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Chapter 1 

Introduction 

Model Predictive Control (MPC) has developed considerably over the last few years, both 

within the research control community and in industry. It integrates optimal control, 

stochastic control and multivariable control. The term MPC does not designate a specific 

control strategy but a large range of control methods, which make an explicit use of a 

model of the process to obtain the control signal by minimizing an objective function. 

These predictive controllers are based on prediction of the future behavior of the process, 

forecasted using this model of the process. Industrial project experience has shown that 

the most difficult and time-consuming work in an MPC project is modeling and 

identification [1].  

The dual topics of identification for control and model based control design have 

attracted extensive discussions for the past two decades, which naturally lead to the 

currently innovated concept of integrated system identification and control design. In 

MPC scheme, the controller can be seen as an algorithm operating on a model of the 

process (subject to disturbances) and optimized in order to reach given control design 

objectives. The performance of the controller depends on this identified plant model. 
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 Current practice of MPC industry is to use a series of open loop and single 

variable step tests [1]. The tests are carried out manually. The advantage of this test 

method is that control engineer can watch many step responses during the tests and can 

learn about the process behavior in an intuitive way. On the other hand, the biggest 

problem with open loop identification test is its high cost in time and manpower. 

Problems arise when these (open loop) identified models start exhibiting degradation in 

their performance i.e. they can no longer describe correctly the input-output behavior of 

the process and become inadequate after some span of time. Many reasons can be 

associated with this phenomenon like change in process operating conditions, drift in 

process conditions (controlled variables), environment conditions, which are not taken 

into account during identification, and, instability and inherent feedback mechanisms of 

the plant. Examples of such processes are refineries, where an increase or decrease in flow 

of crude oil can change the entire dynamics of the plant model and high purity distillation 

columns, which are often ill- conditioned where top and bottom compositions have a 

strong correlation which makes it difficult for the model to represent the process for a 

long span of time. 

The only practical solution existing in the industry today is to shut down the 

controller and identify the model again, resulting in huge financial and production losses.  

Widespread application of MPC technology requires more effective and efficient 

method of multivariable process identification since modeling of the plant and design of 

controller cannot be considered always as two separate issues.  

This problem of process identification for MPC has started to attract attentions of 

both academic institutes and industry. The problem of degradation can be dealt with 

closed loop identifying the model and checking the prediction error between the identified 
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model and original model. This offers a number of practical advantages such as obtaining 

better models, validation, and controller maintenance and order reduction.  

The next section gives an introduction to closed loop identification followed by the 

literature review. 

 

1.1 Closed Loop Identification 

Closed loop identification has oft en been suggested as a tool for identification of models 

that are suitable for control, so called identification for control. The main motivation has 

been that by performing the identification experiments in closed loop it is possible to 

match the identification and control criteria so that the model is best fit to the data in a 

control relevant way. In the past, closed loop identification was considered difficult due to 

lack of modern day fast computing facilities and apprehensions of the industry in general 

due to financial constraints. However, access to better research and fast computing 

facilities in the last decade has established the importance of closed loop identification in 

the process industry.  

Many systems work under closed loop control as in Fig. 1.1, where the signal r(t) 

can be a reference value or a set point, v(t) is noise disturbance that is modeled as a 

filtered zero mean white noise, u(t) and y(t) are the process input and output respectively. 

The basis for all identification is the available data set 

{ })(),......,1()(),.....,1( NuuNyyZ N  =    (1.1) 

consisting of input-output signals, u(t) and y(t), t=1,…,N. The process output and the 

control input are given by [2]: 
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Figure 1.1: Typical feedback system 

 
 

)()()()( 1 tvtuqGty += −      (1.2) 

    )()()()()( 11 teqHtuqGty −− +=     (1.3) 

))()()(()( 1 tytrqCtu −= −     (1.4) 

Where, G(q-1) is the process transfer function, H(q-1) is the noise transfer function and 

C(q-1) is the controller transfer function. e(t) is zero mean white noise sequence and  q-1 is 

the unit backward shift operator. The open loop transfer function G(q-1) and the controller 

transfer function C(q-1) are given by  

a

b

n
n

n
n

qaqa
qbqb

qA
qBqG

−−

−−

−

−
−

−−−
++

==
............1

............
)(
)()(

1
1

1
1

1

1
1   (1.5)  

p

q

m
m

m
m

qpqp

qqqqq
qP
qQqC

−−

−−

−

−
−

+++

+++
==

............1

............
)(
)()(

1
1

1
10

1

1
1   (1.6) 

The closed loop system can be represented as 

   )()()()()()()( 1111 tvqStrqCqGqSty −−−− +=    (1.7) 

where S(q-1) is the sensitivity function, 

( ) 1111 )()()(
−−−− += qCqGIqS    (1.8) 

v(t) 

_ 

+ 
Σ 

+ 
+ 

Σ r(t) 
u(t) y(t) 

G(q-1)      C(q-1) 
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Eq. 1.7 can also be expressed as 

)()()()( 1 tvtrqGty cc += −     (1.9) 

where )( 1−qGc  and )( 1−qvc  are defined as in Eqs. 1.10 and 1.11 

  )()()()( 1111 −−−− = qCqGqSqGc    (1.10) 

  )()()( 11 tvqSqvc
−− =      (1.11) 

In closed loop configuration, the input can be expressed as 

)()()()()()()( 1111 tvqSqCtrqSqCtu −−−− −=    (1.12) 

In general, all closed loop identification methods can be classified as direct, indirect, 

or joint input-output methods. 

1.1.1 Direct Identification Method 

In the direct approach, the method is applied directly to measured input-output (u, y) data 

and no assumptions whatsoever are made on how the data was generated. In general, 

model structure of the following form is used. 

 )(),()(),()( 11 teqHtuqGty θθ −− +=    (1.13) 

where G is the dynamic model and H is the noise model. ? is the parameter vector 

that has to be estimated. The one step-ahead predictor (Appendix A) for direct 

identification is 

   ( ) )(),(1)(),(),()|(ˆ 11111 tyqHtuqGqHty θθθθ −−−−− −+=   (1.14) 
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1.1.2 Indirect Identification Method 

The indirect method assumes knowledge of the controller used in the identification 

experiment and the idea is to identify the closed-loop system and to  compute the open 

loop parameters from this estimate, using the knowledge of the controller. The model 

structure for indirect method is 

    )()()(),()( 1
*

1 teqHtrqGty C
−− += θ    (1.15) 

where ),( θqGC  is a model of the closed loop system. *H  is a fixed noise model which is 

standard in indirect method (often equal to 1). The corresponding one-step-ahead 

predictor is    

( ) )()(1)(),()()|(ˆ 11
*

111
* tyqHtrqGqHty C

−−−−− −+=     θθ   (1.16) 

From Eq. 1.16, it is clear that estimating θ  is an open loop problem since the noise 

and the reference signal are uncorrelated [3]. This implies that any identification method 

that works in open loop can be used to find the estimate of the closed- loop system. In the 

first step, CG  is estimated from measured y and r, giving CĜ . Then the open loop transfer 

function Ĝ  is found in the second step 

    ( ) 11111 )()(ˆ)(ˆ)(ˆ −−−−− −= qCqGIqGqG CC   (1.17) 

 

1.1.3 Joint Input-output Method 

The third approach, the joint input-output method amounts to modeling the input u(t) and 
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the output y(t) jointly as outputs from an augmented system driven by the reference signal 

r(t) and the un-measurable noise v(t). Given an estimate of this  augmented system, the 

open loop model parameters (and the controller) can be estimated. In this method exact 

knowledge of the controller parameters is not required. However, it must be known or 

assumed to be of a certain linear structure.  

In the first step, measured reference signal (r) and input (u) are used to estimate a 

model Ŝ  of the sensitivity function S. Next this model is used to construct the signal  

     )()(ˆ)(ˆ 1 trqStu −=     (1.18) 

which is then used to identify the open loop system as in Eq. 1.18. 

     )(ˆ),()(ˆ 1 tuqGty θθ −=     (1.19) 

The next subsection gives a detailed literature survey on some of the major works done in 

the field of closed loop identification. 

 

1.2 Literature Review 

Identification is the experimental approach to process modeling. The system identification 

can be divided into a number of sub problems; experimental design, data collection, 

model structure selection, model estimation and model validation. These steps are 

applicable in closed loop identification as well. Mathematical models of dynamic systems 

are of rapidly increasing importance in engineering and today all designs are more or less 

based on mathematical models. If the physical laws governing the behavior of the system 

are known, so called white-box models of the system can be constructed. At the other end 
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of the modeling scale, there are so called, black-box modeling or identification. Black-box 

models are constructed from data using no physical insight whatsoever and the model 

parameters are simply knobs that can be turned to optimize the model fit. 

In the seventies, there was a very active interest in issues concerning closed loop 

identification as summarized in the survey paper by Gustavson et al. [4]. Much of the 

attention was devoted to identification and accuracy aspects. In 1983 Sinha and Kuszta [5] 

provided the classification of closed loop identification schemes based on signals, plant 

and regulator architecture for linear systems. The same year Ljung and Soderstrom [6] 

discussed implementation of recursive identification in closed loop to the adaptive control 

problem. In 1989, Soderstrom and Stoica [7] presented parametric identification methods 

that were typically directed towards solving the consistency problem, considering the 

situation that the plant and disturbance model could be modeled exactly. Polderman and 

Praagman [8] addressed the problem of classifying the adaptive control problems for 

which, despite the fact that the system was not identified in closed loop, the system was 

controlled properly (meaning that due to some miracle a wrong estimate would 

coincidently give the right controller). As a solution to this paradigm they presented a 

recursive procedure in which the controller parameters were updated online on the basis 

of model parameters identified using prediction error method.  

The advent of the 90s saw a renewed interest in the closed loop identification of 

models that were particularly suitable for model-based (robust) control design. Most 

controller design schemes till now were concentrated on open loop identification. In 1990, 

Liu and Skelton [9] presented an iterative controller design scheme which consisted of 

indirect closed loop identification of the plant and then controller design cycles. They 

utilized q-Markov cover algorithm, which obtained state space realization of the unknown 
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plant using only input-output data. A similar approach was presented by Klauw and 

Verhaegen [10] in 1991. They used the joint input-output identification scheme in time 

domain to identify a linear MIMO process controlled by a Proportional Integral (PI) 

controller. Both the process and the controller were assumed to be linear-time invariant 

causal systems. The closed loop system was considered as a joint system with white noise 

inputs, generating the process input and output, which were used to construct a Markov 

model. From this model minimal realizations of the process and controller were obtained. 

Stochastic realization was used to solve the spectral factorization problem for this 

approach. Scharma [11] presented the idea of treating approximate identification and 

model based control as joint problem when designing a high performance control system. 

He proposed an iterative scheme based on frequency response identification and robust 

control design to solve this joint problem. Each identification step used the previously 

designed model based controller to obtain new data from the plant. The identification was 

done using coprime factorization of the unknown plant in the frequency domain. Musto 

and Lauderbaugh [12] presented a heuristic approach capable of generating ARMAX 

models of linear systems to be used for controller design in an expert-aided adaptive 

control system, while the system was online (closed loop). The proposed algorithm also 

contained heuristics for sampling rate selection, delay estimation and model validation. 

In 1994, Voda and Landau [13] used an iterative closed loop identification scheme 

to design a PID controller by using a proper data filter in the model estimation. They used 

ARMAX model of the plant for real time control of air heater process and feed tank 

pressure of the heating company of Grenoble. In their proposed iterative scheme, each 

identification step used the previously designed controller to obtain new data from the 

plant, which was then filtered to minimize a filtered prediction error to obtain a new 
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model of the plant.  The same year Klauw et al. [14] applied both the direct and two-step 

(joint input-output) identification approaches to identify a suitable model for a two-input-

two-output distillation column using closed loop data. They used Output Error (OE) and 

linear regression model schemes based on orthonormal basis functions. According to 

them, the two step (joint input-output) method performed better than the direct method 

and considerable improvement was obtained in the prediction capabilities of the model 

when compared to the open loop identified model. 

By 1995 the problem of unavailability of plants for identification in the open loop 

due to high costs associated with it, led to researchers like Hof and Schrama [15] to 

present a survey of many iterative closed loop identification schemes related to the 

problem of designing high-performance model based controllers for plants with unknown 

dynamics. They also presented the idea of separating the analysis of both identification 

and controller design and to have a joint performance criterion of both parts. They 

proposed that at each iteration data should be collected online, identification performed 

and the controller should be re-designed. If the controller satisfies some robustness 

criteria then it should be implemented otherwise a new identification should be 

performed. The same year Gessing and Lachuta [16] showed that in the case of a constant 

set point and an ARMAX model resulting from the discretization of a continuous time 

plant, the parameters of the plant could not be identified in closed loop system controlled 

with a minimum variance controller. They showed that varying set point has an essential 

influence on the identifiability of the plant and observed that there does exists a point in 

which parameter estimates remain accurate but later on the noise causes a slow drift (from 

the true valuses) of these parameters. 

In 1996, Hjalmarsson et al. [17] compared open loop versus closed loop  
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identification when the identified model is used for control redesign. The measure of the 

model based controller performance was the variance of the error between the outputs of 

the ideal closed loop system and that of the actual closed loop system. They showed that 

the optimal experiment setup is to identify the system with some optimal controller 

operating on the plant (closed loop). Landau and Karami [18] used a RST digital 

controller to present an iterative closed loop identification scheme. The objective of their 

scheme was to minimize the error between the true closed loop system (reference) and the 

designed (model) system by using new data acquired in the sequence of operations carried 

out. The error was then used to update the parameters of the plant model. They used 

Closed Loop Output Error (CLOE), Filtered Closed Loop Output Error (FCOE) and 

Extended Closed loop Output Error (XCLOE) identification algorithms. Geverns et al. 

[19] derived the asymptotic variance expressions for identified models based on several 

different closed loop identification methods and compared them to the respective 

expressions for the open loop situations. They also showed mathematically the 

consequences for the variance of resulting model based controller designs. These results 

demonstrated that all identification schemes for closed loop led to the same asymptotic 

variance expressions and that the controllers designed with closed loop id entified model 

showed better variance results. Hof and Callafon [20] in 1996 compared the classic 

indirect closed- loop identification and the dual-Youla parameterization technique [15] and 

provided several relationships between the two approaches. They showed that dual-Youla 

parameterization technique, which guaranteed the identified model to be stable, was in 

fact a generalization of the indirect identification scheme. They highlighted the problem 

of controlling the model order when using these two techniques. 

Robust control methodologies aim to design controllers guaranteed to meet the  
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specifications not for a single nominal model, but for all models obtained by given 

perturbations of the nominal model. Such model set is called uncertainty model. With this 

in mind, Milanese et al. [21] showed that identifying a model by minimizing the 

discrepancy between the closed loop performance predicted by the model and the one 

actually achieved on the plant, is equivalent to finding the best approximated Youla 

parameterization (indirect method) of the plant in a suitably weighted ∞H  norm. Using 

this approach, they derived an optimal uncertainty model for the dual Youla 

parameterized plant and obtained an uncertainty model for the actual plant. This model 

was then used for designing a robust controller.  

 Ljung and Forsell [22] compared the statistical properties of a number of closed-

loop identification methods and parameterizations. On comparison of asymptotic 

variances for the parameter vector estimates, they showed that the indirect method failed 

to give better accuracy than the direct method. They concluded that a directly applied 

prediction error method would give consistency and optimal accuracy even with closed-

loop data, provided the noise model could describe the true noise properties. Sun et al. 

[23] proposed a new indirect identification algorithm for linear discrete time closed- loop 

system based on output-over sampling scheme, which did not require knowledge of the 

reference signal nor of the controller. However, they assumed that the structure of the 

plant was known in this scheme. Linard et al. [24] extended two linear methods for the 

identification of approximate models of an open loop plant on the basis of closed loop 

data to the nonlinear case. The first method was an indirect method based on 

identification of the sensitivity function [15] and the second method was right co-prime 

factor identification (joint input-output) method, which identified the sensitivity and 
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complementary sensitivity function of the closed loop system. Yoneya et al. [25] proposed 

an iterative closed loop identification approach which employed a linear functional model. 

This model was used to iterate the closed loop system to a solution. This iterative scheme 

worked on the notion that if the model did not suit closed loop control, the model based 

controller behavior would display significant different characteristics from the one 

predicted with the nominal plant. From this difference a new plant model was identified 

and this procedure continues till a best controller performance was achieved.  

Huang and Shah [26] discussed the accuracy aspects of identification and the role of 

filtering in closed- loop identification. They showed that the key difference between closed 

loop and open loop identification methods was the existence of the sensitivity function, 

which inversely affects the variance and bias errors of the estimate under closed loop 

conditions. They proposed a two-step (joint input-output) closed loop identification 

algorithm, which through the use of appropriate data filtering could estimate a suitable 

model from closed loop data.  

Geverns et al.  [27] presented a detailed paper in 1998, highlighting the role of 

feedback (closed loop) in the identification and validation of a model, which was to be 

used for control design. They examined the role of controller in changing the 

experimental conditions, effects of open loop and closed loop identification in terms of 

bias and variance errors in the context of identification for control. The same year Hof 

[28] presented a survey of all the direct and indirect algorithms that were either being 

used or modified for closed loop identification. According to him closed loop 

experimental conditions should not be considered as a degenerate or unfavorable situation 

for identifying dynamic systems. He evaluated characteristic properties of both direct and 

indirect identification methods on the basis of an explicit assessment criterion, including 
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aspects of bias and variance. 

Bruyne et al.  [29] presented gradient expressions for closed loop identification 

scheme based on the minimization of a certain criterion and a parameterization that was 

tailored  to the closed loop configuration. According to them, the main advantage of these 

gradient expressions was that they could easily be extended to non-standard identification 

criteria in which the plant, the parametric model and the controller could be nonlinear. 

Kulikov et al. [30] presented a modified version of least squares algorithm for online 

identification. The purpose of this algorithm was to estimate the delay of linear part of a 

digital model in continuous time and parameters of the numerator and denominator of the 

transfer function in discrete time. This scheme allowed for the correction of the delay in 

discrete time and was shown to be efficient for adaptive control systems design. 

The advent of 1999 saw a lot of research being conducted in closed loop 

identification field . Sun et al. [31] in continuation of their earlier work [23], presented a 

new direct closed loop identification algorithm for an unstable discrete time linear system 

that was run by a feedback controller using only input-output data. This technique was 

based on the output inter-sampling scheme and did not require the reference signal to keep 

the Persistently Exciting (PE) property. Chou and Verhaegen [32] used indirect approach 

to identify a Wiener model of a high purity distillation column in closed-loop. Psadyn et 

al.  [33] used subspace, partial least squares, ordinary least squares and output error 

approaches both for closed loop and open loop identification of a waste water reactor. 

They showed that in their case, open loop identification proved very effective and closed 

loop operational data could not be used for model identification regardless of the method 

(parametric or non-parametric). Forsell [34] in his thesis report provided a detailed 

description of methods for closed loop black-box identification of linear, time invariant 
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dynamical systems given discrete time data. He focused mainly on prediction error 

methods and suggested modified versions of output error and Box-Jenkins model 

structures in the case of unstable systems. Ljung and Forsell [3] discussed closed loop 

identification approaches and showed that most of the common methods could be viewed 

as special parameterizations of the general prediction error methods. They also proposed a 

projection method for closed loop identification which allowed approximation of the open 

loop dynamics in a given and user chosen frequency domain norm. Ljung [36] in his book 

provided a lot of mathematical details related to closed loop identification techniques. 

Landau et al. [37] focused their research on recursive identification of nonlinear plants 

operating in closed loop with a nonlinear controller using closed loop output error 

(prediction error) identification schemes. An interesting aspect of their research was that 

they tried to show that a number of closed loop output error identification schemes could 

be used in nonlinear systems, which by itself was a notable effort. Gaspar et al.  [38] 

motivated by different engineering problems caused by large uncertainties in the 

modeling of processes, presented a closed loop identification method based on the 

construction of Generalized Orthonormal Basis Functions (GOBF). This method utilized 

appropriately chosen basis functions generated by all-pass functions having poles close to 

the poles of the actual system.  

Jin et. al. [39] in 2000, presented yet another approach by which, system transfer 

function was identified from closed loop data by using state space identification technique 

and correspondingly a LQG controller was redesigned. The same year Zheng [40] used 

Bias-Eliminated Least-Squares (BELS) method for direct identification of closed loop 

systems with colored noise. Sun et al.  [41] extended the output inter-sampling based 

closed loop identification approach to the case where an unstable plant was disturbed by 
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stochastic colored noise. They studied the time domain and frequency domain properties 

of the inter-sampled plant model and proposed several identification algorithms. Forsell 

and Ljung [42] used flexible, parameterized noise model in the prediction error method to 

eliminate the bias when applying an output error model with a fixed noise model/prefilter 

to a closed loop data. They termed this approach as projection method. However they 

showed that regardless of the fact that this method gave consistent estimates, the accuracy 

of it was sub-optimal. Schwarm et al. [43] presented a Model Predictive Control and 

Identification scheme (MPCI) that employed online optimization to perform closed loop 

identification and controller adaptation. This scheme was shown to identify single input 

single output (SISO) system efficiently while satisfying standard MPC constraints and 

keeping the process output robustly within specified bounds. Hof et al. [44] presented a 

GUI (Graphical User Interface) based CLOSID toolbox for matlab, to be used for the 

identification of linear systems on the basis of experimental data.  

Recently in 2001, Ooi and Weyer [45] used direct closed loop identification 

approach for irrigation channels using a lead lag controller. In this case the water level 

was the controlled variable and gate position was the manipulated variable. Zheng [46] 

presented a new algorithm based on the combination of least squares and bias correction 

principle, for direct identification of closed loop plants. Zheng [47] applied conventional 

least squares estimation technique to obtain closed loop parameter estimates of the 

process model and then adjusted these parameters in order to remove the bias caused by 

colored noise. This proposed method was called Bias Eliminated Least Squares Method 

with No Prefiltering (BELSNP). Continuing with this work Zheng [2] in 2002, applied a 

more improved version of his proposed BELSNP method that could be used for indirect 

identification of transfer function models for unstable plants in closed loop. However, this 
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method required prior knowledge of low order regulators. Klerk and Craig [48] provided 

an overview of different closed loop identification techniques with a simulation example. 

The purpose of which was to motivate new researchers to enter into this field. Keviczky 

and Banyasz [49] compared different variations of the Youla parameterization schemes 

(indirect method) including the K-B parameterization. They introduced R and S 

parameterization as a new form of Youla parameterization schemes.  Wang and Yin [50] 

presented their findings on timing complexity problem that occur in the identification of 

unstable, non-minimum phase and time varying plants operating in closed loop. Eker and 

Nikalaou [51] in continuation of their earlier work [43] presented a rigorous study of their 

MPCI technique. Issues related to stability and convergence properties were discussed. 

Leskens et al. [52] presented an application of a specific system identification procedure 

to a municipal solid waste (MSW) incinerator. The proposed procedure was a 

combination of two-stage (joint input-output) closed loop identification method as well as 

the approach of high-order multiple-input-multiple-output (MIMO) ARX model 

estimation followed by model reduction. Katayama et al.  [53] performed closed loop 

identification of the deterministic part of the process in the framework of joint input-

output approach. They used orthogonal decomposition technique to decouple the 

deterministic part from the stochastic part of the process. They obtained the state space 

models of the plant and the controller by applying a standard subspace method to the 

deterministic component of the joint process.   
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1.3 Motivation for Present Work 

Dynamic models play a central role in MPC technology. The assumption during MPC 

design is that a reliable model of the plant under consideration is available. Normally 

identification methods deliver a nominal model of the plant with unknown dynamics. The 

performance achieved by this controller when applied to the plant is highly dependent on 

the accuracy of this model. However, in real life situations, models that are identified 

from open loop data are generally contaminated with errors and are inaccurate for many 

reasons such as equipment degradation (e.g. catalyst change, heat exchanger fouling etc.), 

low quality measurement data etc. Problem also arises when these models start exhibiting 

degradation in their performance after some span of time. A number of reasons can be 

attributed to this phenomenon like change in process operating conditions, drift in process 

conditions, environmental conditions, instability and inherent feedback mechanisms of the 

plant. Examples of such processes are refineries, where a change in the crude oil flow can 

change the entire dynamics of the plant model, and high purity distillation columns where 

the correlation between different controlled variables makes it difficult for the model to 

represent the process for a long span of time. The only practical solution existing in the 

industry today is to shut down the process and identify the model again, resulting in huge 

financial and production losses.  

This problem of process identification can be solved by using closed loop 

techniques to identify the model. For this reason much research is being done on closed 

loop identification. According to Veres [54] identification for the purpose of controller 

design is best achieved when the process is operating in closed loop under an optimal 

controller.  The phenomenon that the operating controller helps the identification of a 
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model that is good for the controller itself is called synergy between control and 

identification. This means that not only a model can help control design but vice versa. A 

significant amount of research has been done on closed loop identification but not for 

MPC. The reasons associated with this fact are that many of the closed loop identification 

techniques proposed in the literature are based on the assumption that the existing 

controller is linear and the process is single variable whereas MPC is inherently nonlinear 

due to constraints imposed on it and the process under control is mostly multivariable. 

Secondly MPC is not a structure like other classical controllers but is an algorithm that is 

programmed to run a certain task under desired constraints. For this reason closed loop 

identification methods based on joint input-output and indirect techniques cannot be used 

for MPC as complete knowledge of the controller is not possible.  

These issues motivated this work in which the objective is to show  that the plant 

model can indeed be identified in closed loop with the MPC running (online) using direct 

identification techniques. Identification techniques based on least squares method, 

prediction error method, subspace method and neural network method are examined in 

this regard.  

  

1.4 Thesis Contributions 

In this thesis, direct closed loop identification techniques are studied for MPC. An effort 

to bring fresh perspective to this area is made. Different identification schemes for use in 

closed loop identification for MPC have been quantified.  ARX, ARMAX, state space and 

OE models are used in these schemes. A multivariable Demethanizer column process 

from  a gas plant in Saudi Arabia has been used as a generic case study. The contributions  
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can be enumerated as follows: 

 
• Model for Demethanizer column process is identified from open loop data 

collected for a month by using single variable step testing at a sampling time of 1 

minute.   

• For the purpose of collecting simulated closed loop data, a high performance MPC 

comprising of 4 Controlled Variables (CV’s) and 4 manipulated variables (MV’s) 

is designed for this complex Demethanizer column process, using the open loop 

identified model. 

• Different modeling techniques based on least squares, prediction error and, 

subspace identification methods have been tested for their accuracy and 

consistency for use in closed loop identification for MPC process. 

• Closed loop field data is collected for the months of November, December and 

January 2003 at a sampling time of 1 minute. 

• Best modeling techniques are highlighted and are tested on actual closed loop field 

data.  

• Recommendations are made on the basis of these simulations. 

• Neural networks based NNARX model is used to estimate the Demethanizer 

column process from open loop data. It is shown through simulation that this 

model retains its accuracy in a global sense, that is, it does not change and loose 

its accuracy when tested with closed loop field data.  
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1.5 Thesis Organization 

This thesis is organized as follows. 

To make the reader familiar with the MPC concepts and terminology, Chapter 2 

begins with an overview of MPC and key concepts related to it. This is followed by a 

brief description of the Demethanizer column process under study and simulation results 

for the open loop model identification are presented. MPC is then designed for the 

Demethanizer column process using this open loop identified model. Closed loop 

(simulated) data is then collected from this designed MPC process.  

Chapter 3 deals with closed loop identification from simulated data. Simulation 

results are presented and the best identification/modeling schemes are selected. 

In chapter 4, the selected schemes are tested for their performance on real field data 

from the Demethanizer column process running with MPC. 

In Chapter 5, neural networks are introduced. MFNN are used to model the 

Demethanizer column process from the open loop data. Simulation results on the 

performance of this model are presented in this chapter. 

Chapter 6 presents the conclusions and avenues for future work. 
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Chapter 2 

Design of MPC – Demethanizer Column 

2.1 Introduction 

The term MPC represents a family of model based controllers. The MPC family of 

algorithms are designed on the basis of a multi-step optimization objective. In general, 

several controllers’ moves in the future are computed but only the first control action is 

implemented, hence these controllers are also referred to as receding horizon controllers. 

The earlier versions of MPC are – the identification and command algorithm (IDCOM) 

proposed by Richalet et al. [55] in 1978 and the dynamic matrix control (DMC) algorithm 

due to Cutler and Ramaker [56] in 1980. Other well known variations of MPC include: 

model algorithmic control (MAC) by Rouhani and Mehra [57], multivariable optimal 

constrained control algorithm (MOCCA) from Sripada and Fisher [58] and generalized 

predictive control (GPC) by Clarke [59]. 

The underlying philosophy of MPC type control algorithms differs from 

conventional PID controllers in several aspects. 

• An explicit model of the process is used within the control algorithm to determine 

the control actions at every step based on the minimization of a cost function. 
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• It is not restricted to single- input, single output (SISO) processes and can be 

derived for and applied to multi-input, multi-output (MIMO) processes. 

• The family of controllers has the ability to deal with hard constraints on the inputs 

and outputs in an optimal way. This represents a significant step in terms of 

practical implementation. The computational complexity of the optimization step 

is restricted to a linear or quadratic program in the worst case. Thus these 

algorithms can be easily implemented on-line. 

• At each sampling instant several control actions are calculated, only the first 

control move is implemented. These controllers are thus known as receding 

horizon controllers. 

• In contrast to PID controllers, predictive controllers can also be derived for non-

linear and multivariable processes. The concept of predictive control can be used 

to control a wide variety of processes without the designer having to take special 

precautions. It can be used to control ‘simple’ processes as well as ‘difficult’ 

processes, such as system with large time delay, processes that are non-minimum 

phase and processes that are unstable. 

Simplicity of design combined with its ability to tackle realities such as constraints 

and interactions has helped MPC achieve its current popularity with the process industry. 

The industrial success of these algorithms spurred the growth of MPC as a research area 

in academia. 

In this chapter, an overview of the key ideas involved in the classical model 

predictive control with a tutorial flavor is presented. Section 2.2 illustrates the basic 

concepts related to MPC technology as depicted in Fig. 2.1. Control objective in its 
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commonly used forms and constraints are also high lighted with respect to their type. 

 
 
 
 
 
 
 

Figure 2.1: Model predictive control scheme 
 

2.2 The Predictive Controller Concept 

In model predictive control technique, the dynamic optimization problem is solved on-line 

at each control execution. Process inputs are computed so as to optimize future plant 

behavior over a time interval known as the prediction horizon. In the general case any 

desired objective function can be used. Plant dynamics are described by an explicit 

process model which can take, in principle, any required mathematical form. Process 

input and output constraints are included directly in the problem formulation so that future 

constraint violations are anticipated and prevented. The first input of the optimal input 

sequence is injected into the plant and the problem is solved again at the next time interval 

using updated process measurements.  

 The various implementations of MPC  preferred by the  different vendors  and users 

are identical in their main structure, but differ in details. These details are largely 

proprietary and are often critical for the success of the algorithm in an application [60].  
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The general structure of a process running with MPC is shown in Fig . 2.2. A model 

is used to predict the future plant outputs, based on the past and current values and on the 

optimal future control actions. These action are caluclated based on an optimization 

algorithm that minimizes the performance index subject to the given constraints. Further 

if there is disturbance and noise present, a disturbance model can be added, thus allowing 

the effect of the disturbance to be taken into account. 

 

 

 

 

 

 

 

 

Figure 2.2: Model predictive control system 
 

The methodology of all controllers belonging to MPC family is charcterized by the 

the receding horizon strategy as follows: 

The future outputs for a determined horizon Hp called the prediction horizon, are 

predicted at each sampling instant k which denotes the time scale. These predicted outputs  
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denoted by T
pHkykykyy )](ˆ,),2(ˆ),1(ˆ[ˆ +++=       K  are dependent on the future control 

moves given by T
pHkukukuu )]1(,),1(),([ −++=       K  which are to be calculated and 

sent to the system. A sequence of these future control moves is calculated by optimizing a 

criterion in order to keep the process as closed as possible to the reference trajectory, 

T
pHkwkwkww )](,),2(),1([ +++=      K , which can be a set point itself or a close  

approximation of it. This criterion usually takes a form of a quadratic function of the 

errors between the predicted output signal and the reference trajectory. Such a simple 

criterion function is described as follows [61]. 
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In some controllers the criterion function is augmented with some weighting factor 

terms penalizing particular components of y or u at certain future time intervals [62]. 
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where,  

    )1()()1( −+−+=−+∆ ikuikuiku    (2.3) 

Q and R are weighting matrices to penalize particular components of y and u at a 

certain future time interval, )( ikw +  is the vector of future reference values (set points), 

pH  is the prediction horizon and cH  is the control horizon (time after which the input is 

held constant). Here the weighting matrix R is often called suppression factor since 

increasing it penalizes changes in the input vector more heavily ( increasing in the value 

of R results in smaller changes in the ?u’s). This cost function was first used in DMC by 
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Cutler et al. [56] in 1980, which went on to become one of the most well known of the 

commercial predictive control products. DMC was conceived to tackle multivariable 

constrained control problems typical for the oil and chemical industries and today there is 

probably not a single major oil company in the world, where DMC is not employed in 

most new installations or revamps [63]. 

 After the future controller moves sequence is predicted, the first element of the 

sequence u(k) is sent to the process while the other  control moves are rejected. At the next 

sample, 1+k , the whole cycle of output measurement and input sequence prediction is  

repeated using the latest measured information. This is called receding horizon principle 

as shown in Fig. 2.3. Assuming that there are no disturbances and no modeling error, the 

predicted process output )1(ˆ +ky  is exactly equal to the process output.  In general, this 

controller output sequence is different from the one obtained at the previous sample.  

 

 

 

 

 

 

 

 

 

Figure 2.3: Definition of optimization problem for MPC 
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The advantage of using the receding horizon strategy is that future constraint violations 

are anticipated and prevented. In other words, the predicted output of the process is close 

to the desired process output.  

2.2.1 Constraints 

A real plant has to work with certain physical limitations e.g. a value which can handle 

only a particular range of flow rates, and market forces which result in rigid quality 

requirements on the process outputs. Usually a real process involves rate and amplitude 

constraints on the input, and may also require outputs constrains to be considered, 

    maxmin         )(       ukuu ∆≤∆≤∆  : Rate Constraints 

maxmin           )(            ukuu ≤≤  :  Amplitude Constraints 

    maxmin           )(ˆ            ykyy ≤≤  : Quality Constraints 

In practice, most of the processes are nonlinear. The most common nonlinearites are 

constraints on the input of the process, or equivalently, constraints on the output of the 

controller. Qin et al. [64] categorized these into two types for MPC technology: hard and 

soft. Hard constraints are those which should never be violated i.e. no-violation of the 

bounds are allowed at any time. Soft constraints are those for which some violation is 

allowed i.e. violations of the bounds can be allowed temperorily for the satisfaction of 

other criteria. Most often soft constraints can be taken care of by the minimization of the 

criterion function. For instance, the requirement is that the controller output must be held 

between an upper and a lower limit. This constraint may be considered as a soft constraint 

i.e. a temperory violation of this constraint is allowed if it is required, for example, to 
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drive the process output after a load change has occurred. Then the weighting factor in 

Eq. 2.2 can be selected such that the soft constraint is satisfied most of the time. 

In constrast to soft constraints, hard constraints cannot be handled by minimization 

of Eq. 2.2 only. They must be taken into account explicitly when minimizing the criterion 

function. This results in constrained minimization problem.  

 

2.2.2 Controller Tuning 

The prediction and control horizons (Hp and Hc) and weights (Q and R) in the criterion of 

Eq. 2.3 effect the bahaviour of the closed- loop combination of the plant and the predictive 

controller. Usually these are referred to as the adjusting parameters and are in effect 

‘tuning parameters’ which are adjusted to give satisfactory dynamic performance. 

Increasing the weights R on the control moves relative to the weights Q on the tracking 

errors has the effect of reducing the control activity. Increasing theses weights indefinitely 

will reduce the control activity to zero, which ‘switches off’ the feedback action. If the 

plant is stable, this will result in a stable closed loop system, but not otherwise [61]. The 

penalty of increasing the control weigthing will be slow response to disturbances, since 

only small control actions will result. On the otherhand, some processes may require no 

penalty on the control moves i.e. R = 0. 

 In a similar manner, decreasing the weights Q mean that the tracking error in the 

near future is less impotant than in the far future, yielding less active control moves. This 

choice is usually motivated by the fact that a real process cannot track a set point change 

in, for example, one sample. As a result the tracking error can be quite large in the first 

few samples (near future). By not including these large tracking errors in the optimization 
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criteria, the controller will not attempt to make them smaller. Hence smooth control is 

achieved. When Q = 1 the tracking error is equally weighted over the prediction horizon.   

 The selection of of Hp and Hc is a compromise between the robustness and 

performance of the process. Increasing  Hp improves the robustness of the process at the 

cost of slower process response to set point changes. Similarly incresing  Hc results in 

reduced process robustness but better performance. 

 

2.3 De methanizer Column 

This Demethanizer column is a part of a NGL (natural gas liquids) gas plant in Saudi 

Arabia and consists of 19 Koch valve trays. Its primary function is to remove light 

hydrocarbons out of the feed gas, condensed in the three chills down trains. There are two 

pumps at the bottom of the column. Both these pumps have  three stages associated with 

them. In the first stage they take the suction from the Demethanizer sump at a temperature 

between 25 and 30 oF.   In the second stage they increase the liquid pressure from 160 to 

300 psig and in the last stage they send it to the NGL surge sphere in the product surge 

unit. Additionally there are two Demethanizer reboiler pumps. Their primary function is 

to take the suction from tray 1 at a temperature between –15 and –10 oF, pump this  liquid 

around the Demethanizer reboiler system and return it back to the column below tray 1.  

The Demethanizer column has four controlled variables (outputs) and four 

manipulated variables (inputs). In addition to these, there are two measured disturbances 

associated with this column. They are a follows:   

 Output variables (CV’s): 

   - Bottom C1 over C2 
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u1  
 
 

Demathanizer Column 
u2 

u3 

u4 

y2 

y1 

y3 

y4 

d1 d2 

   - LP residue gas pressure Setpoint  

   - Demethanizer pressure differential 

   - Demethanizer Tray 6 temperature 

  Input variables (MV’s): 

   - LP residue gas valve opening  

   - Jump-Over valve opening 

   - Trim re-boiler valve opening 

 - Tray 6 bypass valve opening 

 Disturbance variables: 

   - Ambient temperature 

   - Feed compressor discharge pressure 

This process can be explained by Fig. 2.4.  Here the controlled variables                 

are represented by 1y  (Output-1), 2y  (Output-2), 3y  (Output-3), and 4y  (Output-4).     

The  manipulated  variables  are  represented  by  1u  (Input-1), 2u  (Input-2), 3u  (Input-3),  

 

 

 
 

 

  

 

 

Figure 2.4: Block diagram representation of Demethanizer Column 
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4u  (Input-4) and measure disturbance variables are represented by 1d  (Disturbance-1) and 

2d  (Disturbance-2). 

2.4 Open Loop System Identification 

System identification is the task of constructing mathematical models of dynamical 

systems from measured data. It involves four basic steps namely experiment design, 

selection of a suitable model structure, parameter estimation and model validation. 

Experiment design involves issues like choice of which signals to measure, choice of 

sampling time, choice of excitation signals. Once these issues have been settled, the actual 

identification experiment can be performed and process data be collected. The next step is 

to decide on a suitable model structure. This is a crucial step in the identification process 

and to obtain a good and useful model, this step must be done with care. Once a suitable 

model structure and measured data is obtained, the actual estimation of the model 

parameters is performed. Before the model is finalized, it has to pass some validation test. 

Model validation can loosely be said to deal with the issue of whether the identified 

model is also “good enough” for its intended use. Common validation procedure is so 

called, cross-validation, where the model is simulated using “fresh” data and the output  is 

compared to the measured output. If the first model fails to pass the validation tests, some, 

or all, of the above steps have to be iterated until a model that passes the validations tests 

is found. 

For the Demethanizer column, one month open loop data is collected at a sampling 

time of 1 minute using step testing. The step tests are typical in MPC projects. They 
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generate good data with good enough signal- to-noise ratio but do not disturb the actual 

process operation. A total of 9434  data samples are gathered for the fours inputs, four 

outputs and two measured disturbances. Different identification methods such as least 

squares, subspace, prediction error etc. are employed to identify a 6-input-4-output model 

(including the disturbance model) for this column. Among these the subspace method is 

found to give the best possible identified model and is therefore selected. The simulation 

results for this step are presented in the following subsection. 

2.4.1 Subspace Identification Method 

In the category of state space model identification schemes, the most commonly used 

algorithm is N4SID short for Numerical algorithm for Subspace State Space System 

Identification.  It was proposed by Peter Van Overschee and De Moor [65] in 1994. It is 

can be summarized as follows:  

Let m
ku ℜ∈ , l

ky ℜ∈  be the observed input and output generated by the unknown 

system described by Eqs. 2.4 and 2.5. 

    kkkk wBuAxx ++=+   1     (2.4) 

kkkk vDuxy ++= C       (2.5) 

or in innovation form 

    kkkk KeBuAxx    ++=+1     (2.6) 

    kkkk eDuCxy ++=       (2.7)  

where the vectors m
ku ℜ∈  and l

ky ℜ∈  are the measurements at time instant k of m 

inputs and l outputs of the process respectively. The vector kx  is the state vector of the 
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process at discrete time instant k, 1   xl
kv ℜ∈  is called the measurement noise and 

1   xn
kw ℜ∈ is called the process noise. K is the Kalman gain. 

Given a large number of measurements of the inputs m ℜ∈ku  and outputs l
ky ℜ∈  

generated by the unknown system of Eqs. 2.4 and 2.5, the problem can then be defined as 

of simply determining the order n of the system, the system matrices nxnA    ℜ∈ , 

mxnB    ℜ∈ , lxnC    ℜ∈ , mxlD    ℜ∈  up to  within a similarity transformation  and  if required 

K,  without  any  prior  knowledge of  the  structure of  the system. Fig. 2.5 gives a block 

representation of this algorithm. The left hand side shows the subspace method approach 

where the (Kalman filter) states are first estimated directly from input and output data, 

then the system matrices are obtained. The right hand side shows the classical approach in 

which the system matrices are found first and then the estimate of the states. The usual 

steps involved in N4SID algorithm are described in Appendix B of this thesis. 

 
 

 
 
 

Figure 2.5: Numerical algorithm for subspace state space system identification 

Input-Output data  
uk , yk 

Kalman states System matrices 

System matrices Kalman states 

Orthogonal/Oblique 
projections 

Classical 
Identification 

Least Squares Kalman filter 
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2.4.2 Simulation Results 

The state space model identified using the N4SID (subspace) algorithm is given in Eqs. 

2.8 - 2.11 for the four outputs respectively. The identified model shall be used as 

benchmark through out this thesis.  For the purpose of identification the data is first pre-

filtered to remove bad data and outliers. 70% of the data samples are used for 

identification and the remaining 30% are used for validation. The goal of model validation 

is to ascertain whether the identified model is good enough to represent the process. The 

simulation results are shown in Figs. 2.6 - 2.9 in which the dotted line is the model 

response and the solid line is the actual response. The results show a very good 

performance of the identified open loop model (dashed), considering the presence of high 

noise and nonlinearity in the actual data (solid). The model delivers almost accurate 

results for the first two outputs. The third and fourth identified outputs exhibit a small 

error due to the presence of high disturbance and noise in the original data. However, the 

models obtained for the four outputs are by far the best ones that can be achieved by state 

space modeling technique. This can be seen from the corresponding distribution of 

prediction errors are shown in Figs. 2.10 - 2.13. These show that the errors are mostly 

between ± 0.4 for all outputs. The step responses for the four outputs corresponding to the 

four inputs respectively are shown in Figs. 2.11 - 2.26, for 700 sampling instants. It is 

noticed that the settling time for the process is quite large. 

 As said before, the quality of the state space model identified by using subspace 

methods is exceptionally good and is the best amongst all the identification methods, the 

results of which are irrelevant to this work. This model is from here on referred to as open 

loop  process  model  and  will  be  used  as  a  benchmark  in  the  analysis  of closed loop  
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identification techniques in the next chapters.     
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Figure 2.6: Open loop identified (dashed) and actual (solid) Output-1  
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Figure 2.7: Open loop identified (dashed) and actual (solid) Output-2 
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Figure 2.8: Open loop identified (dashed) and actual (solid) Output-3 
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Figure 2.9: Open loop identified (dashed) and actual (solid) Output-4 
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Figure 2.10: Prediction Error Distribution for Output-1 
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Figure 2.11: Prediction Error Distribution for Output-2 
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Figure 2.12: Prediction Error Distribution for Output-3 
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Figure 2.13: Prediction Error Distribution for Output-4 
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Figure 2.14: Unit step response of     
Output-1 from Input-1 

 
 
 

Figure 2.15: Unit step response of   
Output-1 from Input-2 
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Figure 2.16: Unit step response of     
Output-1 from Input-3 

Figure 2.17: Unit step response of   
Output-1 from Input-4 
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Figure 2.18: Unit step response of      
Output-2 from Input-1 

 
 
 

Figure 2.19: Unit step response of       
Output-2 from Input-2 

 
 
 

0 100 200 300 400 500 600 700
-0.045

-0.04

-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0
Step Reponse

Samples

y2 from u3

0 100 200 300 400 500 600 700
0

0.02

0.04

0.06

0.08

0.1

0.12

Step Reponse

Samples

y2 from u4

Figure 2.20: Unit step response of    
Output-2 from Input-3 

Figure 2.21: Unit step response of    
Output-2 from Input-4 
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Figure 2.22: Unit step response of       
Output-3 from Input-1 

 
 
 

Figure 2.23: Unit step response of       
Output-3 from Input-2 
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Figure 2.24: Unit step response of    
Output-3 from Input-3 

Figure 2.25: Unit step response of    
Output-3 from Input-4 
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Figure 2.26: Unit step response of      
Output-4 from Input-1 

 
 
 

Figure 2.27: Unit step response of       
Output-4 from Input-2 
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Figure 2.28: Unit step response of    
Output-4 from Input-3 

Figure 2.29: Unit step response of     
Output-4 from Input-4 
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2.5 Design of MPC 

In this section, MIMO MPC is designed for the Demethanizer column. The following 

criterion function is minimized 

   ∑∑
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In chapter 2 this cost function has already been discussed. In the first step, unconstrained 

MPC is designed. This is done to ensure that the designed scheme is stable and robust. 

The following subsections detail the steps followed in this regard. The most important 

thing in MPC design is the selection of the tuning parameters as discussed in section 

2.2.2.  

2.5.1 Set Points 

The set points are chosen as 2.02.0 1     ≤≤− y  for bottoms 21 / CC , 09.009.0 2     ≤≤− y  for 

LP residue gas valve opening, 09.009.0 3     ≤≤− y  for Demethanizer pressure differential 

and 13.013.0 3     ≤≤− y  for tray 6 temperature.   

2.5.2 Prediction and Control Horizons 

The prediction and control horizons are tuning parameters for the Demethanizer column 

process running with MPC. The selected prediction and control horizons are 5=pH  

and 4=cH  respectively.  Selection of these parameters for the horizons generates a very 

good and robust performing MPC scheme in which the controller meets all the 

requirements (set points) as far as the tracking performance is concerned. It is found that 
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varying the values of Hc results in poor performance of the controller. Similarly increasing 

Hp  results in reduce tracking performance of the controller.  

2.5.3 Selection of weighting matrices Q and R 

The weighting matrices Q and R in Eq. 2.2 are chosen as 

   4IQ        =    and   4OR        =  

where 
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This means that the weight on the tracking error is 1 resulting in equally weighted 

tracking error over the prediction horizon. Selection of R to be zero means that there is no 

weight on the control moves and the process does not rquire certain components of the 

controller output to be enhanced or attenuated.   

Figs. 2.30 - 2.33 show the unconstrained tracking performance of the process. MPC 

performs very well and the process is stable. Optimal inputs generated by the designed 

MPC for the Demethanizer column process are shown in Figs. 2.34 - 2.37. Large peaks 

are observed at these inputs which show that the controller reacts strongly to the set point 

changes. Here no (amplitude) constraints have been added on the control moves. The 

resulting controller is stable and meets the requirement of the process (set points). 

However, in the next section this process, running with MPC, will be subject to different 

process constraints and the effect of measured disturbances will be taken into account. 
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Figure 2.30: Tracking response of MPC to set point change (Output-1) 
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Figure 2.31: Tracking response of MPC to set point change (Output-2) 
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Figure 2.32: Tracking response of MPC to set point change (Output-3) 
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Figure 2.33: Tracking response of MPC to set point change (Output-4) 
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Figure 2.34: Optimal inputs generated by the MPC (Input-1) 
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Figure 2.35: Optimal inputs generated by the MPC (Input-2) 
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Figure 2.36: Optimal inputs generated by the MPC (Input-3) 
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Figure 2.37: Optimal inputs generated by the MPC (Input-4) 
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2.5.4 Case 1 – With Amplitude Constraints, Noise and Measured 
Disturbances 

The designed MPC is now subjected to input amplitude constraints, noise and measured 

disturbances. Disturbances cannot be ignored in practice. In order to take the disturbances 

into account, they have to be modeled first. This is already done in Eqs. 2.8 - 2.11. These 

disturbances are often referred to as deterministic disturbances. In addition to 

deterministic disturbances there are also stochastic disturbances present in a process. 

These are discrete white noise sequence with zero mean and a certain standard 

deviationσ .    

MPC is penalized with the following constraints on the inputs.  

      17617.0 1                    ≤≤− u     (2.13) 

             5411.05.0 2                              ≤≤− u    (2.14) 

         238.1625.1 3                              ≤≤− u    (2.15) 

            8.09.0 4                              ≤≤− u     (2.16) 

These constraints are a requirement of the process itself. The controller inputs are not 

required to exceed these values. With the addition of these constraints the predictive 

controller must anticipate violations and correct for them in a systematic way such that no 

violations are allowed while keeping the operation closed to these constraints.  

The standard deviations of the two measured disturbances (d1 and d2) are selected as 

0.14. This is a high value considering the process dynamics, the signal to noise ratio. The 

standard deviation of the white noise sequence is selected as 0.01 beyond which the noise 

is too high for the process. The responses of the MPC process are shown in Figs. 2.38 – 

2.41. The optimal inputs are shown in Figs. 2.42 – 2.45 where the constraints are shown 
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by dotted lines. It can be seen that no violation of the bounds is allowed at any time. The 

controller takes the constraints into account and allows the process to operate closed to 

these physical limitations.  In addition to this, it is observed that the high value of 

disturbance causes perturbations in all the outputs, especially in the case of outputs 2 and 

4. The effect of noise is also visible as it is forcing the responses to deviate slightly from 

the set points. However, the performance of MPC under constraints is acceptable for the 

purpose of this thesis.  This closed loop data for the four inputs and four outputs process is 

collected as ‘case 1’ and will be used later in Chapter 3 where closed loop identification is 

performed.  
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Figure 2.38: Case 1 - Response of MPC  (Output-1) 
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Figure 2.39: Case 1 - Response of MPC (Output-2) 
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Figure 2.40: Case 1 - Response of MPC (Output-3) 
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Figure 2.41: Case 1 - Response of MPC (Output-4) 
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Figure 2.42: Case 1 - Optimal inputs generated by the MPC (Input-1) 
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Figure 2.43: Case 1 - Optimal inputs generated by the MPC (Input-2) 
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Figure 2.44: Case 1 - Optimal inputs generated by the MPC (Input-3) 
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Figure 2.45: Case 1 - Optimal inputs generated by the MPC (Input-4) 
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2.5.5 Case 2 – With Amplitude and Rate Constraints, Noise and 
Measured Disturbances 

In this subsection, rate constraints are added to the designed MPC. Recall, that rate 

constraints refer to the limitation of MPC output per sample between two values. In other 

words, large changes in input moves are avoided to limit large changes at the output of the 

process. The following rate constraints are added to the designed process. 

    6.06.0 1 +≤∆≤−                 u     (2.17) 

    6.06.0 2 +≤∆≤−                 u     (2.18) 

    6.06.0 2 +≤∆≤−                 u     (2.19) 

    6.06.0 2 +≤∆≤−                 u     (2.20) 

It has already been discussed that in the presence of amplitude constraints, any violation 

may lead to a performance degradation of the system. In a similar manner, the presence of 

rate constraints may lead to an unstable system [61].  It has been observed that the MPC 

works very well under amplitude constraints. Now,  the effect of rate constraint is 

ascertained. In these simulations, the high value of the two disturbances is reduced a little.  

In the previous subsection, the disturbance values were kept very high ( 14.0  =σ ) 

depending on the signal to noise ratio. In this design, the standard deviations of the two 

disturbances d1 and d2 are reduced to 0.08. The four outputs of the process are shown in 

Figs. 2.46 – 2.49. The outputs show improved tracking behavior with reduced 

disturbances. The deviation of output 2 from the set point is reduced. The affect of rate 

constraints is evident from the optimal inputs shown in Figs. 2.50 – 2.53. The noise level 

has not been changed in this design. 
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Figure 2.46: Case 2 - Tracking response of MPC (Output-1) 
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Figure 2.47: Case 2 - Tracking response of MPC (Output-2) 
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Figure 2.48: Case 2 - Tracking response of MPC (Output-3) 
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Figure 2.49: Case 2 - Tracking response of MPC (Output-4) 
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Figure 2.50: Case 2 - Optimal inputs generated by the MPC (input-1) 
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Figure 2.51: Case 2 - Optimal inputs generated by the MPC (input-2) 
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Figure 2.52: Case 2 - Optimal inputs generated by the MPC (input-3) 
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Figure 2.53: Case 2 - Optimal inputs generated by the MPC (input-4) 
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2.5.6 Case 3 – With Amplitude Constraints, Noise, Measured 
Disturbances and Plant Model Mismatch 

According to Gracia and Morari [66], an important property of model predictive 

controllers is that no stability problems exist under perfect model conditions, even in the 

face of constraints on the manipulated variables. However, if the model is not the same as 

the plant, in particular if the steady state gain of the model is incorrect, then the plant 

output will reach an incorrect final value. This means that in the face of significant model 

inaccuracies, the control system generally is unable to satisfy all of the true performance 

criteria specified for the process 

To observe this phenomenon, MPC designed earlier using the notion that an exact 

plant-model is available, is now subjected to this reality of plant-model mismatch. All the 

parameters of the original process model in Eqs. 2.9 – 2.11 are altered to a percentage of 

6. This change is large considering the highly sensitive nature of the process. A higher 

value than this causes the performance of MPC to degrade drastically and the process 

becomes unstable. 

The amplitude constraints remain the same but the input rate constraints are not 

applied for this case. The disturbances are further reduced in this case, depending on the 

signal to nose ratio. The standard deviations of the two measured disturbances are selected 

as 0.03. The standard deviation of the noise is kept the same to 0.01. The response of the 

designed MPC is depicted in Figs. 2.54 - 2.57.  The optimal inputs are shown in Figs. 2.58 

– 2.61. The inputs are not allowed to violate the constraints imposed on them. The results 

show degradation in the performance of MPC and high oscillations are observed at the 

outputs. MPC is no longer able to exhibit robust tracking ability and is slow in meeting 

the set points changes. This is in fact the main motivation of this thesis. The plant model 
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mismatch is the main problem in any MPC design scheme. Practical solution is to shut 

down the controller and model the actual open loop plant again. For the case of closed 

loop identification it is however, a unique opportunity to see if the  actual open loop 

process model can be identified by using the closed loop data from such a worse case 

scenario. The input and output data from this plant model mismatch MPC scheme is 

collected as ‘case 3’ and will be used in the analysis of closed loop identification in 

Chapter 3.  
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Figure 2.54: Case 3 - Tracking response of MPC (Output-1) 
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Figure 2.55: Case 3 - Tracking response of MPC (Output-2) 
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Figure 2.56: Case 3 - Tracking response of MPC (Output-3) 
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Figure 2.57: Case 3 - Tracking response of MPC (Output-4) 
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Figure 2.58: Case 3 - Optimal inputs generated by the MPC (Input-1) 
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Figure 2.59: Case 3 - Optimal inputs generated by the MPC (Input-2) 
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Figure 2.60: Case 3 - Optimal inputs generated by the MPC (Input-3) 
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Figure 2.61: Case 3 - Optimal inputs generated by the MPC (Input-4) 
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2.6 Chapter Summary 

In this chapter, subspace identification method is used to identify a state space process 

model for the Demethanizer column from open loop data collected from the actual 

process. It is found that the state space model gives accurate results and shows a very 

good performance when compared with the actual data. The errors remain mostly between 

± 0.4.  

The identified state space process model is then used to design MPC for three cases. 

In the first design, amplitude constraints, disturbances and noise are taken into account. 

For the second design, rate constraints are also added to the process; and in the last 

design, plant-model mismatch is taken into account. From all these simulations closed 

loop data, which is from here on referred to as ‘simulated MPC closed loop data’, is 

collected. 

The goal of the next chapter is to study the feasibility of using closed loop data for 

identifying the open loop process model. This will offer a number of practical advantages 

such as better models, validation, controller maintenance and most of all no need for open 

loop identification which involves MPC controller shutdown. In addition to this, open 

loop identification schemes will be brought forward that give good modeling results from 

the simulated closed loop MPC data obtained from simulations in this chapter. 
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Chapter 3 

Closed Loop Identification - MPC 

3.1 Introduction 

As mentioned in chapter 1, closed loop experiments are natural when the intended model 

use is control design. The three main categories of all closed loop identification methods 

are direct approach, indirect approach and  joint input-output approach. As per Ljung and 

Forsell [22], the direct approach gives consistency and optimal accuracy, and therefore, 

the direct approach should be regarded as the first choice of methods for closed loop 

identification.  

In the indirect approach, the main focus is on correct modeling of the closed loop 

system and consistency can be obtained even for incorrect noise models. This approach is 

more complex than the direct method. For MPC, this method is redundant and cannot be 

used as it requires complete knowledge of the controller as a structure. Unlike PID and 

other controller design techniques, MPC is an algorithm and is not expressed in terms of 

some linear relationship.  

The joint input-output approach is an alternate approach to both direct and indirect 

approaches. In this approach, no explicit knowledge of the controller is required except 
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that it must be known or assumed to be of a certain (linear) structure. This assumption 

again is not possible in the case of MPC. 

In the following sections, direct identification approach is used and a benchmark of 

the performance of different parametric identification techniques is devised. In summary, 

four different model structures are used in all identification methods. They are: 

• ARX 

• ARMAX 

• OE 

• State space 

3.2 Model Structures and Estimation Methods 

In this section, some notations and model structures used in this thesis are introduced. 

Given a multivariable process with m manipulated variables (or inputs) and p controlled 

variables (or outputs) the data sequence collected from an identification test is 

{ })(),.......3(),2(),1(),(),.......3(),2(),1( Nyy yy Nuu u u   Z N =    (3.1) 

where u(t) is m-dimensional input vector (MVs), y(t) is p-dimensional output vector 

(CVs) and N is the number of samples or data points. It is assumed that the data is 

generated by the following linear process: 

    )()()()( 11 te)H(qtuqGty      −− +=    (3.2) 

Here q-1 is the unit time delay operator, )( 1−qG  is the process transfer function and 

)H(q 1−  is the noise model and e(t) is a  p-dimensional white noise vector. The model to 

be identified is the same structure as in Eq. 3.2.  
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    )()(ˆ)()(ˆ)( 11 te qH  tu qG ty −− +=    (3.3) 

Depending on how to parameterize the model in Eq. 3.3, different parameter 

estimation methods studied in literature can be derived. 

3.2.1 ARX (AutoRegressive with eXternal input) Model 

The ARX model structure corresponds to the choice 

)(
)(

)( 1

1
1

−

−
−− =

qA
qB

qqG d    and 
)(

1
)(

1
1

−
− =

qA
qH    

where, ∑
=

−− +=
an

k

k
k qaqA

1

1 1)(     and ∑
=

−− =
bn

k
k qbqB

0k

  )( 1  are polynomial matrices. d is the 

delay of the system. This model can be expressed as 

    )()()()()( 11 tetuqBqtyqA d       += −−−    (3.4) 

The coefficient of polynomials A and B are estimated by minimizing the sum of the 

squared equation error ε(t) defined as the difference between the actual and estimated 

outputs. 

θϕθε    -     )()|(ˆ)()( ty(t)ty- tyt T==    (3.5) 

where θ is the parameter vector and ϕ is the regression vector, which contains all the past 

inputs and past outputs. They are defined as 

T
nn

T
ba

ba
bbaa

ndtutuntytyt

][

)]()1()()1([)(

01 LL

LL

        

    

−−=

−−−−−=

θ

ϕ
  (3.6) 

This estimation method is called least squares and is explained in Appendix A (A.1).  
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3.2.2 ARMAX (AutoRegressive Moving Average with eXternal input)  
 Model 

This model structure has a more general structure than the ARX: 

)(
)(

)( 1

1
1

−

−
−− =

qA
qB

qqG d    and 
)(
)(

)(
1

1
1

−

−
− =

qA
qC

qH    

Here ∑
=

−− +=
cn

k

k
k qcqC

1

1 1)(     is a polynomial, the presence of which means that noise term is 

explicitly modeled. This model can be expressed as 

    )()()()()()( 111 teqCtuqBqtyqA d −−−− +=         (3.7) 

The coefficients of the polynomials A, B and C are estimated by minimizing the sum of 

the squared prediction error )(tε  which is defined as in Eq. 3.8. 

θθϕθε    -     ),()|(ˆ)()( ty(t)ty- tyt T==    (3.8) 

where θ is the parameter vector and ϕ is the regression vector defined as 

T
nnn

T
cba

cba
ccbbaa

nttndtutuntytyt

][

)],(),()()1()()1([)(

101 LLL

LLL

          

      

−−=

−−−−−−=

θ

θεθεϕ
 (3.9) 

The regression vector depends on the model parameters and is no longer linear as in the 

case of ARX. This makes the estimation of model parameters more complicated. For this 

case, the parameter estimation technique is referred to as Prediction Error Method (PEM) 

and is explained in Appendix A (A.2) of this thesis . 
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3.2.3 OE (Output Error) Model 

The output error (or parallel) model structure is used in the case when the process output 

is disturbed by only white measurement noise. It corresponds to the following choice: 

)(
)(

)(
1

1
1

−

−
−− =

qF
qB

qqG d     and 1)( 1   =−qH  

This model is expressed as 

    )()()(
1

1

tetu
)F(q
)B(q

qty
-

-
d       += −     (3.10) 

where ∑
=

−− +=
fn

k

k
kqFqF

1

1 1)(     is a polynomial matrix. As in the case of ARMAX models, 

the polynomial F and B are estimated by using Prediction error Method. The regression 

vector ϕ and parameter vector θ are defined as 

T
nn

T
ff

bf
bbff

ndtutuntytyt
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−−=
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θ

ϕ
 (3.11) 

3.2.4 State Space model 

State  space  model  of  a  multivariable  process  is  described  by  the following  set  of 

difference equations: 

    kkkk wBuAxx ++=+   1  

    kkkk vDuxy ++= C       (3.12) 

where, kw  and kv  are zero mean, white noise sequences. The vectors m
ku ℜ∈  and 
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l
ky ℜ∈  are the measurements at time instant k of m inputs and l outputs of the process 

respectively. The vector kx  is the state vector of the process at discrete time instant k, 

1   xl
kv ℜ∈  is called the measurement noise and 1   xn

kw ℜ∈ is called the process noise. The 

matrices A, B, C and D are estimated by using N4SID (numerical algorithm for subspace 

state space identification) method. A review of this method is given in Appendix B of this 

thesis. 

In essence, a model of a dynamic system is a rule which makes it possible to 

construct some sort of an inference (relationship) based on observations of input-output 

data. ARX, ARMAX, OE and State space models are called parametric models and are 

shown to be more compact than nonparametric models such as FIR models [36].  

3.3 Closed Loop Identification 

In chapter 2, MPC was designed and simulated subject to various levels of external 

disturbances, noise and constraints. Closed loop input-output data was collected for three 

cases. It will be the objective of this section to bring forward identification schemes that 

will work with closed loop data. Direct Identification approach is used for closed loop 

identification. Recall that in the direct identification approach, the method is applied 

directly to measured input-output (u, y) data and no assumptions whatsoever are made on 

how the data was generated. Hence only the input and output data of the process need to 

be collected. This has already been done in Chapter 2. Using these data samples, closed 

loop models are identified and compared with the open loop state space process model 

used in the MPC design. The purpose is to observe which modeling technique, if any, will 

yield the best possible results by recovering the open loop process model from given 
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closed loop data collected under feedback, which is contaminated with noise and has 

strong correlation between the input and process disturbances. Recommendations are 

made on the basis of these simulations.   

3.3.1 Case 1 – Closed loop Identification 

In the analysis of closed loop identification methods for use on MPC scheme, simulated 

input-output data is collected as in Figs. 2.38 - 2.41, which illustrate case 1 where the 

MPC is running under high disturbances d1 and d2 with standard deviation of 0.14. The 

standard deviation of noise is 0.01. The amplitude constraints are specified in Eqs. 2.18 - 

2.21. The performance of ARX, ARMAX, OE and state space estimation and modeling 

schemes are compared and discussed respectively for this case in the following 

subsections. 

3.3.1.1 Performance of ARX model 

ARX modeling scheme is used to identify the open loop process model using the 

simulated closed loop data. Least squares method is utilized to estimate the unknown 

parameters. It is pertinent to mention here that modeling multivariable systems is often 

challenging. In particular, system with several outputs such as the Demathanizer column 

in this thesis is difficult to model [36].  A basic reason given in open loop identification is 

that the coupling between several inputs and outputs often lead to more complex models. 

Basically it is essentially just a matter of choosing the model order. It is even more 

difficult to model from closed loop data due to the presence of feedback. Recovering 

information about the original open loop process model from such a data (with strong 

correlation between the inputs and noise) is not simple.  
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The model orders (na) of the process outputs are selected as 2, 3, 2 and 2 

respectively and the unknown model parameters are identified. For comparison, the step 

responses of the identified closed loop model and open loop model are plotted with each 

other in Figs. 3.1 - 3.16. The solid line indicates the current open loop model and the 

dashed line corresponds to the direct identified closed loop ARX model. There is a little 

or no mismatch for the first, second and fourth process outputs but the model shows a 

slight bias in process output three because of the high disturbance (nonlinearity) 

associated with this output. However, from a theoretical point of view it can be concluded 

that the current open loop model does not contain enough dynamics and there are higher 

order dynamics that need to be taken into account, which are represented in closed loop 

model. The results indicate that this simple conventional approach is very effective in 

identifying the open loop process model with MPC closed loop data. Good steady state 

gain fit is achieved to a large extent. The parameters of the identified model are given in 

Eqs. 3.13 - 3.16. It is clearly seen that the process and the noise/disturbance model have 

the same poles which is a characteristic of ARX modeling scheme.  
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Figure 3.1 : Case 1- Step response of 
Output-1 from Input-1 (ARX) 

Figure 3.2 : Case 1- Step response of 
Output-1 from Input-2 (ARX) 
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Figure 3.3 : Case 1- Step response of 
Output-1 from Input-3 (ARX) 

Figure 3.4 : Case 1- Step response of 
Output-1 from Input-4 (ARX) 
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Figure 3.5 : Case 1- Step response of 
Output-2 from Input-1 (ARX) 

 
 
 

Figure 3.6 : Case 1- Step response of 
Output-2 from Input-2 (ARX) 
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Figure 3.7 : Case 1- Step response of 
Output-2 from Input-3 (ARX) 

Figure 3.8 : Case 1- Step response of 
Output-2 from Input-4 (ARX) 
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Figure 3.9 : Case 1- Step response of 
Output-3 from Input-1 (ARX) 

 
 
 

Figure 3.10 : Case 1- Step response of 
Output-3 from Input-2 (ARX) 
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Figure 3.11 : Case 1- Step response of 
Output-3 from Input-3 (ARX) 

Figure 3.12 : Case 1- Step response of 
Output-3  from Input-4 (ARX) 
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Figure 3.13 : Case 1- Step response of 
Output-4 from Input-1 (ARX) 

 
 
 

Figure 3.14 : Case 1- Step Response of 
Output-4 from Input-2  (ARX) 
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Figure 3.15 : Case 1- Step response of 
Output-4 from Input-3 (ARX) 

Figure 3.16 : Case 1- Step response of 
Output-4 from Input-4 (ARX) 
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3.3.1.2 Performance of ARM AX model 

ARMAX models are another type of parametric models. They are sometimes referred in 

the literature as prediction error ARMAX models. The similarity between ARMAX and 

ARX models is that the noise and input are subjected to the same dynamics (same poles). 

This is reasonable if the dominating disturbances enter early in the process (together with 

the input). This is also a precondition for obtaining a stable model [36]. The difference 

between ARX and ARMAX models is that the noise in ARMAX modeling scheme is 

modeled explicitly. Also the numerical complexity is higher for ARMAX scheme because 

the prediction error involves complex optimization routines.  

This modeling scheme is now used for estimating a closed loop model from the 

simulated MPC closed loop data. The parameters identified are given in Eqs. 3.17 - 3.20. 

The orders (na) of the process outputs are selected as 4, 3, 4 and 4 respectively. As in the 

case of ARX models, the step responses of both open loop process model and the 

identified closed loop ARMAX models are plotted in Figs. 3.17 - 3.32. The solid line 

indicates the current open loop process model and the dashed line corresponds to the 

direct identified closed loop AMARX model.  The results show the excellent performance 

of the identified closed loop ARMAX model. There is non-trivial bias for the first output 

as is seen in Figs. 3.17 – 3.20. The results compared to ARX modeling scheme are much 

better as the steady state gain is a perfect fit.  For output 2 the identification results are 

very accurate and again good steady state fit is achieved with no bias. However, as 

compared to ARX modeling scheme output 3 in Figs. 3.25- 3.28 has no bias (error) at all 

and the model manages to capture the steady state part much better. This can be attributed 

to the fact that in ARMAX modeling scheme noise is being explicitly modeled resulting 
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in better open loop process model. Similarly for output 4 in Figs. 3.29 – 3.32, the results 

are very good and the open loop dynamics are recovered to a full extent. Thus, this direct 

identification based ARMAX modeling scheme is able to recover successfully the open 

loop process model from given closed loop data and captures the steady state part of the 

responses accurately. 
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Figure 3.17 : Case 1- Step response of 
Output-1 from Input-1 (ARMAX) 

 
 
 

Figure 3.18 : Case 1- Step response of 
Output-1 from Input-2 (ARMAX) 
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Figure 3.19 : Case 1- Step response of 
Output-1 from Input-3 (ARMAX) 

Figure 3.20 : Case 1- Step response of 
Output-1 from Input-4 (ARMAX) 
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Figure 3.21 : Case 1- Step response of 
Output-2 from Input-1 (ARMAX) 

 
 
 

Figure 3.22 : Case 1- Step response of 
Output-2 from Input-2 (ARMAX) 
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Figure 3.23 : Case 1- Step response of 
Output-2 from Input-3 (ARMAX) 

Figure 3.24 : Case 1- Step response of 
Output-2 from Input-4 (ARMAX) 
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Figure 3.25 : Case 1-  Step response of 
Output-3 from Input-1 (ARMAX) 

 
 
 

Figure 3.26 : Case 1- Step response of 
Output-3 from Input-2 (ARMAX) 
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Figure 3.27 : Case 1- Step response of 
Output-3 from Input-3 (ARMAX) 

Figure 3.28 : Case 1- Step response of 
Output-3 from Input-4 (ARMAX) 
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Figure 3.29 : Case 1- Step response of 
Output-4 from Input-1 (ARMAX) 

 
 
 

Figure 3.30 : Case 1- Step response of 
Output-4 from Input-2 (ARMAX) 
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Figure 3.31 : Case 1- Step response of 
Output-4 from Input-3 (ARMAX) 

Figure 3.32 : Case 1- Step response of 
Output-4 from Input-4 (ARMAX) 
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3.3.1.3 Performance of OE model 

The output error models are a special case in which the properties of the disturbance 

signals are not modeled, and the noise model is chosen fixed as 1. These are used in the 

case when the purpose is to model the system dynamics only. The noise source e(t) in this 

model is regarded as the difference (error) between the actual output and noise free 

output. They have been commonly used in literature and are considered a good option in 

open loop identification schemes, as they produce the most compact (minimum 

parameters) representation of a plant.  

This modeling technique is now used to identify the open loop process model from 

the closed loop data obtained from simulation. The orders (na) of the process outputs are 

2, 3, 3, and 3 respectively. The step responses of the identified closed loop OE model 

(dashed line) are compared with that of the original open loop demathanizer model (solid 

line) used in simulations of chapter 2. Figs. 3.33 - 3.36 show the step responses of process 

output 1. The results show large bias and high mismatch between the two models. Only 

the step response from input 2 is matched. The other dynamics related to inputs 1, 3 and 4 

are not captured at all. Figs. 3.37 – 3.40 show the step responses of the process output 2. 

Again the dynamics related to input 1 and 2 are not modeled accurately. However, the 

steady state gain fit is captured for input 3 and 4. Figs. 3.41 -3.44 give the step responses 

of output 3. As is the case with the first two process outputs, the dynamics of input 3 and 

4 are not modeled accurately. Figs. 3.45 – 3.48 show the step responses of process output 

4.  Again large bias and mismatch is observed. In general, the closed loop model exhibits 

large bias (error) and gives an inaccurate representation of the process dynamics. To an 

extent, the results are good for outputs 2 and 3, but the steady states are not reached 
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completely. This is one drawback with having a fixed noise model in the OE scheme. The 

closed loop data from case 1 has high levels of disturbance and noise, which if not 

modeled at all will result in inaccurate identification of the process models. The 

parameters identified are given in Eqs. 3.21 - 3.24.  
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Figure 3.33 : Case 1- Step response of 
Output-1 from Input-1 (OE) 

 
 
 

Figure 3.34 : Case 1- Step response of 
Output-1 from Input-2 (OE) 
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Figure 3.35 : Case 1- Step response of 
Output-1 from Input-3 (OE) 

Figure 3.36 : Case 1- Step response of 
Output-1 from Input-4 (OE) 
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Figure 3.37 : Case 1- Step response of 
Output-2 from Input-1 (OE) 

 
 
 

Figure 3.38 : Case 1- Step response of 
Output-2 from Input-2 (OE) 
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Figure 3.39 : Case 1- Step response of 
Output-2 from Input-3 (OE) 

Figure 3.40 : Case 1- Step response of 
Output-2 from Input-4 (OE) 
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Figure 3.41 : Case 1- Step response of 
Output-3 from Input-1 (OE) 

 
 
 

Figure 3.42 : Case 1- Step response of 
Output-3 from Input-2 (OE) 
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Figure 3.43 : Case 1- Step response of 
Output-3 from Input-3 (OE) 

Figure 3.44 : Case 1- Step response of 
Output-3 from Input-4 (OE) 
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Figure 3.45 : Case 1- Step response of 
Output-4 from Input-1 (OE)  

 
 
 

Figure 3.46 : Case 1- Step response of 
Output-4 from Input-2 (OE) 
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Figure 3.47 : Case 1- Step response of 
Output-4 from Input-3 (OE) 

Figure 3.48 : Case 1- Step response of 
Output-4 from Input-4 (OE) 
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3.3.1.4 Performance of State space model 

In recent years, the method of subspace has been proposed and studied in the literature. 

One of the most important conceptual ideas behind subspace algorithms is to introduce 

the concept of the state of a dynamic system within the system identification context. In 

contrast to ‘classical’ identification algorithms, subspace algorithms first 

estimate/calculate the state (sequence), while next the (state space) model is determined.  

The subspace methods have indeed proven to be a valuable alternative for classical 

prediction error methods. However, so far it has been shown to be effective and consistent 

for open loop identification by Overschee and De Moor [65]. Closed loop identification 

properties of this method have not been investigated thoroughly yet. In this section, this 

method is applied for closed loop identifying a state space closed loop process model for 

MPC.  

Simulated closed loop data is now used to recover the open loop process model by 

using state space modeling scheme. The step responses are plotted for the identified 

closed loop state space model (dashed) and the open loop process model (solid) to assess 

the performance of this scheme. The results are show in Figs. 3.49 - 3.64, which indicate 

that this method does not give accurate estimates for all process outputs.  Although in all 

cases the steady state gain has the same sign, but the bias  (error) between the original 

open loop process and the closed loop identified model is very high. The model fails to 

give accurate description of the system dynamics although the steady state gains of the 

step responses have the correct sign. Only process output 3 in Figs. 3.57 – 3.60 has a 

match to an extent but the steady state gain is not a complete fit. The identified model in 

state space format is given in Eqs. 3.25 - 3.28. 
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Figure 3.49 : Case 1- Step response of 
Output-1 from Input-1 (State space)  

 
 
 

Figure 3.50 : Case 1- Step response of 
Output-1 from Input-2  (State space) 
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Figure 3.51 : Case 1- Step response of 
Output-1 from Input-3  (State space) 

 

Figure 3.52 : Case 1- Step response of 
Output-1 from Input-4  (State space) 
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Figure 3.53 : Case 1- Step response of 
Output-2 from Input-1  (State space)  

 
 
 

Figure 3.54 : Case 1- Step response of 
Output-2 from Input-2  (State space) 
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Figure 3.55 : Case 1- Step response of 
Output-2 from Input-3  (State space) 

Figure 3.56 : Case 1- Step response of 
Output-2 from Input-4  (State space) 
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Figure 3.57 : Case 1- Step response of 
Output-3 from Input-1  (State space)  

 
 
 

Figure 3.58 : Case 1- Step response of 
Output-3 from Input-2  (State space)  
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Figure 3.59 : Case 1- Step response of 
Output-3 from Input-3  (State space) 

Figure 3.60 : Case 1- Step response of 
Output-3 from Input-4  (State space) 
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Figure 3.61 : Case 1- Step response of 
Output-4 from Input-1  (State space)  

 
 
 

Figure 3.62 : Case 1- Step response of 
Output-4 from Input-2  (State space) 
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Figure 3.63 : Case 1- Step response of 
Output-4 from Input-3  (State space) 

 

Figure 3.64 : Case 1- Step response of 
Output-4 from Input-4  (State space) 
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3.3.2 Case 2 – Closed loop Identification 

The performance of the four modeling techniques namely ARX, ARMAX, OE and state 

space are now analyzed on MPC simulated closed loop data obtained by reducing the 

disturbances and adding rate constraints (see Sec. 2.5.5). The simulations in case-1 have 

shown that OE and state space models give biased results with closed loop MPC data 

probably due to the presence of high disturbance and nonlinearities in the data. In this set 

of identification simulations, the disturbances have been reduced to a standard deviation 

of 0.08 and  constraints on the rate of change of inputs have been added. Taking this into 

consideration, all of the modeling techniques are once again employed and the results are 

discussed individually. 

3.3.2.1 Performance of ARX model 

ARX modeling scheme is used to identify the open loop process model using the 

simulated closed loop data. The unknown parameters are estimated by using least squares. 

The orders (na) of the process outputs are 2, 3, 5 and 3 respectively. For comparison the 

step responses of the closed loop identified ARX model (dashed line) are plotted against 

the actual open loop process model (solid line).  Figs. 3.65 - 3.68 show the step responses 

of the identified process output 1 and the actual open loop process output 1. There is 

practically non mismatch between the two models. The closed loop identified ARX model 

has recovered the information of the open loop process output 1 exactly. Figs. 3.71 – 3.72 

give the step responses of the identified model with that of the actual open loop model. 

Again there is a perfect match between the two models. Figs. 3.73 – 3.76 give the step 

responses of the identified process output 3 with that of the open loop process output 3.  
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Although perfect steady state gain fit is not achieved but overall there is non-trivial bias 

with very little mismatch between the two models. Figs. 3.77 – 3.78 shows the step 

responses of the closed loop identified process output 4 with that of the original open loop 

process output 4. Again there is a perfect match between the two and the steady state part 

of the response is captured accurately. Generally, the four-input four-output closed loop 

model has no mismatch with the open loop process model, revealing the extraordinary 

performance of ARX modeling technique on closed loop MPC data. It is by now clear that 

ARX modeling scheme is an ideal candidate for closed loop identification of processes 

running with MPC. The parameters identified are given in Eqs. 3.29 - 3.32.  It can be seen 

that the poles of the process model and the noise model are the same which is a 

characteristic of the ARX scheme. As compared to case 1, the results for this case are very 

good. It can be concluded that with reduced disturbances the performance of ARX 

improves towards perfection. 
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Figure 3.65 : Case 2- Step response of 
Output-1 from Input-1  (ARX)  

 
 
 

Figure 3.66 : Case 2- Step response of 
Output-1 from Input-2  (ARX)  
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Figure 3.67 : Case 2- Step response of 
Output-1 from Input-3  (ARX) 

 

Figure 3.68 : Case 2- Step response of 
Output-1 from Input-4  (ARX) 
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Figure 3.69 : Case 2- Step response of 
Output-2 from Input-1  (ARX)  

 
 
 

Figure 3.70 : Case 2- Step response of 
Output-2 from Input-2  (ARX) 

0 100 200 300 400 500 600 700
-0.045

-0.04

-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0
 y2 from u3

Original y2 from u3
Identified y2 from u3

0 100 200 300 400 500 600 700
0

0.02

0.04

0.06

0.08

0.1

0.12

 Step Reponse

Original y2 from u4
Identified y2 from u4

Figure 3.71 : Case 2- Step response of 
Output-2 from Input-3  (ARX) 

 

Figure 3.72 : Case 2- Step response of 
Output-2 from Input-4  (ARX) 
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Figure 3.73 : Case 2- Step response of 
Output-3 from Input-1  (ARX)  

 
 
 

Figure 3.74 : Case 2- Step response of 
Output-3 from Input-2  (ARX)  
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Figure 3.75 : Case 2- Step response of 
Output-3 from Input-3  (ARX) 

 

Figure 3.76 : Case 2- Step response of 
Output-3 from Input-4  (ARX) 
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Figure 3.77 : Case 2- Step response of 
Output-4 from Input-1  (ARX) 

 
 
 

Figure 3.78 : Case 2- Step response of 
Output-4 from Input-2  (ARX) 
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Figure 3.79 : Case 2- Step response of 
Output-4 from Input-3  (ARX) 

 

Figure 3.80 : Case 2- Step response of 
Output-4 from Input-4  (ARX) 
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3.3.2.2 Performance of ARM AX model 

As mentioned in case 1, the difference between ARX and ARMAX models is that the 

noise in ARMAX modeling scheme is modeled explicitly. This in turn requires complex 

computations and optimization routines resulting in higher numerical complexity. 

However, it has also been observed that ARMAX modeling and estimation technique 

gives good estimates of the open loop process in the case where MPC is subjected to high 

disturbance. In case 2, it is again used for identifying a closed loop model from simulated 

MPC closed loop data.  

Prediction error method is used to estimate the unknown parameters of the ARMAX 

model. The orders (na) of the process outputs are selected as 5, 3, 2 and 4 respectively. 

Figs. 3.81 – 3.84 show the step responses of the identified closed loop process model 

(dashed) versus the actual open loop process model (solid) for output 1. The results 

indicate a perfect match of the two models. There is no bias and the steady state part has 

been captured accurately. Figs. 3.85 -3.87 shows the step responses of the closed loop 

identified ARMAX model with that of the open loop model for process output 2.  Again 

there is no mismatch between the two models. Figs. 3.89 – 3.92 shows the step response 

of the closed loop identified ARMAX model with that of the open loop process model for 

output 3.  Compared to ARX the mismatch is trivial. This can be attributed to the fact that 

the disturbance is explicitly modeled in ARMAX scheme and therefore the process model 

is much more accurate. Similarly, the step responses of the ARMAX closed loop 

identified model are shown against the actual open loop process model for output 4 in 

Figs. 3.93 – 3.96. The results again demonstrate that closed loop ARMAX model gives 

the  best  fit  and  manages to  capture  the  steady   state  part  accurately. The parameters  
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identified are given in Eqs. 3.33 - 3.36.       
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Figure 3.81 : Case 2- Step response of 
Output-1 from Input-1  (ARMAX)  

 
 
 

Figure 3.82 : Case 2- Step response of 
Output-1 from Input-2  (ARMAX)  
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Figure 3.83 : Case 2- Step response of 
Output-1 from Input-3  (ARMAX) 

 

Figure 3.84 : Case 2- Step response of 
Output-1 from Input-4  (ARMAX) 
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Figure 3.85 : Case 2- Step response of 
Output-2 from Input-1  (ARMAX)  

 
 
 

Figure 3.86 : Case 2- Step response of 
Output-2 from Input-2  (ARMAX)  

0 100 200 300 400 500 600 700
-0.045

-0.04

-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0
 Step Response

Original y2 from u3
Identified y2 from u3

0 100 200 300 400 500 600 700
0

0.02

0.04

0.06

0.08

0.1

0.12

 Step Response

Original y2 from u4
Identified y2 from u4

Figure 3.87 : Case 2- Step response of 
Output-2 from Input-3  (ARMAX) 

 

Figure 3.88 : Case 2- Step response of 
Output-2 from Input-4  (ARMAX) 
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Figure 3.89 : Case 2- Step response of 
Output-3 from Input-1  (ARMAX)  

 
 
 

Figure 3.90 : Case 2- Step response of 
Output-3 from Input-2  (ARMAX)  
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Figure 3.91 : Case 2- Step response of 
Output-3 from Input-3  (ARMAX) 

 

Figure 3.92 : Case 2- Step response of 
Output-3 from Input-4  (ARMAX) 
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Figure 3.93 : Case 2- Step response of 
Output-4 from Input-1  (ARMAX)  

 
 
 

Figure 3.94 : Case 2- Step response of 
Output-4 from Input-2  (ARMAX) 
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Figure 3.95 : Case 2- Step response of 
Output-4 from Input-3  (ARMAX) 

 

Figure 3.96 : Case 2- Step response of 
Output-4 from Input-4  (ARMAX) 
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3.3.2.3 Performance of OE model 

In case 1 it was seen that this technique did not give good models due to the presence of 

high disturbances and noise in the simulated closed loop data. The identification 

capability of this modeling scheme is now tested for this case where the disturbances have 

been reduced to σ =0.08. With reduced disturbances, it is hoped that this scheme will 

yield better results than in case 1. 

The procedure adopted is similar to case 1. The orders (na) of the process outputs are 

selected as 4, 2, 3 and 2 respectively. The step responses of the actual open loop (solid)  

and identified closed loop OE model (dashed) for process output 1 are shown in Figs. 3.97 

- 3.100. The results show only a slight improvement in the performance of OE model. The 

step responses from inputs 1 and 2 are clearly mismatched. However, compared to case 1 

the step responses from input 3 and 4 are greatly improved and the mismatch is non-

trivial. In Figs. 3.101- 3.104, the step responses of the actual open loop (solid) and 

identified closed loop OE model (dashed) for process output 2 are shown. Again a marked 

improvement is observed at the step response from input 1. But the other dynamics from 

input 2, 3 and 4 are highly mismatched and unstable. Figs. 3.105 - 3.108 gives the step 

responses for process output 3. There is very little mismatch between the step responses 

from inputs 1, 2 and 4. However, the step response from input 3 indicates that the model 

is mismatched and is not able to capture the entire dynamics. The step responses of the 

process output 4 are shown in Figs. 3.109 – 3.112. It is obvious that the models are 

mismatched with large bias. Overall, mismatch remains and the closed loop model is 

largely inaccurate. The parameters identified are given in Eqs. 3.37 - 3.40.  
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Figure 3.97 : Case 2- Step response of 
Output-1 from Input-1  (OE)  

 
 
 

Figure 3.98 : Case 2- Step response of 
Output-1 from Input-2  (OE)  
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Figure 3.99 : Case 2- Step response of 
Output-1 from Input-3  (OE) 

 

Figure 3.100 : Case 2- Step response of 
Output-1 from Input-4  (OE) 
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Figure 3.101 : Case 2- Step response of 
Output-2 from Input-1  (OE)  

 
 
 

Figure 3.102 : Case 2- Step response of 
Output-2 from Input-2  (OE) 
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Figure 3.103 : Case 2- Step response of 
Output-2 from Input-3  (OE) 

 

Figure 3.104 : Case 2- Step response of 
Output-2 from Input-4  (OE) 
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Figure 3.105 : Case 2- Step response of 
Output-3 from Input-1  (OE)  

 
 
 

Figure 3.106 : Case 2- Step response of 
Output-3 from Input-2  (OE) 

0 100 200 300 400 500 600 700
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

-5  Step Reponse

Original y3 from u3
Identified y3 from u3

0 100 200 300 400 500 600 700
-0.015

-0.01

-0.005

0
 Step Reponse

Original y3 from u4
Identified y3 from u4

Figure 3.107 : Case 2- Step response of 
Output-3 from Input-3  (OE) 

 

Figure 3.108 : Case 2- Step response of 
Output-3 from Input-4  (OE) 
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Figure 3.109 : Case 2- Step response of 
Output-4 from Input-1  (OE)  

 
 
 

Figure 3.110 : Case 2- Step response of 
Output-4 from Input-2  (OE)  
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Figure 3.111 : Case 2- Step response of 
Output-4 from Input-3  (OE) 

 

Figure 3.112 : Case 2- Step response of 
Output-4 from Input-4  (OE) 
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3.3.2.4 Performance of State space model 

The performance of State space modeling scheme in Case 1 was not very good. The 

closed loop model identified was largely mismatched with the original open loop model. 

In this case, the disturbance has been reduced and the performance of this scheme is tested 

on the simulated closed loop data.  

Sub space method is used to estimate the unknown parameters of the state space 

model. The order for the four process outputs are selected as 2, 4, 2 and 4 respectively. In 

Figs. 3.113 – 3.116, the step responses of the actual open loop model (solid) and the 

identified state space model (solid) for process output 1 are shown. Compared to case 1, 

the results have improved somewhat but large inaccuracy remains. The step response 

from inputs 1, 3 and 4 show large bias and mismatch between the two models. Figs. 3.117 

– 3.120 give the step response for the process output 2. The results indicate oscillatory 

response of the closed loop model and high mismatch with the open loop model. The step 

responses for process output 3 are shown in Figs. 3.121 – 3.124.  The response from input 

4 has a different steady state gain sign than the open loop model. Clearly the model is in 

accurate. The results for process output 4 are shown in Figs. 3.125 – 3.128. Compared to 

case 1 the results are improved but nevertheless inaccurate. As before, the state space 

model is unable to identify the open loop process dynamics correctly from the given 

simulated closed loop data collected from the Demathanizer column running with MPC. 

The identified model in state space format is given in Eqs. 3.41 - 3.44. 
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Figure 3.113 : Case 2- Step response of 
Output-1 from Input-1  (State space)  

 
 
 

Figure 3.114 : Case 2- Step response of 
Output-1 from Input-2  (State space) 
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Figure 3.115 : Case 2- Step response of 
Output-1 from Input-3  (State space) 

 

Figure 3.116 : Case 2- Step response of 
Output-1 from Input-4  (State space) 
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Figure 3.117 : Case 2- Step response of 
Output-2 from Input-1  (State space)  

 
 
 

Figure 3.118 : Case 2- Step response of 
Output-2 from Input-2  (State space)  
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Figure 3.119 : Case 2- Step response of 
Output-2 from Input-3  (State space) 

 

Figure 3.120 : Case 2- Step response of 
Output-2 from Input-4  (State space) 
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Figure 3.121 : Case 2- Step response of 
Output-3 from Input-1  (State space) 

 
 
  

Figure 3.122 : Case 2- Step response of 
Output-3 from Input-2  (State space)  
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Figure 3.123 : Case 2- Step response of 
Output-3 from Input-3  (State space) 

Figure 3.124 : Case 2- Step response of 
Output-3 from Input-4  (State space) 
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Figure 3.125 : Case 2- Step response of 
Output-4 from Input-1  (State space) 

 
 
 

Figure 3.126 : Case 2- Step response of 
Output-4 from Input-2  (State space) 
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Figure 3.127 : Case 2- Step response of 
Output-4 from Input-3  (State space) 

 

Figure 3.128 : Case 2- Step response of 
Output-4 from Input-4  (State space) 
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3.3.3 Case 3 – Closed loop Identification 

The first two cases for which closed loop identification is performed are somewhat ideal, 

in a sense that no mismatch between the actual plant and model is considered. In this last 

set of simulations (on simulated MPC closed loop data), performance of ARX, ARMAX, 

OE and state space modeling schemes is analyzed individually on closed loop data from 

MPC process subject to high plant-model mismatch (see Sec. 2.5.6).  

Before presenting the results, a comment is in order here. Output error and state  

space modeling schemes gave inaccurate estimation when applied directly to closed loop 

MPC data. On the other hand, least squares (ARX) method and prediction error 

(ARMAX) method work fine and give consistent estimates of the open loop system. This 

is later discussed at the end of the chapter. However, to benchmark the performance of all 

these models all four schemes are used for this case as well. Recall that the disturbance 

present in this data is nominal. 

3.3.3.1 Performance of ARX model 

ARX modeling scheme is now tested on simulated closed loop data obtained from a MPC 

scheme with plant model mismatch. Least squares method is sued to estimate the 

unknown parameters of the model.  The orders (na) of the process outputs are selected as 

7, 10, 2, and 7, respective ly. Figs. 3.129  – 3.132 show the step responses for the closed 

loop ARX model (dashed) and actual plant model (solid ) for process output 1. The results 

are very good and the steady state part is captured accurately. Figs. 3.133 – 3.136 show 

the step responses of the process output 2. The results show no bias and good steady state 

gain fit achieved. For process output 3, the step responses are shown in Figs. 3.137 – 
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3.140. There is non-trivial bias and very little mismatch between the open loop and closed 

loop identified models. Similar results are achieved for process output 4 whose step 

responses are shown in Figs. 3.141  – 3.144. Overall, the ARX modeling scheme again 

gives an accurate description of the process dynamics with trivial mismatch. The 

identified model is given in Eqs. 3.45 - 3.48, which show that in the presence of high 

plant-model mismatch, a high order ARX will generally give consistent and unbiased 

results. 
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Figure 3.129 : Case 3- Step response of 
Output-1 from Input-1  (ARX) 

 
 
 

Figure 3.130 : Case 3- Step response of 
Output-1 from Input-2  (ARX) 
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Figure 3.131 : Case 3- Step response of 
Output-1 from Input-3  (ARX) 

 

Figure 3.132 : Case 3- Step response of 
Output-1 from Input-4  (ARX) 
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Figure 3.133 : Case 3- Step response of 
Output-2 from Input-1  (ARX)  

 
 
 

Figure 3.134 : Case 3- Step response of 
Output-2 from Input-1  (ARX) 
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Figure 3.135 : Case 3- Step response of 
Output-2 from Input-3  (ARX) 

 

Figure 3.136 : Case 3- Step response of 
Output-2 from Input-4  (ARX) 
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Figure 3.137 : Case 3- Step response of 
Output-3 from Input-1  (ARX) 

 
 
  

Figure 3.138 : Case 3- Step response of 
Output-3 from Input-2  (ARX) 
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Figure 3.139 : Case 3- Step response of 
Output-3 from Input-3  (ARX) 

 

Figure 3.140 : Case 3- Step response of 
Output-3 from Input-4  (ARX) 
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Figure 3.141 : Case 3- Step response of 
Output-4 from Input-1  (ARX)  

 
 
 

Figure 3.142 : Case 3- Step response of 
Output-4 from Input-2  (ARX)  
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Figure 3.143 : Case 3- Step response of 
Output-4 from Input-3  (ARX) 

 

Figure 3.144 : Case 3- Step response of 
Output-4 from Input-4  (ARX) 
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3.3.3.2 Performance of ARM AX model 

ARMAX modeling scheme have also shown excellent performance in the two previous 

cases. Now it is tested for its consistency and performance in this case of plant-model 

mismatch MPC scheme.  

Prediction error method is used to estimate the unknown parameters of the ARMAX 

model. The orders (na) of the process outputs are selected as 7, 8, 4 and 7 respectively. 

Figs. 3.145 – 3.148 shows the step responses of the identified closed loop process model 

(dashed) with that of the actual open loop process model (solid) for output 1. The results 

indicate a perfect match of the two models. There is no bias and the steady state part has 

been captured accurately. Figs. 3.149 -3.152 shows the step responses of the closed loop 

identified ARMAX model with that of the open loop model for process output 2.  Again 

there is no mismatch at all between the two models. Figs. 3.153 – 3.156 shows the step 

response of the closed loop identified ARMAX model with that of the open loop process 

model for output 3.  Unlike ARX modeling scheme, ARMAX model does not have a 

perfect fit at the steady state part, but the slight mismatch is insignificant. Similarly, the 

step responses for output 4 are shown in Figs. 3.157 – 3.160. The results again 

demonstrate that closed loop ARMAX model gives accurate fit and manages to capture 

the steady   state part accurately. The identified model is given in Eqs. 3.49 - 3.52.  
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Figure 3.145 : Case 3- Step response of 
Output-1 from Input-1  (ARMAX)  

 
 
 

Figure 3.146 : Case 3- Step response of 
Output-1 from Input-2  (ARMAX)  
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Figure 3.147 : Case 3- Step response of 
Output-1 from Input-3  (ARMAX) 

 

Figure 3.148 : Case 3- Step response of 
Output-1 from Input-4  (ARMAX) 
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Figure 3.149 : Case 3- Step response of 
Output-2 from Input-1  (ARMAX) 

 
 
 

Figure 3.150 : Case 3- Step response of 
Output-2 from Input-2  (ARMAX)  
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Figure 3.151 : Case 3- Step response of 
Output-2 from Input-3  (ARMAX) 

 

Figure 3.152 : Case 3- Step response of 
Output-2 from Input-4  (ARMAX) 
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Figure 3.153 : Case 3- Step response of 
Output-3 from Input-1  (ARMAX) 

 
 
 

Figure 3.154 : Case 3- Step response of 
Output-3 from Input-2  (ARMAX) 
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Figure 3.155 : Case 3- Step response of 
Output-3 from Input-3  (ARMAX) 

 

Figure 3.156 : Case 3- Step response of 
Output-3 from Input-4  (ARMAX) 
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Figure 3.157 : Case 3- Step response of 
Output-4 from Input-1  (ARMAX) 

 
 
 

Figure 3.158 : Case 3- Step response of 
Output-4 from Input-2  (ARMAX) 
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Figure 3.159 : Case 3- Step response of 
Output-4 from Input-3  (ARMAX) 

 

Figure 3.160 : Case 3- Step response of 
Output-4 from Input-4  (ARMAX) 
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3.3.3.3 Performance of OE model 

In case 1 and 2, it was seen that this technique did not give good estimates of the open 

loop process model from closed loop simulated data. The identification capability of this 

modeling scheme is now tested for this case where the MPC scheme had a mismatch 

between the plant and the model 

Prediction error method is used to estimate the parameters of this modeling scheme The 

orders (na) of the process outputs are 2, 6, 3 and 2 respectively.. The step responses of the 

actual open loop (solid) and identified closed loop OE model (dashed) for process output 

1 are shown in Figs . 3.161 - 3.1164. The results show large mismatch between the two 

models. The closed loop OE model has not captured any of the dynamics of the open loop 

model. The step responses from all inputs are clearly biased. In Figs. 3.165- 3.168, the 

step responses of the process output 2 is shown. Again the model is unable to capture the 

steady state part of the open loop process model. Figs. 3.169 - 3.1172 give the step 

responses for process output 3. Unlike for process output 1 and 2, there is very little 

mismatch between the step responses from inputs 1, 3 and 4. However, the step response 

from input 2 indicates that the model is slightly mismatched. The step responses of the 

process output 4 are shown in Figs. 3.173 – 3.176. It is obvious that the models are 

mismatched with large bias. Except for the response from input 2, the rest of the step 

responses are unable to capture the steady state part accurately. Overall, the closed loop 

model is largely inaccurate. The identified model is given in Eqs. 3.53 - 3.56.  
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Figure 3.161 : Case 3- Step response of 
Output-1 from Input-1  (OE)  

 
 
 

Figure 3.162 : Case 3- Step response of 
Output-1 from Input-2  (OE) 
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Figure 3.163 : Case 3- Step response of 
Output-1 from Input-3  (OE) 

 

Figure 3.164 : Case 3- Step response of 
Output-1 from Input-4  (OE) 
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Figure 3.165 : Case 3- Step response of 
Output-2 from Input-1  (OE) 

 
 
  

Figure 3.166 : Case 3- Step response of 
Output-2 from Input-2  (OE)  
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Figure 3.167 : Case 3- Step response of 
Output-2 from Input-3  (OE) 

 

Figure 3.168 : Case 3- Step response of 
Output-2 from Input-4  (OE) 

 



 

 

153 

 
 
 
 

0 100 200 300 400 500 600 700
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
 Step Reponse

Original y3 from u1
Identified y3 from u1

0 100 200 300 400 500 600 700
0

0.1

0.2

0.3

0.4

0.5

0.6

 Step Reponse

Original y3 from u2
Identified y3 from u2

Figure 3.169 : Case 3- Step response of 
Output-3 from Input-1  (OE)  

 
 
 

Figure 3.170 : Case 3- Step response of 
Output-3 from Input-2  (OE) 
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Figure 3.171 : Case 3- Step response of 
Output-3 from Input-3  (OE) 

Figure 3.172 : Case 3- Step response of 
Output-3 from Input-4  (OE) 
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Figure 3.173 : Case 3- Step response of 
Output-4 from Input-1  (OE)  

 
 
 

Figure 3.174 : Case 3- Step response of 
Output-4 from Input-2  (OE)  
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Figure 3.175 : Case 3- Step response of 
Output-4 from Input-3  (OE) 

 

Figure 3.176 : Case 3- Step response of 
Output-4 from Input-4  (OE) 
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3.3.3.4 Performance of state space model 

In the two previous cases state space modeling scheme failed to give accurate process 

models from given closed loop data. Its performance is now evaluated on this last case of 

plant model mismatch. 

As before, sub space method is used to estimate the unknown parameters of the state 

space model. The order for the four process outputs are selected as 4, 3, 2 and 3 

respectively. In Figs. 3.177 – 3.180, the step responses of the actual open loop model 

(solid) and the identified state space model (solid) for process output 1 are shown. The 

results show large bias and mismatch between the two models for all inputs. The steady 

state gain sign is also different for responses from inputs 1 and 4.  Figs. 3.181 – 3.184 

give the step response for the process output 2. The responses from inputs 2 and 4 are to 

an extent accurate with non-trivia mismatch. However, the responses from inputs 1 and 3 

are inaccurate and exhibit large mismatch with the actual open loop model. The step 

responses for process output 3 are shown in Figs. 3.185 – 3.188.  The responses from 

inputs 3 and 4 have different steady state gain signs as compared to the open loop model. 

Clearly the model is inaccurate. The results for process output 4 are shown in Figs. 3.189 

– 3.1192. As before, the state space model is unable to identify the open loop process 

dynamics correctly. The effect of plant-model mismatch is apparent on the performance 

of this scheme. Large inaccuracies and mismatch is observed between the identified state 

space model and the actual process model. For this case, the identified model is given in 

Eqs. 3.57 – 3.60. 
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Figure 3.177 : Case 3- Step response of 
Output-1 from Input-1  (State space)  

 
 
 

Figure 3.178 : Case 3- Step response of 
Output-1 from Input-2  (State space)  
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Figure 3.179 : Case 3- Step response of 
Output-1 from Input-3  (State space) 

 

Figure 3.180 : Case 3- Step response of 
Output-1 from Input-4  (State space) 
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Figure 3.181 : Case 3- Step response of 
Output-2 from Input-1  (State space)  

 
 
 

Figure 3.182 : Case 3- Step response of 
Output-2 from Input-2  (State space)  
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Figure 3.183 : Case 3- Step response of 
Output-2 from Input-3  (State space) 

 

Figure 3.184 : Case 3- Step response of 
Output-2 from Input-4  (State space) 
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Figure 3.185 : Case 3- Step response of 
Output-3 from Input-1  (State space)  

 
 
 

Figure 3.186 : Case 3- Step response of 
Output-3 from Input-2  (State space)  
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Figure 3.187 : Case 3- Step response of 
Output-3 from Input-3  (State space) 

 

Figure 3.188 : Case 3- Step response of 
Output-3 from Input-4  (State space) 
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Figure 3.189 : Case 3- Step response of 
Output-4 from Input-1  (State space)  

 
 
 

Figure 3.190 : Case 3- Step response of 
Output-4 from Input-2  (State space)  
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Figure 3.191 : Case 3- Step response of 
Output-4 from Input-3  (State space) 

 

Figure 3.192 : Case 3- Step response of 
Output-4 from Input-4  (State space) 
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3.4 Chapter Summary 

In this chapter some important results related to closed loop identification with MPC have 

been presented. ARX, ARMAX, OE and state space modeling schemes have been applied 

to three possible cases of MPC process. In the first case closed loop da ta is collected when 

the MPC process is running under high disturbances, noise and amplitude constraints. 

Models are identified in closed loop using this data. From the results it is found that ARX 

and ARMAX models are the only ones that gave good estimation from the closed loop 

data. In the second case the disturbances are reduced and rate constraints are added. Again 

ARX and ARMAX models give accurate estimation from the closed loop data. Although 

state space modeling scheme did show some improvement but overall the results 

demonstrated a high mismatch between the actual open loop MPC model and the 

identified state space closed loop model. In the third case, plant-model mismatch is taken 

into account. Again identification schemes based on ARX and ARMAX models manage 

to give good results. From these results, following important observations can be stated in 

the case of closed loop identification for MPC: 

• Direct identification method works regardless of the complexity of MPC. 

• Consistency and accuracy is achieved if the model structure contains the true 

system (including noise properties) as in the ARX and ARMAX modeling 

schemes. 

• OE modeling scheme with a fixed noise model yield biased and inaccurate 

parameter estimates irrespective of the levels of disturbance and noise. 
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• State space models fail to give accurate representation of the process. This can be 

attributed to the fact that the input is correlated with high disturbance. This is in 

possible contradiction with the subspace method where it is assumed that the input 

is uncorrelated with the process noise and disturbances.  

• In ARX and AMRAX modeling schemes the poles of the process and 

disturbance/noise model are the same which is a precondition for obtaining a 

stable model [36]. This is not the case for OE modeling scheme. 

• The compactness of ARMAX modeling scheme is highest because the disturbance 

is explicitly modeled. This means that the order of the system is generally smaller 

as compared to ARX. Same holds for OE and State space modeling schemes. 

Further discussion on this subject is given in [34]. 

• The numerical complexity is highest for ARMAX scheme because prediction error 

method involves complex optimization routines which results in a large amount of 

numerical computations. Same is true for OE modeling scheme.  

• State space models are much simpler to implement as the Kalman filter states are 

obtained directly from input output data using linear algebra tools, after which the 

identification problem reduces to least squares problem. 

From these results a benchmark of all these models can now be made in tabulated form. 

Table 3-1 categorizes these parametric models in terms of their compactness (less 

parameters to describe the process dynamics) and numeric complexity (optimization 

routines). In Table 3-2 the results of the simulations are presented which summarizes the 

findings of this work. 
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Table 3-1 Comparison of various model structures 
 

Model Structure Numerical difficulty Compactness 

ARX Low Medium 

ARMAX High Highest 

OE High High 

State space Low High 

 
 
 
 
 
 
 
Table 3-2  Comparison of performance of various model structures 
 

Model 
Structure  

Amplitude 
constraints, high 

disturbances,  
noise 

Amplitude & Rate 
constraints, medium 
disturbances, noise 

Amplitude & 
constraints, nominal 
disturbances, noise, 

mismatch 

ARX Best Best Best 

ARMAX Best Best Best 

OE Poor Poor Poor 

State space Poor Poor Poor 
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Chapter 4 

Closed Loop Identification – Process Data 

4.1 Introduction 

In Chapter 3, it has been shown that ARX and ARMAX modeling schemes work fine and 

give consistent estimates of the open loop system with closed-loop data.  In this Chapter, 

the results of model estimation from closed loop process data collected during normal 

process operation are presented. The process is again the Demethanizer column controlled 

using MPC from a gas plant in Saudi Arabia. The data is collected over a three month 

time period with a sampling time of 1 minute. It is essential to point out here that closed 

loop data samples collected have to be large enough so as to exhibit the process dynamics 

correctly. Data for a month or less may not be enough for closed loop identification 

purposes as the relevant plant behavior to specified set points may not be represented in it.  

Before proceeding with identification from this data it is necessary to do some pre- 

processing of the closed loop data. This is explained in the next section. 
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4.2 Pre-Processing of the Closed Loop Data 

4.2.1 Outliers and Bad Data 

Real closed loop data collected from the process under operation is subject to possible 

missing data samples mostly due to malfunctions in the sensors or communication links. 

Moreover, certain measured values can be in obvious error due to measurement failures. 

Such bad values are often called outliers, and have a substantial effect on the model 

estimation. To deal with outliers and bad data, there are a few possibilities. One is to cut 

out segments of the data sequence so that portions with bad data are avoided. In this case 

it is natural to select segments of the original data set which are considered to contain 

relevant information about the dynamics of the system. There is no hard and fast rule for 

this procedure and it is basically subjective to intuition and process insights. 

4.2.2 Drifts and Trends 

Low-frequency disturbances, offsets, trends, drift and periodic variations are not 

uncommon in closed loop data. They typically stem from external sources that may not be 

relevant to modeling. Ljung [36] has suggested a basic approach to dealing with such a 

problem. It involves removing these trends by explicit pretreatment of the data. This 

involves removing trends and offsets by removing the mean values from the signal. This 

procedure simply implies that the mean values of both output (y) and input (u) data are 

computed as follows 

     ∑
=

=
N

t

ty
N

ty
1

* )(1)(        (4.1) 
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     ∑
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and then compute the ‘detrended’ data by 

     )()()( * tytyty     −=     (4.3) 

)()()( * tututu     −=     (4.4)  

4.3 Closed Loop Process Data 

As mentioned in section 4.1, closed loop field data is made available from the 

Demethanizer column process running with MPC. It is collected for three months period 

at a sampling time of 1 minute using step testing. After some pre-processing and 

detrending, the data is made ready for the purpose of modeling and estimation. ARX and 

AMRAX modeling schemes have shown to be effective in estimating a reliable model 

from closed loop data collected from processes running with MPC. These schemes are 

now tested and verified on this ‘real’ closed loop data. The following subsections give 

further details about the results of these simulations. 

4.3.1 Performance of ARX Models 

ARX models are now used to estimate relationships between the outputs and inputs of the 

given closed loop field data. Recall that the ARX models are of the form as given below. 

)()()()()( 11 tetuqBqtyqA -d      += −−    (4.5) 

The order na of the polynomial A is selected as 3, 2, 5 and 5 respectively for the four 

process outputs. Least squares method is used to estimate the unknown parameters of the 
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ARX model. The estimated model is given in Eqs. 4.6 - 4.9. The response of the identified 

ARX closed loop model is plotted with the actual closed loop data for each output in Figs. 

4.1 – 4.4.  The results demonstrate excellent performance of the identified ARX model in 

reproducing the actual data. The error is minimal between the two responses. In order to 

analyze the performance of the identified ARX model in recovering open loop process 

model from the closed loop field data, the step responses for the actual open loop process  

model (solid line) and the closed loop identified ARX model (dashed line) are plotted in 

Figs. 4.5 - 4.20. These results reaffirm the excellent capability of the ARX modeling 

scheme. There is minimal or no mismatch between the responses of the two models. For 

all process outputs the steady state part is captured accurate ly. No mismatch, whatsoever 

is observed in the step responses. This has verified that closed loop identification for 

processes running with MPC can be performed successfully by using ARX modeling 

scheme, which can estimate the open loop process dynamics in closed loop. This has also 

confirmed the conclusion made in chapter 3, where ARX modeling scheme is shown to 

have given good representation of the open loop process model from simulated data. 

Thus, if suitable amount of data samples are collected from processes running with MPC, 

open loop process model can be identified using this scheme without MPC controller 

shutdown.  
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Figure 4.1 : Responses of  Output 1    
Actual and Identified ARX Model 

 
 
 

Figure 4.2 : Responses of  Output 2   
Actual and Identified ARX Model 
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Figure 4.3: Responses of  Output 3     
Actual and Identified ARX Model 

Figure 4.4: Responses of  Output 4    
Actual and Identified ARX Model 
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Figure 4.5 : Step Responses of the Actual 
Open Loop and Identified ARX models 

(Output-1 from Input-1)  
 
 
 

Figure 4.6 : Step Responses of the Actual 
Open Loop and Identified ARX models 

(Output-1 from Input-2) 
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Figure 4.7 : Step Responses of the Actual 
Open Loop and Identified ARX models 

(Output-1 from Input-3) 

Figure 4.8 : Step Responses of the Actual 
Open Loop and Identified ARX models 

(Output-1 from Input-4) 
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Figure 4.9 : Step Responses of the Actual 
Open Loop and Identified ARX models 

(Output-2 from Input-1)  
 
 
 

Figure 4.10 : Step Responses of the Actual 
Open Loop and Identified ARX models                                              

(Output-2 from Input-2) 
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Figure 4.11 : Step Responses of the Actual 
Open Loop and Identified ARX models 
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Figure 4.12 : Step Responses of the Actual 
Open Loop and Identified ARX models 

(Output-2 from Input-4) 
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Figure 4.13 : Step Responses of the Actual 
Open Loop and Identified ARX models                                                

(Output-3 from Input-1) 
 
 
 

Figure 4.14 : Step Responses of the Actual 
Open Loop and Identified ARX models                                               

(Output-3 from Input-2)  
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Figure 4.15 : Step Responses of the Actual 
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(Output-3 from Input-3) 

Figure 4.16 : Step Responses of the Actual 
Open Loop and Identified ARX models 

(Output-3 from Input-4) 
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Figure 4.17 : Step Responses of the Actual 
Open Loop and Identified ARX models                                                  

(Outp ut-4 from Input-1) 
 
 
 

Figure 4.18 : Step Responses of the Actual 
Open Loop and Identified ARX models                                                      

(Output-4 from Input-2) 
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Figure 4.19 : Step Responses of the Actual 
Open Loop and Identified ARX models                                                     

(Output-4 from Input-3) 

Figure 4.20 : Step Responses of the Actual 
Open Loop and Identified ARX models           

(Output-4 from Input-4) 
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4.3.2 Performance of ARMAX Models 

In addition to ARX scheme, ARMAX modeling scheme have also shown equivalent 

performance if not better, when used for identification from closed loop data obtained 

from a process running with MPC. In this subsection, ARMAX modeling scheme is tested 

for its performance on real closed loop data. Recall that an ARMAX model is of the type 

    )()()()()()( 111 teqC  tu qB  tyqA −−− +=    (4.10) 

The order na of the polynomial A is selected as 2, 2, 3 and 3 respectively. Responses 

of the closed loop ARMAX model and the actual closed loop data are shown in Figs. 4.21 

- 4.24. As in the case of ARX modeling scheme the response of the identified ARMAX 

model is identical to the actual closed loop field data. Not taking into consideration the 

oscillations in the actual data due to disturbance and noise, it can be stated that the 

response of the model is a perfect match. This identified ARMAX model is now 

compared with the actual open loop process model. The step responses of the actual open 

loop model (solid) and the closed loop ARMAX model (dashed) are shown in Figs. 4.25 - 

4.40. It is noted that for process output 1 there is no mismatch between the responses. For 

process output 2 there is however a trivial mismatch at the steady state, but the error is 

very small. Reponses for process outputs 3 and 4 show perfect fit at the steady state. This 

also confirms the conclusion made in Chapter 3. ARMAX modeling scheme manages to 

successfully recover the open loop dynamics of the process from closed loop data. The 

estimated model is given in the transfer funct ion format in Eqs. 4.11 - 4.15, where unlike 

ARX scheme the noise has also been estimated explicitly.  
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Figure 4.21: Responses of  Output 1   
Actual and Identified ARMAX Model 

 
 

 

Figure 4.22: Responses of  Output 2  
Actual and Identified ARMAX Model 
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Figure 4.23: Responses of  Output 3   
Actual and Identified ARMAX Model 

Figure 4.24: Responses of  Output 4  
Actual and Identified ARMAX Model 
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Figure 4.25: Step Responses of the Actual 
Open Loop and Identified ARMAX models                                                   

(Output-1 from Input-1)  
 
 
 

Figure 4.26: Step Responses of the Actual 
Open Loop and Identified ARMAX models                                  

(Output-1 from Input-2) 
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Figure 4.27 : Step Responses of the Actual 
Open Loop and Identified ARMAX models                              

(Output-1 from Input-3) 

Figure 4.28 : Step Responses of the Actual 
Open Loop and Identified ARMAX models                                  

(Output-1 from Input-4) 
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Figure 4.29 : Step Responses of the Actual 
Open Loop and Identified ARMAX models                                

(Output-2 from Input-1)  
 
 
 

Figure 4.30 : Step Responses of the Actual 
Open Loop and Identified ARMAX models                                

(Output-2 from Input-2) 
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Figure 4.31 : Step Responses of the Actual 
Open Loop and Identified ARMAX models                                    

(Output-2 from Input-3) 

Figure 4.32 : Step Responses of the Actual 
Open Loop and Identified ARMAX models                                 

(Output-2 from Input-4)  



 

 

181 

 
 
 
 

0 100 200 300 400 500 600 700
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
 Step Response

Original y3 from u1
Identified y3 from u1

0 100 200 300 400 500 600 700
0

0.1

0.2

0.3

0.4

0.5

0.6

 Step Response

Original y3 from u2
Identified y3 from u2

Figure 4.33 : Step Responses of the Actual 
Open Loop and Identified ARMAX models                                   

(Output-3 from Input-1)  
 
 
 

Figure 4.34 : Step Responses of the Actual 
Open Loop and Identified ARMAX models                                 

(Output-3 from Input-2)  
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Figure 4.35 : Step Responses of the Actual 
Open Loop and Identified ARMAX models                                 

(Output-3 from Input-3) 

Figure 4.36 : Step Responses of the Actual 
Open Loop and Identified ARMAX models                                 

(Output-3 from Input-4) 
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Figure 4.37 : Step Responses of the Actual 
Open Loop and Identified ARMAX models                              

(Output-4 from Input-1)  
 
 
 

Figure 4.38 : Step Responses of the Actual 
Open Loop and Identified ARMAX models                                   

(Output-4 from Input-2)  
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Figure 4.40 : Step Responses of the Actual 
Open Loop and Identified ARMAX models                                   

(Output-4 from Input-4) 
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4.4 Chapter Summary 

In this chapter, identification based on ARX and ARMAX modeling schemes have been 

successfully applied to actual process closed loop data obtained from a Demethanizer 

column running with MPC. As discussed in Section 3.4, the compactness of ARMAX 

model as compared to ARX model is higher. The order of ARMAX is 2, 2, 3 and 3 

whereas the order of ARX is 3, 2, 5 and 5, respectively for the four outputs. 

 Sometimes it may be required to have a closed loop model while a process running 

with MPC is in operation. In this case, the model has to be based on observations up to the 

current time. For this purpose recursive identification methods are used. These methods 

are sometimes also referred to as on- line or real time identification methods. In this regard 

recursive identification schemes based on ARX and ARMAX modeling schemes can also 

be used. These recursive variants will give similar results to batch ARX and ARMAX 

schemes, if not better.  
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Chapter 5 

Identification - Neural networks 

5.1 Introduction 

In conventional linear identification schemes whether it be least squares or prediction 

error methods, the focus has been on estimation of the true plant from closed loop data 

using linear models for the purpose of MPC design. However, a new direction has 

emerged in the past few years in which nonlinear models are being used in the design of 

MPC. This emerging field is termed as NonLinear Model Predictive Control (NLMPC). 

NLMPC is presently viewed as one of the most promising areas in automatic control. This 

is partly due to the increasing industrial need for advanced control techniques that address  

explicitly the process nonlinearity and operation constraints and the ever-demanding 

control performance requirement.  

However, despite the wide publicity and the intensive research efforts, it is still 

being perceived as an academic concept rather than a practical control strategy. One 

reason for this disparity is the inability to construct a nonlinear model on a reliable and 

consistent basis. An important factor that has been emphasized throughout this thesis is 
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that the identified models are to be used in a closed loop environment. Because systems’ 

input output pattern can change dramatically after closing a loop, it is entirely possible 

that a model that provides good performance in open loop may lose that capability once 

the predictive controller is designed and loop is closed.  While it may be possible to 

establish patterns of disturbances and system noises before a closed loop implementation, 

either from prior knowledge or from available open loop plant data, it is generally very 

difficult to do the same for manipulated inputs whose patterns will depend on, among 

many things, the controller.   Therefore, in NLMPC, a model should be able to handle 

accurately the effects of both known and unknown changes on the system (output) 

behavior in a closed loop setting.  For this purpose, a Multilayer FeedForward Neural 

Network (MFNN) model can be used.  

5.2 Neural Networks for System Identification 

Neural networks, in general, are not new to the field of identification. Since 1990 many 

papers have not only demonstrated promising results in applying the approaches of neuro-

identification, but also have begun to address fundamental issues such as system 

approximation and identification, controllability, observability and stability theory. 

Although major results in approximation and identification of systems using neural 

networks are available, only a small group of people are actually familiar with them. 

Perhaps the most popular structure has been the static Multi- layer FeedForward Neural 

Network (MFNN) trained via the back propagation- learning algorithm. In this structure, 

the neurons are generally grouped into layers. Input signals propagate through the 

network in a forward direction, layer by layer, through to the output layer. On the other 
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hand, with the incorporation of feedback connections and delay elements within the 

neurons, static neural networks are made recurrent by construction. Recurrent Neural 

Networks (RNN) are characterized by their internal memory and thus are very suitable for 

imitating the behavior of dynamic systems. This type of networks allow connections 

between any pair of neurons but keep the concept of input and output neurons inherent to 

MFNN. Such networks were first proposed by Hopfield in 1982  and have recently been 

rediscovered as dynamic neural networks (DNN) in the context of identification and 

control of dynamic system.  

5.3 Major Works on MFNN for System Identification 

Much of the early research on neural networks for system identification date back to 

beginning 1990s when Narendra and Parthasarathy [67] demonstrated that MFNN 

structure could be effectively used for identification and control. The same year Bhat et al.  

[68] used neural networks for modeling nonlinear chemical process systems such as 

steady-state reactor and a dynamic pH continuously stirred tank reactor. They used the 

back-propagation algorithm for interpreting biosensor data by utilizing MFNN modeling 

scheme. In 1991, Tai et al.  [69] presented a survey report on the algorithms and 

techniques of neural networks including MFNN implemented in the areas of identification 

and control. Around the same time, the lack of generic and efficient methodology for 

nonlinear system identification with unknown system architecture prompted Qin et al. 

[70] to re-derive pattern learning and batch learning rules for both MFNN and RNN 

respectively. This was one of the pioneering works in black-box modeling vis-à-vis neural 

networks. Chen and Mars [71] discussed the feasibility of using MFNN for system 
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identification. They scrutinized the work of Narendra et. al.  [67] and provided some 

solutions to the constraints pointed out in that work. In 1993, Yamada and Yabuta [72] 

proposed practical design methods for the identification of both the direct and inverse 

transfer functions of a nonlinear dynamic system through the use of neural networks. 

Sjoberg [73] in 1994 utilized MFNN based NNARX modeling techniques to simulate 

nonlinear systems having different kinds of non- linearities.  

In 1995, Songwu and Tamer [74] presented system identification schemes in a 

neural network framework, using FFNN. Both MFNN and Radial Basis Function Neural 

Networks (RBFNN) were used to identify nonlinear systems in the presence of unknown 

driving noise. Judistky et al. [75] surveyed and discussed different techniques including 

MFNN for this purpose. As a companion paper to this Sjoberg et al. [76] compared by 

simulation, the performance of MFNN based NNARX model to other nonlinear 

identification techniques. Abdallah et al. [77] in their technical report addressed issues of 

capabilities versus actual performance of MFNN for both discrete time and continuous 

time cases. 

In 1996, Mhaskar [78] examined the complexity of MFNN required to approximate 

an unknown system to a degree of accuracy for a worst-case scenario . Moody [79] 

presented a new ‘dependence identification’ algorithm for developing a new form of 

MFNN for system identification. This proposed algorithm transformed the training 

problem into a set of quadratic optimization problems that were solved by a number of 

linear equations. Suykens and Bersini [80] studied nonlinear system identification using 

MFNN with respect to model based control. Mauro [81] in his PhD thesis applied MFNN 

for model updating in closed loop. Duwaish et al.  [82] showed the use of MFNN for 

learning nonlinear relationships from plant input output data.  
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In 1998, Sorensen [83] used NNARMAX modeling technique to identify and predict 

a nonlinear system. Songwu and Tamer [84] used MFNN and RBFNN to identify 

nonlinear systems in the presence of driving noise.  They used H∞ and genetic based 

identification algorithms for network parameters update. In 2000, Bendtsen and Sorensen 

[85] used MFNN networks for the identification of a nonlinear injection valve for a super-

heater attemporator at a power plant. In 2001, Miima et al.  [86] utilized MFNN for 

modeling input-output behavior of points on a deforming bridge. Recently Norgaard et al. 

[87] have developed two toolsets for system identification and control with neural 

networks. These are NNSYID and NNCTRL for use in Matlab engineering software. 

5.4 MFNN 

In feedforward family of neural networks, MFNN structure is the most widely used. It is a 

network structure composed of several ordered layers of neurons connected in sequence 

without lateral inhibition. The first layer is accessible from outside through its input and 

outputs can be observed from the last layer. The information flows only in one direction.  

In MFNN the model structure selection is basically dependent on two issues: 

Selecting the inputs to the network and selecting internal network architecture. An often 

used approach is to reuse the inputs from the linear models while letting the internal 

architecture be multilayer feedforward network. This approach has several attractive 

advantages. 

• It is a natural extension of the well known linear model structures 

• The internal architecture can be expanded gradually as a higher flexibility is needed 

to model more complex nonlinear relationships. 
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• The structural decisio ns required by the user are reduced to a level that is reasonable 

to handle. 

• Suitable for design of control systems. 

Nonlinear counterparts to the linear model structures (A1.1) are obtained by using 

the following predictor form 

[ ] )(),()|(ˆ tetgty       += θϕθ     (5.1) 

where f (t) is the regression vector while ? is the vector containing the adjustable 

parameters in the neural network known as the weights. g is the function realized by the 

neural network and it is assumed to have a feedforward structure. Depending on the 

choice of regression different nonlinear model structures can be selected. The most 

common is the NNARX which is the acronym for Neural Network ARX. Figure 5.1 

shows such a general structure of MFNN. The figure shows three layers but more layers 

are a direct generalization.  The input layer has  ni = ny M + nu N neurons, where M is the  

number of outputs, N is the number of inputs and ny and nu are the maximum lags at the 

input and output vector sequences respectively. The input to neural networks is then 

defined by Eq. 5.2.  
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The input vector of the network consists of the past values of the network and output 

vector of the system. The input layer simply feeds the vector X(t)  to the  hidden layer 

without any modification. The hidden layer has user-defined hn  neurons with nonlinear 

transfer functions (such as sigmoid function). The output layer has M neurons, which 
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Figure 5.1 The MFNN for Nonlinear Identification 



 

 

191 

correspond to the M outputs of the system. The output of the network is represented as  
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where l
ijW is the synaptic weight of the neuron  j in layer l that is fed from neuron i in 

layer 1−l , )(tq i  is the output signal of neuron i in the previous layer  1−l , )(l
jβ  is the 

biases function of neuron  j in layer l and )(•kg  is the activation function. The output 

vector provided by the network is defined in Eq. 5.4 and the error is defined as in Eq. 5.5. 

)](ˆ),......,(ˆ),(ˆ[)(ˆ
21 tytytyt M=Y     (5.4) 

)(ˆ)( t(t)t YYE −=      (5.5) 

The weights are updated by using backpropagation algorithm. It is expressed as in  

Eq. 5.6. 
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where η is the learning coefficient. The local gradients sδ  for the neuron j in output layer 

L and in hidden layer l are defined by Eq . 5.7 and 5.8 respectively. 
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The biases can be updated by using the following expression of Eq. 5.9. 
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21)()1( )()()( ,for htt l
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l
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5.5 Open Loop Identification 

MFNN is now used to model the Demethanizer column process. One month data is 

collected at sampling time of 1 minute. For the purpose of training the network, 70% of 

the data samples are used. The rest of the 30% data samples are kept for testing and 

validating the identified MFNN model. The maximum lags for the output and input vector 

sequences in Eq. 5.2 are selected as 2 and 1 respectively . One hidden layer with 10 

neurons is used. Tangent sigmoid nonlinearity is selected as the activation function for 

these neurons. The results for training are presented in Figs. 5.2 - 5.6. The results are 

shown for 300 data samples for better display. The results demonstrate the accuracy by 

which the MFNN is trained. There is practically no mismatch between the two models. 

However, to check or validate the performance of the trained MFNN model, test data 

which has not been used previously in the training, is utilized. The results of the 

validation are shown in Figs. 5.6 - 5.9, where the actual data is shown by a solid line and 

the MFNN response is shown in dashed line. For all process outputs, no mismatch is seen 

and the trained MFNN model manages to reproduce the test data excellently.   

Now that MFNN model is trained and validated on open loop process data from the 

Demathanizer column, the next logical step is to use it for MPC design. However, as 

mentioned earlier, a model that provides excellent performance in open loop may not be 

able to maintain the same when the loop is closed (feedback). For this reason, the next 

section deals with the validation of the trained MFNN model from closed loop field data  

such as to ascertain if this model is reliable for close loop operation. 
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Figure 5.2 : Training MFNN – Output 1 
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Figure 5.3  : Training MFNN – Output 2 
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Figure 5.4 : Training MFNN - Output 3 
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Figure 5.5 : Training MFNN – Output 4 
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Figure 5.6 : MFNN and Desired Output 1 –Validation 
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Figure 5.7  : MFNN and Desired Output 2 -Validation 
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Figure 5.8 : MFNN and Desired Output 3 –Validation 
 

0 500 1000 1500 2000 2500
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time (Samples)

T
h

e 
N

et
w

o
rk

 a
n

d
 D

es
ir

ed
 O

u
tp

u
t

Output 4
MFNN

 

Figure 5.9 : MFNN and Desired Output 4 -Validation 
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5.6 Performance of MFNN on closed Loop Data 

The trained MFNN model in now tested for its consistency and accuracy on closed loop 

field data collected from MPC process. This is done to ascertain the performance of this 

model in closed loop environment especially when MPC is running. According to 

Norgaard et al.  [90], validation of a neural network model is highly dependent on its 

intended use. In this case the MFNN model is required to predict the future behavior of 

the plant in an MPC environment. This means that the MFNN model has to be consistent 

and its performance should not deteriorate with closed loop operation. Recall that the 

system input and  outputs patterns can change dramatically after closing the loop. Keeping 

this in mind, the closed loop data collected from Demethanizer column process running 

with MPC (see Sec. 4.1), which is unfamiliar (totally fresh) to the trained model is now 

used to validate the performance of this model. The entire data is used for this purpose.  

Figures 5.10 - 5.13 illustrate the excellent performance of the MFNN model. The 

response of MFNN model is shown in dashed line and the actual field data is shown by a 

solid line for all process outputs. The model trained with open loop data exhibits its 

versatility on closed loop data and manages to predict the correct behavior of the process. 

This is an essential requirement, as the model is going to be used in MPC scheme where it 

is required to predict the future behavior of the process in order to determine the next 

control action. In Figs. 5.18 - 5.21 the error distributions associated with the performance 

of the neural network model are shown. The errors are very small and remain mostly 

between the ranges of ± 0.2. 
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Figure 5.10 : MFNN and Desired Output 1 –Closed Loop Data 
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Figure 5.11 : MFNN and Desired Output 2 – Closed Loop Data 
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Figure 5.12  : MFNN and Desired Output 3 – Closed Loop Data 
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Figure 5.13  : MFNN and Desired Output 4 - Closed Loop Data 
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Figure 5.14 : Error Distribution (Output 1) 
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Figure 5.15 : Error Distribution (Output 2) 
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Figure 5.16 : Error Distribution (Output 3) 
 

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

Error Value

Fr
eq

ue
nc

y

 

Figure 5.17  : Error Distribution (Output 4) 
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5.7 Chapter Summary 

The idea of modeling a particular behavior using neural networks is attractive for several 

reasons. Neural networks are computing systems characterized by the ability to learn from 

examples rather than having to be programmed in a conventional sense. Their use enables 

the behavior of complex systems to be modeled and predicted through training without     

a priori information about the systems structures or parameters.  

This chapter has dealt with this issue thoroughly and has shown that a trained 

(identified) MFNN model is a suitable candidate for MPC scheme. The model is 

identified with open loop data and its massive prediction capability and richness has been 

tested on closed loop data. This model certainly represents a good choice for use in the 

design of MPC. 
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Chapter 6 

Conclusions and Future Work 

In this chapter, some concluding remarks on this work are presented and the main 

contributions of this thesis are highlighted. 

6.1 Concluding Remarks 

The importance of plant model identification in closed loop operation has enhanced in 

recent years. For the purpose of model based controller design, closed loop identification 

offers a number of advantages such as better models, controller maintenance and 

validation.  

MPC applications in industry involve dozens of inputs and outputs. To determine 

such a multivariable model from a given data puts an unprecedented demand on model 

identification and estimation techniques. To deal with this predicament, direct closed loop 

identification method is implemented for MPC applications in this thesis. Different 

identification techniques based on ARMA, state space and neural network modeling 

schemes are analyzed in this regard. Their performance is examined on both simulated 

and field data. An industrial application is used for this purpose. It is shown through 

simulations that identification schemes involving linear ARX and ARMAX models give 
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consistency and optimal accuracy, on both simulated and field data. The advantages of 

using these closed loop identification and modeling schemes amongst other things, 

encompass performance improvement, reduced identification costs, controller diagnosis,  

online retuning of models, performance monitoring and avoiding unnecessary plant shut 

down for maintenance.   

 It is also shown that a MFNN model with its massive parallelism and learning 

capabilities can offer a new promising direction towards MPC design. In this regard, 

simulation results have shown that a neural network model trained with open loop data 

can perform extremely well and retain its prediction capability even when the loop is 

closed. 

6.2 Future Work 

During the course of this thesis, it was found that future research can be directed towards 

the following areas: 

 
• The state space framework provides a powerful tool for designing and analyzing 

MPC. Improvement of subspace (N4SID) algorithm for MPC closed loop relevant 

identification and model estimation would prove useful. 
 
• Further work is required to design a robustly performing predictive controller based 

on these identified models. 
 
• RNN based models have not been considered in this thesis. They can also be 

investigated for MPC relevant identification. 
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Appendix A 

Least Squares and Prediction Error Methods 

The family of methods that minimize the error between the predicted and the observed 

values of the output are called prediction error methods.  Consider the general model 

structure of the from 

    )(),()(),()( teqHtuqGty       θθ +=    (A1.1) 

where G is the dynamics model and H the noise model. u(t) and y(t) are measured inputs 

and outputs respectively and e(t) is an uncorrelated random sequence. The parameter 

vector ? is confined to a subset of dℜ , called dD  where d is the dimension of ? 

d
d ℜ⊂∈   D  θ      (A1.2) 

The set of models in which the estimation procedure will search for the best model is 

determined by Eqs. A1.1 and A1.2.  The one step ahead predictor for the model structure 

in Eq. A 1.1 is  

   )()),(()(),(),()|(ˆ 11 tyqHItuqGqHty          θθθθ −− −+=  (A1.3) 
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)|(ˆ θty  denotes a prediction of y(t) given the data up to and including time 1−t  and based  

on the model parameter vector ?. The prediction errors are  

   ( ))(),()(),(),(ˆ)(),( 1 tuqGtyqHtytyt           θθθθε −=−= −  (A1.4) 

Given the model of Eq. A1.3 and measured data ZN, the prediction error estimate is 

determined through 

     ),(minargˆ N
NDN ZV
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∈

=    (A1.5) 

by minimizing the following criterion function 
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For predictors that are linear in the data a closed form solution (least squares method) can 

be found. In other cases nonlinear search algorithms (prediction error method) are 

required to find a solution. 

A.1 Least Squares Estimate 

If the predictor is a linear function of the unknown parameters then the model in Eq. 1.1 

can be expressed as: 

     )()(),( ttty T εθϕθ +=       (A1.7) 

Here f  is an n-vector of regressors, the regression vector and θ  is an n-vector of unknown 

parameters. The prediction error becomes 
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    θϕθε       )()(),( ttyt T−=     (A1.8) 

and the criterion function resulting from Eq. A1.6 is 
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This is the least squares criterion for the linear regression of Eq. A1.7. The name 

‘equation error method’ also appears in the literature. The unique feature of this criterion, 

developed from the linear parameterization and the quadratic criterion is tha t it is a 

quadratic function in ?. Therefore, it can be minimized analytically, which gives, provided 

the inverse exists, the least squares estimate (LSE). 
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The Eq. A1.10 can also be expressed as 

     Y FF)F T    1(ˆ −=θ     (A1.11) 

where 
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Least squares estimate method is also known as a special case of the prediction error  
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(identification) method. This method holds for FIR and ARX models only.   

In the case of ARMAX and OE models, a numerical search algorithm is required to 

find the parameter estimates θ̂  that minimizes VN (?). Guass-Newton algorithm is 

commonly used for this purpose. This algorithm is briefly discussed in the following sub-

section. 

A.2 Gauss-Newton Algorithm (Prediction Error Method) 

In general the criterion function of Eq. A1.9 cannot be minimized by analytical methods. 

Least squares estimate method does not give consistent estimates if the noise is not a 

sequence of independent and identically distributed random variables (white) in Eq A1.1. 

In this case, methods for numerical minimization of the function V(?), update the estimate 

of the minimizing point iteratively. This is usually done according to 

     )()()1( ˆˆ iii f     αθθ +=+     (A1.12) 

where )(if   is a search direction based on information about V(?) acquired at previous 

iterations, and a is a positive constant such that an appropriate decrease in the value of 

V(?) is obtained. Normally the correction in Eq. A1.12 is chosen in the Newton direction 

[36]: 

    [ ] )ˆ()ˆ( )(1)()( i
N

i
N

i VVf θθ ′′′−=
−

        (A1.13) 

Here )(ˆ iθ  denotes the ith iteration point in the search. The criterion of Eq . A1.6 has the 

gradient (Soderstrom et. al.  [7]) 
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where the notation 
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At the global minimum point θε ,(t  becomes asymptotically (as N →  ∞) white noise 

( )(),( 00 tet   =θε ) which is independent of ),( θψ t . Then 
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It is appealing to neglect the second term in Eq. A1.16 for two reasons. First is that by 

construction )(θNV ′′  is guaranteed to be positive definite. Therefore the loss function will 

decrease in every iteration if a is chosen appropriately. Second, the computations are 

simpler. The algorithm obtained in this manner is written as 
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This is called Gauss-Newton algorithm and is generally referred to as the prediction error 

method.  
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Appendix B 

Sub Space Identification Method 

Subspace identificatio n aims at constructing state space models from input-output data. In 

this method first the (Kalman filter) states are estimated directly (either implicitly or 

explicitly) from input-output data, then the system matrices are obtained. In the model in 

Eqs. B1.1 and B1.2, m
ku ℜ∈  is the input, n

kx ℜ∈  is the state and l
ky ℜ∈  is the output. 

kw  and kv  are zero mean, white noise sequences. 

    kkkk wBuAxx ++=+   1     (B1.1) 

    kkkk vDuxy ++= C       (B1.2) 

The main steps in N4SID algorithm are the following [65]: 

• Determine the model order n and a state sequence estimates jiii xxx ++ ˆˆˆ 1 L .  

They are found by first projecting row spaces of data block Hankel matrices, and  

then applying a singular value decomposition. 
 

• Solve a least squares problem to obtain the state space matrices A, B, C, and D. 
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B.1 Notation 

In this section, some notations are introduced. In Section 1.1, the notations for the data 

block Hankel matrices and in Section 1.2 for the system related matrices are presented. 

B.1.1 Block Hankel Matrices and State Sequences 

Block Hankel matrices with output and/or input data play an important role in subspace 

identification algorithms. These matrices can be easily constructed from the given input-

output data. Input block Hankel matrices are defined as 

jim

jiiii

j

j

i

uuuu

uuuu
uuuu

U    
         ×

−++−

−

− ℜ∈





















=

211

321

1210

1|0

L
LLLLL

L
  (B1.3) 

The number of block rows (i) is selected as larger than the maximum order i.e. i > n. The  

number of columns (j) is typically equal to s-2i+1, which implies that all s available data  

samples are used. In any case, j should be larger than 2i-1. 

From here on the following input matrices notations are used 

    12|1|0 −− == iifip UUUU            ,           (B1.4) 

Here, the subscript ‘p’ refers to ‘past’, ‘f’ refers to future. The matrices +
pU  and −

fU  on 

the other hand are defined by shifting the border between past and future one block row 

down. They are defined as ip UU    |0=+  and 1|1 −+
− = iif UU  2   . Similar definitions hold for the 

block  Hankel  matrices  with  the  output  vectors, which  will denoted by pY  and fY . 

For prediction purposes a combination of input and output are used as regressors and 
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defined as 
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State sequences play an important role in the derivation and interpretation of 

subspace identification algorithms. The state sequence Xi is defined as: 

    ( )       j  ×
+++ ℜ∈= n

j-ij-iii

def

i xxxxX 121 L   (B1.6) 

where the subscript i denotes the subscript of the first element of the state sequence. 

 
B.1.2 Model Matrices 

Subspace identification algorithm makes extensive use of the extended observability 

matrix iΓ  which is defined as: 
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It is assumed that {A,C} are observable, which implies that the rank of iΓ  is equal to n.  

 
B.1.3 Geometric Tools 

In section 2.1 through 2.2 the main geometric tools used to reveal some system 

characteristics are introduced. They are described from a linear algebra point of view, 

independent of the subspace identification framework which will be discussed in the next 

sections.  
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In the following sections it is assumed that the matrices jpA     ×ℜ∈ , jqB     ×ℜ∈  and 

jpC     ×ℜ∈  are given (they are dummy matrices in this section). It is also assumed that 

),,max( rqpj   ≥ , which will always be the case in the identification algorithm. 

 
B.1.3.1 Orthogonal Projections 

The orthogonal projection of the row space of A into the row space of B is denoted by A/B 

and its matrix representation is  

    BBBABABA †TT
B       )(. =∏=    (B1.8) 

where †•  denotes the Moor-Penrose pseudo- inverse of the matrix and B∏  denotes the 

operator that projects the row space of a matrix onto the row space of the matrix B.   

Similarly ⊥BA  is short hand for the projection of the row space of A onto ⊥B , the 

orthogonal complement of the row space of B: 

    )(/. B        ∏−=−=∏=⊥
jB IABAAABA   (B1.9) 

The combination of the projections B∏  and ⊥∏
B  decomposes a matrix A into two 

matrices, the row spaces of which are orthogonal: 

      ⊥∏+∏=
BB AAA        (B1.10) 

The matrix representation of these projections can be easily computed using RQ 

decomposition of 







A
B

, which is the numerical matrix version of the Gram-Schmidt 

orthogonalization procedure. Let A and B be matrices of full rank and let RQ 

decomposition of 







A
B

 be denoted by 
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where )()( dpqpR +×+ℜ∈      is lower triangular, with qqR ×ℜ∈  11 , qpR ×ℜ∈  21 , ppR ×ℜ∈  22  and 

)( qpjQ +×ℜ∈      are orthogonal i.e. ( ) 
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1      . Then, the matrix 

representations of the orthogonal projections can be written as 

     TQRBA 121   =      (B1.12) 

     TQRBA 222    =⊥     (B1.13) 

B.1.3.2 Oblique Projections  

A matrix A can also be decomposed as a linear combination of the rows of two non-

orthogonal matrices B and C and of the orthogonal complement of B and C. This can be 

written as: 
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   (B1.14) 

 The matrix RCC is defined as the oblique projection of row space of A along the row 

space of B into the row space o f C: 

     CRCA CB   =      (B1.15) 

The oblique projection can also be interpreted through the following recipe: project the 

row space of A orthogonally into the joint row space of B and C and decompose the result 

along the row space of B and C.  

If the RQ decomposition of 
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C
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 is given by Eq. B1.17,
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then the matrix representation of the orthogonal projection of the row space of A onto the 

joint row space of B and C is equal to (see previous section): 
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This can also be written as linear combination of the rows of B and C: 
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The oblique projection of the row space of A along the row space of B onto the row 

space of C can thus be computed as 
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B.2 Subspace Identification Algorithm (N4SID) 

In this section, N4SID algorithm for the identification of A, B, C, D, Q, R and S matrices 

is presented. The algorithm works in two main steps. First the row space of Kalman filter 

state sequence is obtained directly from input output data, without any knowledge of the 

system matrices. This is explained in Section 3.1. In the second step, which is given in 
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Section 3.2, the system matrices are extracted from the state sequence via a least squares 

problem. 

 
B.2.1 Calculation of a State Sequence 

The state sequence of a combined deterministic–stochastic model can again be obtained 

from input output data in two steps. First, the future output row space is projected along 

the future input row space into the joint row space of past input and past output. Singular 

value decomposition is carried out to obtain the model order, the observability matrix and 

a state sequence, which has a very precise and specific interpretation. 

B.2.1.1 Oblique projection 

 RQ decomposition is used to compute the oblique projection. 








p

p

fUf Y
U

Y  . Let 1|0 −iU  2  

be the 2mi x j  and 1|0 −iY  2   the  2li x j  block  Hankel  matrices of the input  and output obs- 

ervations. Then the RQ decomposition of 







Y
U

 is partitioned as follows: 

 

   





















































=



























−+

−

−+

−

T

T

T

T

T

T

ii

ii

i

ii

ii

i

Q
Q
Q

Q
Q
Q

RRRRRR
RRRRR

RRRR

RRR
RR

R

Y
Y

Y
U

U
U

6

5

4

3

2

1

666564636261

5554535251

44434241

333231

2221

11

1|1

|

1|0

1|1

|

1|0

0
00

000
0000
00000

   

 2 

  

  

 2 

  

  

 (B1.20) 

The matrix representation of the oblique projection 








p

p

fUf Y
U

Y   of the future output row  

space  along the future  input  row space  onto the  joint  space of  past  input  and  past 

output, is denoted by iο  and is obtained as follows (see section B1.3.2): 
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where, 
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from which 
pUR , 

fUR , and 
pYR  can be calculated. The oblique projection 
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where, 

( )6564636261

5554535251

44434241

333231

2221

11

0

00
000

0000

RRRRR

RRRRR
RRRR

RRR
RR

R

RRR
pYpUpU

   =































+++  (B1.24) 

Under the assumption that: 

• The process noise kw  and measurement noise kv  are uncorrelated with input ku  

• The input uk is persistently exciting of order 2i  
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• The number of available data is large, so that ∞→j   

It can be shown [65] that the oblique projection iο  is equal to the product of the extended 

observability matrix   iΓ  and a sequence of Kalman filter state. 

     iii X~    Γ=ο      (B1.25) 

Similarly the oblique projection 1−iο  is equal to 

     !11
~

+−− Γ= iii X   ο      (B1.26) 

B.2.1.2 Singular value decomposition 

The singular value decomposition of )()000( 4443424111 RRRRRRR
pYpU    +   is 

equal to : 
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 (B1.27) 

where nliU     ×ℜ∈1 , nnS     ×ℜ∈1  and nliV     ×ℜ∈1 . Then the order of the system of Eq. B1.1 is 

equal to the number of singular values in Eq. B1.27. The extended observability matrix 

 iΓ  is chosen as: 

     2/1
11 SUi    =Γ      (B1.28) 

and the state sequence iX~  is equal to : 
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The ‘shifted’ state sequence 1
~

+iX , on the hand can be obtained as 

    ( )    11
~

−+ Γ= iii

†

X ο      (B1.30) 

where 1−Γ=Γ ii    denotes the matrix iΓ  without the last l rows.  

 
B.2.2 Computing the System Matrices 

From previous section, the following information has been found. 

• The order of the system from inspection of the singular values of Eq. B1.27  

• The extended observability matrix iΓ  from Eq. B1.28 and the matrix 1−Γi  as  iΓ  

which denotes the matrix iΓ  without the last l rows. 

• The state sequences  iX~  and 1
~

+iX . 

The state space matrices A, B, C and D can now be found by solving a set of over-

determined equations in a least squares sense: 
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This is the N4SID algorithm commonly used in state space modeling schemes. 
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Nomenclature 

Abbreviations 
 
ARMA  AutoRegressive Moving Average 

ARX   AutoRegressive with eXternal input 

ARMAX  AutoRegressive Moving Average with eXternal input 

CV   Controlled Variable 

DMC   Dynamic Matrix Control 

MV   Manipulated Variable 

MFNN   Multilayer Feedforward Neural Network 

MIMO   Multi-Input Multi-Output 

MPC   Model Predicative Control 

N4SID   Numerical algorithm for Subspace State Space System Ident ification  

NNARX  Neural Network AutoRegressive with eXternal input 

OE   Output Error 

PEM    Prediction error method 

RBFNN  Radial Basis Function Neural Network 

RNN   Recurrent Neural Network 

SISO   Single-Input Single-Output 

 

Notations 

A(q-1)   The polynomial for the poles of the system 

d1   Measure disturbance 1 (Ambient Temperature) 

d2   Measure disturbance 2 (Feed Compressor Discharge Pressure) 
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dD    The set of values over which θ  ranges 

e(t)   White noise sequence with zero mean 

E(t)   The error vector for MIMO system 

E   Mathematical expectation 

f  (i)   Search direction at iteration i 

)(•kg    Activation function 

G(q-1,θ)  Transfer function in a model set, corresponding to parameter value θ 

pH    Prediction horizon 

cH    Control horizon 

N   Available data samples 

1−iο   Oblique projection of the row space of 12| −iiY   along the row space of   

  12| −iiU   on the row space of 1|0 −iW   

q-1   Backward shift operator q-1x(t) = x(t-1) 

)(tq i     Output signal of neuron i 

Q   Tracking error weighting matrix 

r(t)   Set point variable at time t 

R   Control move penalty weight matrix 

u(t)   Input variable at time t 

u(k)   Controller output and process input at sample time k 

u1   Input variable 1 (LP Residue Gas Pressure Set point) 

u2   Input variable 2 (Jump Over Valve Opening) 

u3   Input variable 3 (Trim Re-boiler Valve Opening) 

u4   Input variable 4 (Demethanizer Tray 6 Temperature) 

1|0 −iU     Input block Hankel matrix. The subscript indicates the indices of the  
  first column of the matrix 

+
pU   Past inputs iU   |0   

kv    Measurement noise 

),( N
N ZV θ   Criterion to be minimized 

kw    Process noise  

jiw    The weight of a connection between neurons i and j 



 

  

222 

 

w(k)   Reference trajectory at sample time k  

x(t)   State vector at time t  

Xi   State sequence.  

y(t)   Output variable at time t 

y1   Output variable 1 denotes Bottom C1 over C2 

y2   Output variable 2 denotes LP Residue Gas Valve Opening 

y3   Output variable 3 denotes Demathanizer Pressure Differential 

y4   Output variable 4 denotes Tray 6 Bypass Valve Opening 

y(k)   Process output at sample time k 

)|(ˆ θty   Predicted output at time t, based on data samples 1−tZ    

 

Greek Symbols 

α   Learning rate 

)(l
jβ     Basis function of neuron j in layer l 

 iΓ    Extended observability matrix 

)(l
jδ    Gradient of neuron j in layer l  

 ),( θε t   Prediction error 

ϕ(t)   Regression vector at time t 

 ),( θψ t   Gradient of  ),( θε t  with respect to θ 

η    Learning coefficient 

θ   Vector used to parameterize models  

B∏    Operator projecting the row space of a matrix onto the row space of B
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