modeled by a state space model of second order.

Centers of the RBFNN are evenly distributed in the interval [0, 4] and are chosen

using the k-means method. The spread of the basis function and learning rate of

the neurons are selected to have an optimum value of 0.17 and 0.01 respectively

after hit and trial.

An RBF network consisting of 35 neurons is used for identification. After 20

iterations, the mean squared error converges to a final value of 8 × 10−4. The

estimates of nonlinearity and linearity are shown respectively in figure 5.9 and
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Figure 5.10: Step response of linear dynamic part of hammerstein model of ex-
ample 2 identified by LMS based algorithm
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Figure 5.11: Squared error for hammerstein model of example 2 identified by LMS
based algorithm
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Figure 5.12: Step response of complete hammerstein system of example 2 identified
by LMS based algorithm

figure 5.10. The squared error plot is shown in figure 5.11 while figure 5.12 shows

the step response of the complete system. The eigen values of the linear part of

the estimated system are

λ1 = 0.497 + 0.5i

λ2 = 0.497− 0.5i

Results using PSO based algorithm

The system is then identified using PSO based algorithm. Once again, the RBFNN

is initialized with a set of 35 neurons. Same set of centers is used as was used in

the LMS case. The mean squared error converges to 1.6×10−3 after 25 iterations .

Figures 5.13 and 5.14 show the estimates of noninearity and linearity respectively.
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Figure 5.13: Exponential/tanh nonlinearity for hammerstein model of example 2
identified by PSO based algorithm

Figure 5.15 shows the convergence of the squared error. The eigen values of the

linear part of the estimated system are

λ1 = 0.5010 + 0.5035i

λ2 = 0.5010− 0.5035i

which are approximately the same eigen values as those of the original linear

part.
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Figure 5.14: Step response of linear dynamic part of hammerstein model of ex-
ample 2 identified by PSO based algorithm
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Figure 5.15: Squared error for hammerstein model of example 2 identified by PSO
based algorithm
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Figure 5.16: Step response of complete hammerstein system of example 2 identified
by PSO based algorithm

Comparison of results

Both LMS based and PSO based algorithms have estimated a good approximation

of the original system. The nonlinearity is estimated with considerably good

accuracy in both the cases. Mean squared error converges to a smaller final value

in the LMS case. Both algorithms converge to a final state in almost the same

number of iterations. However it must be kept in mind that each iteration of

PSO takes much longer time than that of the LMS based algorithm. Therefore,

in terms of time, LMS based algorithm estimates the system much quicker than

PSO based detection. With respect to estimation also, the LMS algorithm gives

a slightly better estimate.

Initially an RBF network of 10 neurons was tried. This however did not

estimate the shape of the nonlinearity very accurately. Number of neurons was
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then increased to 25, and then 35, which has finally given satisfactory results.

The achieved results for estimation of nonlinearity are much better than those

obtained in [82].
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5.2 Results for MIMO system

5.2.1 Example 1: Exponential/tanh and Saturation Non-

linearities

This example considers a 2 input 2 output hammerstein type nonlinear process

with two separate static nonlinearities. The first nonlinearity is a saturation

nonlinearity while the second nonlinearity is the same as that of example 2 i.e.

tanh and exponential function

v1(t) =





−0.5 if −0.5 ≥ u1(t)

u1(t) if 0.5 > u1(t) > −0.5

0.5 if u1(t) > 0.5

The dynamic linear part is given by the following second order discrete time

state-space system




x1(t + 1)

x2(t + 1)


 =




1 1

−0.5 0







x1(t)

x2(t)


 +




1 0.2

0.5 1


 v(t)

y(t) =




1 0

0 1







x1(t)

x2(t)



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The linear part of the system has eigen values at

λ1 = 0.5 + 0.5i

λ2 = 0.5− 0.5i

Results using LMS based algorithm

The system is excited using uniform random numbers in the interval [−1, 1] and

[0, 4] for the two inputs respectively and data is generated. An RBF network of

35 neurons is selected to identify each nonlinearity. The centers of the RBFNNs

are selected using the k-means method as before. The spread of the basis function

for exponential/tanh and saturation nonlinearity are both optimized to a value

of 0.15. The learning rate of the neural network is selected to have an optimum

value of 10−4 after hit and trial.

The LMS based algorithm identifies the system very accurately. Mean squared

error between the normalized values of original and estimated outputs converges

to a final value of 5 × 10−4 in only 15 iterations. The static nonlinearities are

learnt with accuracy. The linear part is also identified very closely. Estimates

of nonlinearities and step responses of the linear part are shown respectively in

figures 5.17, 5.18, 5.19 and 5.20. The squared output error plot is shown in figure

5.21, while figure 5.22 shows the step response of the complete identified and
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Figure 5.17: Saturation nonlinearity for hammerstein model of MIMO example 1
identified by LMS based algorithm

0 0.5 1 1.5 2 2.5 3 3.5 4
−1.5

−1

−0.5

0

0.5

1

1.5

Input

O
ut

pu
t

Static Nonlinearity

 

 
Original
Estimated

Figure 5.18: Exponential/tanh nonlinearity for hammerstein model of MIMO
example 1 identified by LMS based algorithm
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Figure 5.19: Step response (output y1) of linear dynamic part of hammerstein
model of MIMO example 1 identified by LMS based algorithm

Figure 5.20: Step response (output y2) of linear dynamic part of hammerstein
model of MIMO example 1 identified by LMS based algorithm
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Figure 5.21: Squared output error for hammerstein model of MIMO example 1
identified by LMS based algorithm
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Figure 5.22: Step response (outputs y1 and y2) of complete hammerstein system
of MIMO example 1 identified by LMS based algorithm
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original systems. The eigen values of the estimated linear part are

λ1 = 0.5011 + 0.5010i

λ2 = 0.5011− 0.5010i

Results using PSO based algorithm

The system is then identified using PSO based algorithm. The same generated

data is used. The RBFNNs are initialized with the same number of neurons and

same set of evenly distributed centers in their respective intervals. The mean

squared error converges to a final value of 9 × 10−4 after 24 iterations . Figures

5.23, 5.24 show the estimates of noninearities. Step responses of linear part can

be seen in figures 5.25 and 5.26. Figures 5.27 and 5.28 show the step response of

the complete system and the squared output error respectively. The eigen values

of the estimated linear part are

λ1 = 0.4970 + 0.4993i

λ2 = 0.4970− 0.4993i

Comparison of results

Both algorithms have identified the system. The LMS algorithm again gives better

results. The PSO algorithm converges to a slightly larger final value of mean

squared error in almost the same number of iterations. LMS based algorithm
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Figure 5.23: Saturation nonlinearity for hammerstein model of MIMO example 1
identified by PSO based algorithm
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Figure 5.24: Exponential/tanh nonlinearity for hammerstein model of MIMO
example 1 identified by PSO based algorithm
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Figure 5.25: Step response (output y1) of linear dynamic part of hammerstein
model of MIMO example 1 identified by PSO based algorithm
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Figure 5.26: Step response (output y2) of linear dynamic part of hammerstein
model of MIMO example 1 identified by PSO based algorithm
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Figure 5.27: Step response (outputs y1 and y2) of complete hammerstein system
of MIMO example 1 identified by PSO based algorithm
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Figure 5.28: Squared error for hammerstein model of MIMO example 1 identified
by PSO based algorithm
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estimates the shapes of the nonlinearities comparatively better than PSO. Once

more, it should be noted that although PSO based algorithm identifies the system

in almost the same number of iterations, the time it takes is more than that taken

by LMS algorithm.
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5.2.2 Example 2: Steam Generator

This example considers a 4 input 4 output steam generator at Abbott Power

Plant in Campaign, IL, which is a dual fuel (oil/gas) fired unit used for heating

and electric power generation. The plant is rated at 22.096 kg/s of steam at 22.4

MPa (325psi) of pressure. Detailed plant description is given in [83] and [84].

The plant has several boiler dynamics including nonlinearities, instabilities, time

delays and load disturbances. A diagram of the steam plant with all its inputs

and outputs is shown in figure 5.29.

Figure 5.29: Industrial Steam Generation Plant
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A description of the plant inputs and outputs is given as,

• Inputs:

– u1: Fuel flow rate (scaled 0-1)

– u2: Air flow rate (scaled 0-1)

– u3: Reference level (inches)

– u4: Disturbance defined by the load level (scaled 0-1)

• Outputs:

– y1: Drum pressure (psi)

– y2: Excess Oxygen in exhaust gases (0-100%)

– y3: Level of water in the drum (inches)

– y4: Steam Flow (kg/s)

Apart from these measurable outputs and inputs, there are certain distur-

bances in the plant like changes in steam demand by users and sensor noise, and

certain uncertainties which include fuel calorific value variations, heat transfer co-

efficient variations, and distributed dynamics of steam generation. The plant also

has few constraints like actuator constraints, unidirectional flow rates and drum

flooding.

A data set for the plant containing 9600 samples is taken from [85]. Out of

these, 5000 samples are used for training, and the last 4600 samples are used for

validation. The results of identification using the two proposed algorithms are

presented below.
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Estimation of plant order

Order estimation for nonlinear and linear systems is a difficult task. To estimate

the order of dynamics from input-output data set, several methods have been

proposed in the literature. For this example, order is estimated by estimating the

rank of the covariance matrix. This method was proposed by Ljung in [86]. The

method is described here in brief.

Given a true system defined by,

y(t) + a1y(t− 1) + · · ·+ any(t− n) = b1u(t− 1) + · · ·+ bnu(t− n) + v0(t)

where v0(t) is some noise sequence, and n is the true order of the system. Then

let,

φs(t) = [−y(t− 1) · · · − y(t− s) u(t− 1) · · ·u(t− s)]T

Supposing v0(t) is zero, the matrix

RS(N) =
1

N

N∑
t=1

φS(t)φT
S (t)

will be nonsingular for s ≤ n provided u(t) is persistently exciting, and would be

singular for s ≥ n+1. An eighth order system is estimated for the steam generator

by this method. After order estimation, identification is carried out using the two

algorithms. The results are shown in the next section.
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Results using LMS based algorithm

Generated inputs and outputs are extracted from the data provided in [85]. A

network of 10 neurons is selected to identify each nonlinearity. The centers of the

RBFNNs are selected using the k-means method as before. The spread of the

basis function for the four neural networks are optimized to values of 0.15, 0.15,

1.35 and 0.007. The learning rate is optimized to a value of 10−8 after hit and

trial.

The LMS based algorithm identifies the system very accurately. Mean squared

error between the normalized values of original and estimated outputs converges

to a final value of 4.2× 10−2 in around 120 iterations. Once error converges to a

final value, the identified model is validated with the rest of the data samples.

Estimates of validated outputs are shown and compared with the original

outputs in figures 5.30, 5.31, 5.32 and 5.33. The squared error plot is shown in

figure 5.34. Figures 5.35, 5.36, 5.37, and 5.38 show the learnt nonlinearities.

Results using PSO based algorithm

The same data set is used for identification using PSO based algorithm. Again,

a network of 10 neurons is selected to identify each nonlinearity. The centers of

the RBFNNs are selected using the k-means method as before. The spread of the

basis function for the four neural networks and the learning rate are optimized to

the same values as were used for the LMS case.

PSO based algorithm identifies the system. Once algorithm reaches a final
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Figure 5.30: Validation result for output y1 of MIMO example 2 (steam generator)
identified by LMS based algorithm

Figure 5.31: Validation result for output y2 of MIMO example 2 (steam generator)
identified by LMS based algorithm
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Figure 5.32: Validation result for output y3 of MIMO example 2 (steam generator)
identified by LMS based algorithm

Figure 5.33: Validation result for output y4 of MIMO example 2 (steam generator)
identified by LMS based algorithm
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Figure 5.34: Squared error for MIMO example 2 (steam generator) identified by
LMS based algorithm

Figure 5.35: First nonlinearity for MIMO example 2 (steam generator) identified
by LMS based algorithm
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Figure 5.36: Second nonlinearity for MIMO example 2 (steam generator) identified
by LMS based algorithm

Figure 5.37: Third nonlinearity for MIMO example 2 (steam generator) identified
by LMS based algorithm
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Figure 5.38: Fourth nonlinearity for MIMO example 2 (steam generator) identified
by LMS based algorithm

state, the mean squared error converges around a final value of 5×10−2 in around

40 iterations. After 40 iterations, the mean square error remains roughly around

the same final value, and no further improvement is seen. Once error converges

to this final value, the identified model is then validated with the rest of the data

samples.

Figures 5.39, 5.40, 5.41, and 5.42 show the validation results. figure 5.43 shows

the mean squared error between the normalized values of estimated and original

outputs. Figures 5.44, 5.45, 5.46, and 5.47 show the detected nonlinearities in the

system, which are almost the same as the nonlinearities detected by LMS based

algorithm.
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Figure 5.39: Validation result for output y1 of MIMO example 2 (steam generator)
identified by PSO based algorithm

Figure 5.40: Validation result for output y2 of MIMO example 2 (steam generator)
identified by PSO based algorithm
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Figure 5.41: Validation result for output y3 of MIMO example 2 (steam generator)
identified by PSO based algorithm

Figure 5.42: Validation result for output y4 of MIMO example 2 (steam generator)
identified by PSO based algorithm
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Figure 5.43: Squared error for MIMO example 2 (steam generator) identified by
PSO based algorithm

Figure 5.44: First nonlinearity for MIMO example 2 (steam generator) identified
by PSO based algorithm
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Figure 5.45: Second nonlinearity for MIMO example 2 (steam generator) identified
by PSO based algorithm

Figure 5.46: Third nonlinearity for MIMO example 2 (steam generator) identified
by PSO based algorithm
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Figure 5.47: Fourth nonlinearity for MIMO example 2 (steam generator) identified
by PSO based algorithm

Comparison of results

Both algorithms have identified the steam generator plant. LMS based algorithm

has once again showed better results, and has converged to a smaller value of

squared error in lesser time. Validation outputs verify this fact too.
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CHAPTER 6

CONCLUSION AND FUTURE

WORK

6.1 Conclusions

This thesis proposes a new method for identification of MIMO hammerstein mod-

els. A new identification structure composed of neural network and state-space

model has been proposed. Two training algorithms have been developed. The

first algorithm uses LMS principle to update neural network weights and subspace

identification to update state-space models. The second algorithm uses PSO for

estimation of neural network weights and subspace identification for estimation of

state space models.

Update equations have been derived for both the SISO and MIMO cases. These

training algorithms have then been applied on various examples and promising re-

sults have been obtained. All examples have shown consistently good identification
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results. The steam generator example has shown that the proposed algorithm is

effective on real life industrial plant data as well, which has several disturbances,

nonlinearities, high order dynamics, and noise. This shows that the proposed

algorithm is immune to noise and can deal with practical real-time examples.

6.2 Recommendation for further work

Based on the knowledge gained during the course of this work, the following

recommendations can be made

• Data bracketing can be used for identification of state-space models through

subspace identification instead of using all the data points. This will reduce

computational complexity considerably.

• Learning rate can be made adaptive. This will surely help convergence

towards a better estimate.

• Different enhanced versions of PSO like hybrid-PSO or extended PSO

(EPSO) can be used to search for optimum weights of the neural network.
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APPENDIX A

PSO

Particle Swarm Optimization is a heuristic search based optimzation technique

which exhibits behavior of swarm intelligence [78]. Kennedy and Eberhart in [78]

described the five basic principles on which swarm intelligence works. These are,

1. The proximity principle: The swarm should be able to carry out simple time

and space calculations.

2. The quality principle: The swarm should be able to respond to quality

factors in the environment.

3. The principle of diverse response: The swarm should not commit its activi-

ties along excessively narrow channels.

4. The principle of stability: The swarm should not change its behavior every

time the environment changes.

5. The principle of adaptability: The swarm must be able to change its behav-

ioral mode when its worth the computational price.
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PSO differs from other Evolutionary Algorithms (EAs) like Genetic Algorithm

(GA) in small things. The main difference is the way we change the population

from one iteration to the next. In GA and other EAs, genetic operators like

selection, mutation and crossover are used to change population in one generation

to the next, whereas in PSO, the particles are modified according to two formulas.

Also, conceptually, in PSO, the particles stay alive and the search is directed, as

every particle position is updated in the direction of the optimal solution where as

in EA, the individuals are replaced in each generation. A fundamental conceptual

difference is that in GA and other EAs optimal solution is obtained through

competitive search whereas in PSO, it is reached through cooperative search.

Due to these and several other factors, PSO differs from other EAs in terms

of performance. PSO is a more robust and fast algorithm that can solve most

complex and nonlinear problems. It is very effective in finding global minimum

to an optimization problem. It can generate a better solution within lesser time

and exhibits stable convergence characteristic than other stochastic methods.

As in other EAs, PSO has initially a population of particles. These particles

“evolve” by cooperation and competition among themselves through successive

generations. Each particle adjusts its “position” according to its own experience

as well as by the experience of neighboring particles.

Each particle is treated as a point in D-dimensional space. The ith particle is

represented as

Xi = (xi1, xi2, ..., xiD) (A.1)
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The best previous position (the position giving the best fitness value) of any

particle is recorded and represented as

Pi = (pi1, pi2, ..., piD) (A.2)

Similarly, the position change (velocity) of each particle is

Vi = (vi1, vi2, ..., viD) (A.3)

The particles are manipulated according to the following equations

V n+1
i = w ∗ V n

i + c1 ∗ rn
i1 ∗ (P n

i −Xn
i ) + c2 ∗ rn

i2 ∗ (P n
g −Xn

i ) (A.4)

Xn+1
i = Xn

i + x ∗ V n+1
i (A.5)

For multi-modal problems there is a possibility that the algorithm gets stuck

in local optimum. This is called premature convergence. Avoiding this means

looking at all possible local optima before deciding on the global optimum. Several

different version of the algorithm like Hybrid-PSO were proposed to deal with this

difficulty.

An Extended PSO (EPSO) algorithm was proposed by Xu in 2005. This algo-

rithm uses local as well as global best positions for the calculation of the particles

velocity at each iteration [80]. Thus the new equation for velocity becomes:

V n+1
i = K.(V n

i +c1∗rn
i1∗(P n

i −Xn
i )+c2∗rn

i2∗(P n
l −Xn

i )+c3∗rn
i3∗(P n

g −Xn
i )) (A.6)
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where K is the constriction factor. This algorithm combines the advantages of

global best solutions and local best solutions together.
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APPENDIX B

N4SID NUMERICAL

ALGORITHM FOR SUBSPACE

IDENTIFICATION

Subspace identification constructs state space models from input-output data by

estimating first the Kalman filter states from input-output data, and then ob-

taining the system matrices. As mentioned in section 2.3, a typical state space

representation of a system is given by,

x(t + 1) = Ax(t) + Bu(t) + w(t) (B.1)

y(t) = Cx(t) + Du(t) + z(t) (B.2)

where u(t) ε < m and y(t) ε < l are the vectors for m inputs and l outputs of the

system observed at discrete time instant t. Vector z(t) ε < l×1 and w(t) ε < n×1
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are zero mean, white noise sequences called measurement noise and process noise

respectively.

N4SID stands for Numerical algorithm for Subspace State Space System Iden-

tification. As proposed by Peter Van Overschee and Bart De Moor in [71], the

main steps of N4SID algorithm are:

• Determination of model order n and a kalman filter state sequence estimates

x̂i x̂i+1 · · · x̂i+j. These are found by first projecting row spaces of data

block Hankel matrices, and then applying a singular value decomposition.

• Solution of a least squares problem to obtain the state space matrices A, B,

C, and D.

B.1 Mathematical Tools and Notations

B.1.1 Block Hankel Matrices and State Sequences

Block Hankel matrices can be easily constructed from the given input-output data.

Matrix U0|i−1 is defined as

U0|i−1 =




u0 u1 u2 · · · uj−1

u1 u2 u3 · · · uj

· · · · · · · · · · · · · · ·

ui−1 ui ui+1 · · · ui+j−2




(B.3)
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This is known as Input block Hankel matrix. The number of block rows i is

selected as larger than the maximum order i.e. i ≥ n. The number of columns j

is typically equal to s-2i+1 signifying that all available s data should be used. j

should always be larger than 2i-1.

From here on the following input matrices notations are used,

Up = U0|i−1 (B.4)

Uf = Ui|2i−1 (B.5)

where Up and Uf refer to matrices of past and future inputs. Similarly matrices

U+
p and U−

f are defined by shifting the border between past and future one block

row down. Therefore,

U+
p = U0|i (B.6)

U−
f = Ui+1|2i−1 (B.7)

Similar definitions hold for the block Hankel matrices with the output vectors,

denoted by Yp and Yf .

Combination of these inputs and outputs are used as regressors and are defined

as
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Wp = W0|i−1 =




U0|i−1

Y0|i−1


 (B.8)

The state sequence Xi is defined as,

Xi = (xi xi+1 · · · xi+j−2) ε <n×j (B.9)

where the subscript i denotes the subscript of the first element of the state se-

quence.

B.1.2 Extended Observability Matrix

Extended observability matrix Γi is used extensively in subspace identification

algorithm, and is defined as

Γi =




C

CA

CA2

...

CAi−1




ε <li×n (B.10)
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B.1.3 Geometric Tools

If matrices Aε<p×j, Bε<q×j and Cε<p×j are given, then for identification j ≥

max(p, q, r). This section takes a look at a few geometric tools that are used in

linear algebra and which are of relevance to subspace methods also.

Orthogonal Projections

The orthogonal projection of the row space of A onto the row space of B is denoted

by A/B and its matrix representation is

A/B = A.ΠB = ABT (BBT )†B (B.11)

where † denotes the Moor-Penrose pseudo-inverse of the matrix and ΠB denotes

the operator that projects the row space of a matrix onto the row space of the

matrix B. Similarly A/B⊥ denotes projection of the row space of A onto B⊥.

Where B⊥ is the orthogonal complement of the row space of B

A/B⊥ = A.ΠB = A− A/B = A(Ij − ΠB) (B.12)

Combination of projections ΠB and ΠB⊥ decomposes a matrix A into two

matrices whose row spaces are orthogonal

A = AΠB + AΠB⊥ (B.13)
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The matrix representation of these projections are computed by using RQ

decomposition of




B

A


. This matrix is the numerical matrix version of the

Gram-Schmidt orthogonalization procedure. Let A and B be matrices of full rank

and let RQ decomposition of




B

A


 be denoted by




B

A


 = RQT =




R11 0

R21 R22







QT
1

QT
2


 (B.14)

where Rε<(p+q)×(p+d) is lower triangular, with R11ε<q×q, R21ε<p×q, R22ε<p×p and

Qε<j×(p+q) are orthogonal i.e.

QT Q =




QT
1

QT
2




[
Q1 Q2

]
=




Iq 0

0 Iq




Then, the matrix representations of the orthogonal projections can be written as

A/B = R21Q
T
1 (B.15)

A/B⊥ = R22Q
T
2 (B.16)

Oblique Projections

A matrix A can also be decomposed as a linear combination of the rows of two

nonorthogonal matrices B and C and of the orthogonal complement of B and C.
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This can be written as:

A = RBB + RCC + RB⊥C⊥




B

C




⊥

(B.17)

The matrix RCC is defined as the oblique projection of row space of A along

the row space of B into the row space of C

A/BC = RCC (B.18)

Oblique projection means projecting the row space of A orthogonally into the

joint row space of B and C and decomposing the result along the row space of B

and C

If the RQ decomposition of




B

C

A




is given by Eq. B.19




B

C

A




=




R11 0 0

R21 R22 0

R31 R32 R33







QT
1

QT
2

QT
3




then the matrix representation of the orthogonal projection of the row space of A

onto the joint row space of B and C is equal to

101



A/




B

C


 =

[
R31 R31

]



QT
1

QT
2


 (B.19)

This can also be written as linear combination of the rows of B and C

A/




B

C


 =

[
RBB RCC

]
=

[
RB RC

]



R11 0

R21 R22







QT
1

QT
2


 (B.20)

The oblique projection of the row space of A along the row space of B onto the

row space of C can thus be computed as

A/BC = RCC = R32R
−1
22

[
R21 R22

]



QT
1

QT
2


 (B.21)

B.2 The Algorithm of N4SID

The N4SID algorithm works in two main steps. First step includes obtaining

row space of Kalman filter state sequence from input output data, without any

knowledge of the system matrices. Second step involves extraction of system

matrices from the state sequence via a least squares problem.
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B.2.1 The Kalman State Sequences

State sequence of a combined deterministic−stochastic model can again be ob-

tained from input output data in two steps. First, the future output row space is

projected along the future input row space into the joint row space of past input

and past output. Singular value decomposition is carried out to obtain the model

order, the observability matrix and a state sequence.

Oblique projection

RQ decomposition is used to compute the oblique projection Yf/Uf




Up

Yp


. Let

U0|2i−1 be the (2mi×j) and Y0|2i−1 the (2li×j) block Hankel matrices of the input

and output observations. Then the RQ decomposition of




U

Y


 is partitioned as

follows




U0|i−1

Ui|i

Ui+1|2i−1

Y0|i−1

Yi|i

Yi+1|2i−1




=




R11 0 0 0 0 0

R21 R22 0 0 0 0

R31 R32 R33 0 0 0

R41 R42 R43 R44 0 0

R51 R52 R53 R54 R55 0

R61 R62 R63 R64 R65 R66







QT
1

QT
2

QT
3

QT
4

QT
5

QT
6




(B.22)
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The matrix representation of the oblique projection Yf/Uf




Up

Yp


 of the future

output row space along the future input row space onto the joint space of past

input and past output, is denoted by oi and is obtained as follows

oi = Yf/Uf




Up

Yp


 = RUpR11Q

T
1 + RYp

[
R41 R42 R43 R44

]




QT
1

QT
2

QT
3

QT
4




(B.23)

where

[
RUp RUf

RYp

]




R11 0 0 0

R21 R22 0 0

R31 R32 R33 0

R41 R42 R43 R44




=




R51 R52 R53 R54

R61 R62 R63 R64




(B.24)

from which RUp , RUf
, and RYp can be calculated. The oblique projection

Y −
f /U−

f




U+
p

Y +
p


, denoted by oi−1 on the other hand, is equal to
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oi−1 = R+
Up




R11 0

R21 R22







QT
1

QT
2


 + R+

Yp




R41 R42 R43 R44 0

R51 R52 R53 R54 R55







QT
1

QT
2

QT
3

QT
4

QT
5




where,

[
R+

Up
R+

Up
R+

Yp

]




R11 0 0 0 0

R21 R22 0 0 0

R31 R32 R33 0 0

R41 R42 R43 R44 0

R51 R52 R53 R54 R55




=

[
R61 R62 R63 R64 R65

]

(B.25)

It is assumed that

• The process noise w(t) and measurement noise v(t) are uncorrelated with

input u(t)

• The input u(t) is persistently exciting of order 2i

• The number of available data is large, so that j →∞

As shown in [71], we know that the oblique projection oi is equal to the product

of the extended observability matrix Γi and a sequence of Kalman filter states
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oi = ΓiX̃i (B.26)

Similarly the oblique projection oi−1 is equal to

oi−1 = Γi−1X̃i+1 (B.27)

Singular Value Decomposition (SVD)

The singular value decomposition of RUp

[
R11 0 0 0

]
+

RYp

[
R41 R42 R43 R44

]
is equal to:

RUp

[
R11 0 0 0

]
+ RYp

[
R41 R42 R43 R44

] [
U1 U2

]




S1 0

0 0







V T
1

V T
2


 = U1S1V

T
1

(B.28)

where U1ε<li×n, S1ε<n×n, and V1ε<li×n. The number of singular values in equation

B.28 gives the order of the system. The extended observability matrix Γi is chosen

as

Γi = U1S
1/2
1 (B.29)
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and the state sequence X̃i is equal to

X̃i = (Γi)
†oi = S

1/2
1 V T

1




QT
1

QT
2

QT
3

QT
4




(B.30)

The shifted state sequence X̃i+1 can be obtained as,

X̃i+1 = (Γi)
†oi−1 (B.31)

where Γi = Γi−l denotes the matrix Γi without the last l rows.

B.2.2 Computing System Matrices

From previous section, the following information has been found

• The order of the system from inspection of the singular values of equation

B.28

• The extended observability matrix Γi from equation B.29 and the matrix

Γi−l as Γi which denotes the matrix Γi without the last l rows

• The state sequences X̃i and X̃i+1

The state space matrices A, B, C and D can now be found by solving a set of over

determined equations in a least squares sense
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


X̃i+1

Yi|i


 =




Â B̂

Ĉ D̂







X̃

Ui|i


 (B.32)
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