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Chapter 1

Introduction

Model Predictive Control (MPC) has developed considerably over the last few years, both
within the research control community and in industry. It integrates optimal control,
stochastic control and multivariable control. The term MPC does not designate a specific
control strategy but a large range of control methods, which make an explicit use of a
model of the process to obtain the control signal by minimizing an objective function.
These predictive controllers are based on prediction of the future behavior of the process,
forecasted using this model of the process. Industrial project experience has shown that
the most difficult and time-consuming work in an MPC project is modeling and
identification [1].

The dual topics of identification for control and model based control design have
attracted extensive discussions for the past two decades, which naturally lead to the
currently innovated concept of integrated system identification and control design. In
MPC scheme, the controller can be seen as an agorithm operating on a model of the
process (subject to disturbances) and optimized in order to reach given control design

objectives. The performance of the controller depends on this identified plant model.



Curent practice of MPC industry is to use a series of open loop and single
variable step tests [1]. The tests are carried out manually. The advantage of this test
method is that control engineer can watch many step responses during the tests and can
learn about the process behavior in an intuitive way. On the other hand, the biggest
problem with open loop identification test is its high cost in time and manpower.
Problems arise when these (open loop) identified models start exhibiting degradation in
their performance i.e. they can no longer describe correctly the input-output behavior of
the process and become inadequate after some span of time. Many reasons can be
associated with this phenomenon like change in process operating conditions, drift in
process onditions (controlled variables), environment conditions, which are not taken
into account during identification, and, instability and inherent feedback mechanisms of
the plant. Examples of such processes are refineries, where an increase or decrease in flow
of crude oil can change the entire dynamics of the plant model and high purity distillation
columns, which are often ill-conditioned where top and bottom compositions have a
strong correlation which makes it difficult for the model to represent the process for a
long span of time.

The only practical solution existing in the industry today is to shut down the
controller and identify the model again, resulting in huge financial and production losses.
Widespread application of MPC technology requires more effective and efficient

method of multivariable process identification since modeling of the plant and design of

controller cannot be considered always as two separate issues.
This problem of process identification for MPC has started to attract attentions of
both academic institutes and industry. The problem of degradation can be dealt with

closed loop identifying the model and checking the prediction error between the identified



model and original model. This offers a number of practical advantages such as obtaining
better models, validation, and controller maintenance and order reduction.
The next section gives an introduction to closed loop identification followed by the

literature review.

1.1 Closed Loop Identification

Closed loop identification has often been suggested as a tool for identification of models
that are suitable for control, so called identification for control. The main motivation has
been that by performing the identification experiments in closed loop it is possible to
match the identification and control criteria so that the model is best fit to the data in a
control relevant way. In the past, closed loop identification was considered difficult due to
lack of modern day fast computing facilities and apprehensions of the industry in generd
due to financial constraints. However, access to better research and fast computing
facilities in the last decade has established the importance of closed loop identification in

the process industry.

Many systems work under closed loop control as in Fig. 1.1, where the signal r(t)
can be a reference value or a set point, v(t) is noise disturbance that is modeled as a
filtered zero mean white noise, u(t) and y(t) are the process input and output respectively.

The basis for all identification is the available data set

zN ={y@),.....y(N)u(@),......u(N)} (11)

consisting of input-output signals, u(t) and y(t), t=1,...,N. The process output and the

control input are given by [2]:



v(t)
0" u(t) )
ca™) G S/
Figure 1.1: Typical feedback system
y(©)=G(a) u(®) +v(t) (12)
(1) =G(a ) u(t) +H (@ )et) (13)
u(t) =C(q )(r () - () (14)

Where, G(q?) is the process transfer function, H(q}) is the noise transfer function and
C(q?) is the controller transfer function. e(t) is zero mean white noise sequence and q* is
the unit backward shift operator. The open loop transfer function G(q*) and the controller

transfer function C(q'*) are given by

o1 -1 LY
G(a™) = B(q_l) _ _bg : ............ +b.q i (15)
AQ7) 1-aq9 - . -aq™
-1 -1 -my
C(q'l) _ Q(q_l) _ % + ql(:_11 L +qmq_m (16)
P(Q7) 1+pg +.n. +p,q "
The closed loop system can be represented as
y(t) =S(a)G(@ )C(a r(t) + S(q () 17

where () is the sensitivity function,

s =1 +6@he@h)’ (18)



Eq. 1.7 can also be expressed as
y(t) =G (q )r(t) + v, (t) (1.9

where G,(q'!) and v_(q*) aredefined asin Eqs 1.10and 1.11
G.(a") =S(a)G(a)C(q ™) (110)

V. (@) =S(@)v(t) (111)

In closed loop configuration, the input can be expressed as

u(t) =C(q ")S(a )r(t) - C(a)S(a () (1L12)

In general, all closed loop identification methods can be classified as direct, indirect,

or joint input-output methods.

1.1.1 Direct Identification Method

In the direct approach, the method is applied directly to measured input-output (u, y) data
and no assumptions whatsoever are made on how the data was generated. In generd,

model structure of the following form is used.

y(t) =G(q,q)u(t) + H(g™",q)e(t) (113)

where G is the dynamic model and H is the noise model. ? is the parameter vector
that has to be estimated. The one step-ahead predictor (Appendix A) for direct

identification is

J(tlq)=H @ q)G@ Hau®) +0- Hi @ ha)yt)  (114)



1.1.2 Indirect Identification M ethod

The indirect method assumes knowledge of the controller used in the identification
experiment and the idea is to identify the closed-loop system and to compute the open
loop parameters from this estimate, using the knowledge of the controller. The model

structure for indirect method is

y(t) =G (q,q)r(t) + H. (g )e(t) (L15)

where G, (qg,q) isamodel of the closed loop system. H. is afixed noise model which is

standard in indirect method (often equal to 1). The corresponding one-step-ahead

predictor is

§(t 19) =H:2(q )G (aLa)r (1) + - H A (a™)y) (116)

From Eq. 1.16, it is clear that estimating q is an open loop problem since the noise
and the reference signal are uncorrelated [3]. This implies that any identification method

that works in open loop can be used to find the estimate of the closed-loop system. In the

first step, G, isestimated from measured y and r, giving éc . Then the open loop transfer

function G is found in the second step

6@ =G @)l - G(ahe@)’ (117)

1.1.3 Joint Input-output Method

The third approach, the joint input-output method amounts to modeling the input u(t) and



the output y(t) jointly as outputs from an augmented system driven by the reference signal
r(t) and the un-measurable noise v(t). Given an estimate of this augmented system, the
open loop model parameters (and the controller) can be estimated. In this method exact
knowledge of the controller parameters is not required. However, it must be known or
assumed to be of a certain linear structure.

In the first step, measured reference signal () and input () are used to estimate a

model S of the sengitivity function S. Next this model is used to construct the signal

(t) = S(@"*)r ) (118)

which isthen used to identify the open loop system asin Eq. 1.18.

§(th) = G(a*,a)d(t) (119)

The next subsection gives a detailed literature survey on some of the major works donein

the field of closed loop identification.

1.2 Literature Review

Identification is the experimental approach to process modeling. The system identification
can be divided into a number of sub problems; experimental design, data collection,
model structure selection, model estimation and model validation. These steps are
applicable in closed loop identification as well. Mathematical models of dynamic systems
are of rapidly increasing importance in engineering and today all designs are more or less
based on mathematical models. If the physical laws governing the behavior of the system

are known, so called white-box models of the system can be constructed. At the other end



of the modeling scale, there are so called, black-box modeling or identification. Black-box
models are constructed from data using no physical insight whatsoever and the model
parameters are smply knobs that can be turned to optimize the model fit.

In the seventies, there was a very active interest in issues concerning closed loop
identification as summarized in the survey paper by Gustavson et a. [4]. Much of the
attention was devoted to identification and accuracy aspects In 1983 Sinha and Kuszta [5]
provided the classification of closed loop identification schemes based on signals, plant
and regulator architecture for linear systems. The same year Ljung and Soderstrom [6]
discussed implementation of recursive identification in closed loop to the adaptive control
problem In 1989, Soderstrom and Stoica [7] presented parametric identification methods
that were typicaly directed towards solving te consistency problem, considering the
situation that the plant and disturbance model could be modeled exactly. Polderman and
Praagman [8] addressed the problem of classifying the adaptive control problems for
which, despite the fact that the system was rot identified in closed loop, the system was
controlled properly (meaning that due to some miracle a wrong estimate would
coincidently give the right controller). As a solution to this paradigm they presented a
recursive procedure in which the controller parameters were updated online on the basis
of model parameters identified using prediction error method.

The advent of the 90s saw a renewed interest in the closed loop identification of

models that were particularly suitable for model-based (robust) control design. Most

controller design schemes till now were concentrated on open loop identification In 1990,
Liu and Skelton [9] presented an iterative controller design scheme which consisted of
indirect closed loop identification of the plant and then controller design cycles. They

utilized g-Markov cover agorithm, which obtained state space realization of the unknown



plant usng only input-output data. A similar approach was presented by Klauw and
Verhaegen [10] in 1991. They used the joint input-output identification scheme in time
domain to identify a linear MIMO process controlled by a Proportional Integral (Pl)
controller. Both the process and the controller were assumed to be linear-time invariant
causal systems. The closed loop system was considered as a joint system with white noise
inputs, generating the process input and output, which were used to construct a Markov
model. From this model minimal realizations of the process and controller were obtained.
Stochastic redlization was used to solve the spectral factorization problem for this
approach Scharma [11] presented the idea of treating approximate identification and
model based control as joint problem when designing a high performance control system.
He proposed an iterative scheme based on frequency response identification and robust
control design to solve this joint problem. Each identification step used the previously
designed model based controller to obtain new data from the plant. The identification was
done using coprime factorization of the unknown plant in the frequency domain. Musto
and Lauderbaugh [12] presented a heuristic approach capable of generating ARMAX
models of linear systems to be used for controller design in an expertaided adaptive
control system, while the system was aline (closed loop). The proposed algorithm also
contained heuristics for sampling rate selection, delay estimation and model validation.

In 1994, Voda and Landau [13] used an iterative closed loop identification scheme
to design a PID controller by using a proper data filter in the model estimation. They used

ARMAX model of the plant for real time control of air heater process and feed tank
pressure of the heating company of Grenoble. In their proposed iterative scheme, each
identification step used the peviously designed controller to obtain new data from the

plant, which was then filtered to minimize a filtered prediction error to obtain a new
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model of the plant. The same year Klauw et al. [14] applied both the direct and two-step
(joint input-output) identification approaches to identify a suitable model for a two-input-
two-output distillation column using closed loop data. They used Output Error (OE) and
linear regression model schemes based on orthonormal basis functions. According to
them, the two gep (joint input-output) method performed better than the direct method
and considerable improvement was obtained in the prediction capabilities of the model
when compared to the open loop identified model.

By 1995 the problem of unavailability of plants br identification in the open loop
due to high costs associated with it, led to researchers like Hof and Schrama [15] to
present a survey of many iterative closed loop identification schemes related to the
problem of designing high-performance model based controllers for plants with unknown
dynamics. They also presented the idea of separating the analysis of both identification
and controller design and to have a joint performance criterion of both parts. They
proposed that at each iteration data should be collected online, identification performed
and the controller should be re-designed. If the controller satisfies some robustness
criteria then it should be implemented otherwise a new identification should be
performed. The same year Gessing and Lachuta[16] showed that in the case of a constant
set point and an ARMAX model resulting from the discretization of a continuous time
plant, the parameters of the plant could not be identified in closed loop system controlled

with a minimum variance controller. They showed that varying set point has an essentia

influence on the identifiability of the plant and observed that there does exists a point in
which parameter estimates remain accurate but later on the noise causes a slow drift (from
the true valuses) of these parameters.

In 1996, Hjamarsson et a. [17] compared open loop versus closed loop
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identification when the identified model is used for control redesign. The measure of the
model based controller performance was the variance of the error between the outputs of
the ideal closed loop system and that of the actual closed loop system. They showed that
the optimal experiment setup is to identify the system with some optimal controller
operating on the plant (closed loop). Landau and Karami [18] used a RST digital
controller to present an iterative closed loop identification scheme. The objective of their
scheme was to minimize the error between the true closed loop system (reference) and the
designed (model) system by using new data acquired in the sequence of operations carried
out. The error was then used to update the parameters of the plant model. They used
Closed Loop Output Error (CLOE), Filtered Closed Loop Output Error (FCOE) and
Extended Closed loop Output Error (XCLOE) identification algorithms. Geverns et al.
[19] derived the asymptotic variance expressions for identified models based on several
different closed loop identification methods and compared them to the respective
expressions for the open loop stuations. They also showed mathematically the
conseguences for the variance of resulting model based controller designs. These results
demonstrated that all identification schemes for closed loop led to the same asymptotic
variance expressions and that the controllers designed with closed loop identified model
showed better variance results. Hof and Callafon [20] in 1996 compared the classic
indirect closed- loop identification and the dual- Y oula parameterization technique [15] and

provided severa relationships between the two approaches. They showed that dual-Y oula

parameterization technique, which guaranteed the identified model to be stable, was in
fact a generalization of the indirect identification scheme. They highlighted the problem
of controlling the model order when using these two techniques.

Robust control methodologies aim to design controllers guaranteed to meet the
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specifications not for a single nominal model, but for al models obtained by given
perturbations of the nomina model. Such model set is called uncertainty model. With this
in mind, Milanese et a. [21] showed that identifying a model by minimizing the
discrepancy between the closed loop performance predicted by the model and the one

actually achieved on the plant, is equivalent to finding the best approximated Youla

parameterization (indirect method) of the plant in a suitably weighted H, norm. Using
this approach, they derived an optimal uncertainty model for the dual Youla
parameterized plant and obtained an uncertainty model for the actual plant. This model

was then used for designing arobust controller.

Ljung and Forsell [22] compared the statistical properties of a number of closed-
loop identification methods and parameterizations. On comparison of asymptotic
variances for the parameter vector estimates, they showed that the indirect method failed
to give better accuracy than the direct method. They concluded that a directly applied
prediction error method would give consistency and optimal accuracy even with closed
loop data, provided the noise model could describe the true noise properties. Sun et a.
[23] proposed a new indirect identification algorithm for linear discrete time closed-loop
system based on output-over sampling scheme, which did not require knowledge of the
reference signal nor of the controller. However, they assumed that the structure of the
plant was known in this scheme. Linard et al. [24] extended two linear methods for the
identification of approximate models of an open loop plant on the basis of closed loop
data to the nonlinear case. The first method was an indirect method based on
identification of the sensitivity function [15] and the second method was right co-prime

factor identification (joint input-output) method, which identified the sensitivity and
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complementary sersitivity function of the closed loop system. Yoneya et d. [25] proposed
an iterative closed loop identification approach which employed a linear functional model.
This model was used to iterate the closed loop system to a solution. This iterative scheme
worked on the notion that if the model did not suit closed loop control, the model based
controller behavior would display significant different characteristics from the one
predicted with the nominal plant. From this difference a new plant model was identified
and this procedure continues till a best controller performance was achieved.

Huang and Shah [26] discussed the accuracy aspects of identification and the role of
filtering in closed- loop identification. They showed that the key difference between closed
loop and open loop identification methods was the existence of the sensitivity function,
which inversely affects the variance and bias errors of the estimate under closed loop
conditions. They proposed a two-step (joint input-output) closed loop identification
algorithm, which through the use of appropriate data filtering could estimate a suitable
model from closed loop data.

Geverns et a [27] presented a detailed paper in 1998, highlighting the role of
feedback (closed loop) in the identification and validation of a model, which was to be
used for control design. They examined the role of controller in changing the
experimental conditions, effects of open loop and closed loop identification in terms of
bias and variance errors in the context of identification for control. The same year Hof

[28] presented a survey of all the direct and indirect algorithms that were either being

used or modified for closed loop identification. According to him closed loop
experimental conditions should not be considered as a degenerate or unfavorable situation
for identifying dynamic systems. He evaluated characteristic properties of both direct and

indirect identification methods on the basis of an explicit assessment criterion, including
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aspects of bias and variance.

Bruyne et a. [29] presented gradient expressions for closed loop identification
scheme based on the minimization of a certain criterion and a parameterization that was
tailored to the closed loop configuration. According to them, the main advantage of these
gradient expressions was that they could easily be extended to non standard identification
criteria in which the plant, the parametric model and the controller could be nonlinear.
Kulikov et al. [30] presented a modified version of least squares algorithm for online
identification. The purpose of this algorithm was to estimate the delay of linear part of a
digital model in continuous time and parameters of the numerator and denominator of the
transfer function in discrete time. This scheme allowed for the correction of the delay in
discrete time and was shown to be efficient for adaptive control systems design.

The advent of 1999 saw a lot of research being conducted in closed loop
identification field. Sun et al. [31] in continuation of their earlier work [23], presented a
new direct closed loop identification algorithm for an unstable discrete time linear system
that was run by a feedback controller using only input-output data. This technique was
based on the output inter-sampling scheme and did not require the reference signal to keep
the Persistently Exciting (PE) property. Chou and Verhaegen [32] used indirect approach
to identify a Wiener model of a high purity distillation column in closed-loop. Psadyn et
al. [33] used subspace, partial least squares, ordinary least squares and output error
approaches both for closed loop and open loop identification of a waste water reactor.

They showed that in their case, open loop identification proved very effective and closed
loop operational data could not be used for model identification regardless of the method
(parametric or nonparametric). Forsell [34] in his thesis report provided a detailed

description of methods for closed loop black-box identification of linear, time invariant
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dynamical systems given discrete time data. He focused mainly on prediction error
methods and suggested modified versions of output error and BoxJenkins model
structures in the case of unstable systems. Ljung and Forsell [3] discussed closed loop
identification approaches and showed that most of the common methods could be viewed
as specia parameterizations of the general prediction error methods. They also proposed a
projection method for closed loop identification which allowed approximation of the open
loop dynamicsin agiven and user chosen frequency domain norm Ljung[36] in his book
provided a lot of mathematical details related to closed loop identification techniques.
Landau et a. [37] focused their research on recursive identification of nonlinear plants
operating in closed loop with a nonlinear controller using closed loop output error
(prediction error) identification schemes. An interesting aspect of their research was that
they tried to show that a number of closed loop output error identification schemes could
be used in nonlinear systems, which by itself was a notable effort. Gaspar et al. [38]
motivated by different engineering problems caused by large uncertainties in the
modeling of processes, presented a closed loop identification method based on the
construction of Generalized Orthonormal Basis Functions (GOBF). This method utilized
appropriately chosen basis functions generated by all-pass functions having poles close to
the poles of the actual system.

Jnet. al. [39] in 2000, presented yet another approach by which, system transfer
function was identified from closed loop data by using state space identification technique

and correspondingly a LQG controller was redesigned. The same year Zheng [40] used
Bias-Eliminated Least-Squares (BELS) method for direct identification of closed loop
systems with colored noise. Sun et al. [41] extended the output inter-sampling based

closed loop identification approach to the case where an unstable plant was disturbed by
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stochastic colored noise. They studied the time domain and frequency domain properties
of the inter-sampled plant model and proposed severa identification algorithms. Forsell
and Ljung [42] used flexible, parameterized noise model in the prediction error method to
eliminate the bias when applying an output error model with a fixed noise model/prefilter
to a closed loop data. They termed this approach as projection method. However they
showed that regardless of the fact that this method gave consistent estimates, the accuracy
of it was sub-optimal. Schwarm et al. [43] presented a Model Predictive Control and
Identification scheme (MPCI) that employed online optimization to perform closed loop
identification and controller adaptation. This scheme was shown to identify single input
single output (SISO) system efficiently while satisfying standard MPC constraints and
keeping the process output robustly within specified bounds Hof et a. [44] presented a
GUI (Graphical User Interface) based CLOSID toolbox for matlab, to be used for the
identification of linear systems on the basis of experimental data.

Recently in 2001, Ooi and Weyer [45] used direct closed loop identification
approach for irrigation channels using a lead lag controller. In this case the water level
was the controlled variable and gate position was the manipulated variable. Zheng [46]
presented a new algorithm based on the combination of least squares and bias correction
principle, for direct identification of closed loop plants. Zheng [47] applied conventional
least squares estimation technique to obtain closed loop parameter estimates of the

process model and then adjusted these parameters in order to remove the bias caused by

colored noise. This proposed method was called Bias Eliminated Least Squares Method
with No Prefiltering (BELSNP). Continuing with this work Zheng [2] in 2002, applied a
more improved version of his proposed BEL SNP method that could be used for indirect

identification of transfer function models for unstable plants in closed loop. However, this



17

method required prior knowledge of low order regulators Klerk and Craig [48] provided
an overview of different closed loop identification techniques with a simulation example.
The purpose of which was to motivate new researchers to enter into this field. Keviczky
and Banyasz [49] compared different variations of the Youla parameterization schemes
(indirect method) including the K-B parameterization. They introduced R and S
parameterization as a new form of Y oula parameterization schemes Wang and Yin [50]
presented their findings on timing complexity problem that occur in the identification of
unstable, non-minimum phase and time varying plants operating in closed loop. Eker and
Nikalaou[51] in continuation of their earlier work [43] presented a rigorous study of their
MPCI technique. Issues related to stability and convergence properties were discussed.
Leskens et al. [52] presented an application of a specific system identification procedure
to a municipa solid waste (MSW) incinerator. The proposed procedure was a
combination of two-stage (joint input-output) closed loop identification method as well as
the approach of highorder multiple-input-multiple-output (MIMO) ARX model
estimation followed by model reduction Katayama et al. [53] performed closed bop
identification of the deterministic part of the process in the framework of joint input
output approach. They used orthogonal decomposition technique to decouple the
deterministic part from the stochastic part of the process. They obtained the state space
models of the plant and the controller by applying a standard subspace method to the

deterministic component of the joint process.
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1.3 Motivation for Present Work

Dynamic models play a centra role in MPC technology. The assumption during MPC
design is that a reliable model of the plant under consideration is available. Normally
identification methods deliver a nominal model of the plant with unknown dynamics. The
performance achieved by this controller when applied to the plant is highly dependent on
the accuracy of this model. However, in red life situations, models that are identified
from open loop data are generally contaminated with errors and are inaccurate for many
reasons such as equipment degradation (e.g. catalyst change, heat exchanger fouling etc.),
low quality measurement data etc. Problem also arises when these models start exhibiting
degradation in their performance after some span of time. A number of reasons can be
attributed to this phenomenon like change in process operating conditions, drift in process
conditions, environmental conditions, instability and inherent feedback mechanisms of the
plant. Examples of such processes are refineries, where a change in the crude oil flow can
change the entire dynamics of the plant model, and high purity distillation columns where
the correlation between different controlled variables makes it difficult for the model to
represent the process for a long span of time. The only practical solution existing in the
industry today is to shut down the process and identify the model again, resulting in huge
financial and production losses.

This problem of process identification can be solved by using closed loop
techniques to identify the model. For this reason much research is being done on closed
loop identification According to Veres [54] identification for the purpose of controller
design is best achieved when the process is operating in closed loop under an optimal

controller. The phenomenon that the operating controller helps the identification of a
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model that is good for the controller itself is called synergy between control and
identification. This means that not only a model can help control design but vice versa. A
significant amount of research has been done on closed loop identification but not for
MPC. The reasons associated with this fact are that many of the closed loop identification
techniques proposed in the literature are based on the assumption that the existing
controller is linear and the process is single variable whereas MPC is inherently nonlinear
due to constraints imposed on it and the process under control is mostly multivariable.
Secondly MPC is not a structure like other classical controllers but is an algorithm that is
programmed to run a certain task under desired constraints. For this reason closed loop
identification methods based on joint input-output and indirect techniques cannot be used
for MPC as complete knowledge of the controller is not possible.

These issues motivated this work in which the objective is to show that the plant
model can indeed be identified in closed loop with the MPC running (online) using direct
identification techniques. Identification techniques based on least sguares method,
prediction error method, subspace method and neural network method are examined in

this regard.

1.4 Thesis Contributions

In this thesis, direct closed loop identification techniques are studied for MPC. An effort
to bring fresh perspective to this area is made. Different identification schemes for use in
closed loop identification for MPC have been quantified. ARX, ARMAX, state space and
OE models are used in these schemes. A multivariable Demethanizer column process

from a gas plant in Saudi Arabia has been used as a generic case study. The contributions
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can be enumerated as follows:

Model for Demethanizer column process is identified from open loop data
collected for a month by using single variable step testing at a sampling time of 1

minute.

For the purpose of collecting simulated closed loop data, a high performance MPC
comprising of 4 Controlled Variables (CV’s) and 4 manipulated variables (MV’ g
is designed for this complex Demethanizer column process, using the open loop

identified model.

Different modeling techniques based on least squares, prediction error and,
subspace identification methods have been tested for their accuracy and

consistency for use in closed loop identification for MPC process.

Closed loop field data is collected for the months of November, December and

January 2003 at a sampling time of 1 minute.

Best modeling techniques are highlighted and are tested on actual closed loop field

data.
Recommendations are made on the basis of these ssimulations.

Neural networks based NNARX mode is used to estimate the Demethanizer

column process from open loop data. It is shown through simulation that this

model retains its accuracy in a global sense, that is, it does not change and loose

its accuracy when tested with closed loop field data.
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1.5 ThesisOrganization

Thisthesisis organized as follows.

To make the reader familiar with the MPC concepts and terminology, Chapter 2
begins with an overview of MPC and key concepts related to it. This is followed by a
brief description of the Demethanizer column process under study and simulation results
for the open loop model identification are presented. MPC is then designed for the
Demethanizer column process using this open loop identified model. Closed loop
(simulated) datais then collected from this designed MPC process.

Chapter 3 deals with closed loop identification from simulated data. Simulation
results are presented and the best identification/modeling schemes are selected.

In chapter 4, the selected schemes are tested for their performance on real field data
from the Demethanizer column process running with MPC.

In Chapter 5, neural networks are introduced MFNN are used to model the
Demethanizer column process from the open loop data. Simulation results on the
performance of this model are presented in this chapter.

Chapter 6 presents the conclusions and avenues for future work.



Chapter 2

Design of MPC — Demethanizer Column

2.1 Introduction

The term MPC represents a family of model based controllers. The MPC family of
algorithms are designed on the basis of a multi-step optimization objective. In general,
several controllers moves in the future are computed but only the first control action is
implemented, hence these controllers are also referred to as receding horizon controllers.
The earlier versions of MPC are — the identification and command algorithm (IDCOM)

proposed by Richalet et al. [55] in 1978 and the dynamic matrix control (DM C) algorithm

due to Cutler and Ramaker [56] in 1980. Other well known variations of MPC include
model algorithmic control (MAC) by Rouhani and Mehra [57], multivariable optimal
constrained control algorithm (MOCCA) from Sripada and Fisher [58] and generalized
predictive control (GPC) by Clarke [59].

The underlying philosophy of MPC type control agorithms differs from
conventiona PID controllersin several aspects.

- An explicit model of the process is used within the control algorithm to determine

the control actions at every step based on the minimization of a cost function.

2
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- It is not restricted to single-input, single output (SISO) processes and can be

derived for and applied to multi-input, multi-output (MIMO) processes.

- The family of controllers has the ability to deal with hard constraints on the inputs
and outputs in an optimal way. This represents a significant step in terms of
practical implementation. The computational complexity of the optimization step
is restricted to a linear or quadratic program in the worst case. Thus these

algorithms can be easily implemented ont-line.

- At each sampling instant several control actions are calculated, only the first
control move is implemented. These controllers are thus known as receding

horizon controllers.

- In contrast to PID controllers, predictive controllers can also be derived for non
linear and multivariable processes. The concept of predictive control can be used
to control a wide variety of processes without the designer having to take special
precautions. It can be used to control ‘simple’ processes as well as ‘difficult’
processes, such as system with large time delay, processes that are norr minimum

phase and processes that are unstable.

Simplicity of design combined with its ability to tackle realities such as constraints
and interactions has helped MPC achieve its current popularity with the process industry.
The industrial success of these algorithms spurred the growth of MPC as a research area
in academia.

In this chapter, an overview of the key ideas involved in the classicad model
predictive control with a tutoria flavor is presented Section 2.2 illustrates the basic

concepts related to MPC technology as depicted in Fig. 2.1. Control objective in its
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commonly used forms and constraints are also high lighted with respect to their type.

Design Model
Parameters ‘ ‘

Controller

Design
Controller
Parameters
u y
Controller Process

Figure 2.1: Model predictive control scheme

2.2 ThePredictive Controller Concept

In model predictive control technique, the dynamic optimization problem is solved or+line
at each control execution. Process inputs are computed so as to optimize future plant
behavior over a time interval known as the prediction horizon. In the general case any
desired objective function can be used. Plant dynamics are described by an explicit
process model which can take, in principle, any required mathematical form. Process
input and output constraints are included directly in the problem formulation so that future
congtraint violations are anticipated and prevented. The first input of the optimal input
sequence is injected into the plant and the problem is solved again at the next time interval
using updated process measurements.

The various implementations of MPC preferred by the different vendors and users
are identical in their main structure, but differ in details. These details are largely

proprietary and are often critical for the success of the algorithm in an application [60].
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The generd structure of a process running with MPC is shown in Fig. 2.2. A model
is used to predict the future plant outputs, based on the past and current values and on the
optimal future control actions. These action are caluclated based on an optimization
algorithm that minimizes the performance index subject to the given constraints. Further
if there is disturbance and noise present, a disturbance model can be added, thus allowing

the effect of the disturbance to be taken into account.

Disturbances
Manipulated Controlled
Variebles Unit Variables
Process
Operating
Constraints
Measured Disturbance
Disturbances M odel
+
+
Controller Process S
M odel )
Optimization
& Constraint
Handling

Model Predictive Control

Figure 2.2: Model predictive control system

The methodology of all controllers belonging to MPC family is charcterized by the
the receding horizon strategy as follows
The future outputs for a determined horizon H, called the prediction horizon, are

predicted at each sampling instant k which denotes the time scale. These predicted outputs
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denoted by y =[y(k+D, y(k+2),.,y(k+H)]" ae dependent on the future control

moves given by u = [u(k),u(k+1),...,u(k+H - 1]" which are to be calculated and
sent to the system. A sequence of these future control movesis calculated by optimizing a

criterion in order to keep the process as closed as possible to the reference trgjectory;
w= [wW(k +1), w(k +2),...,w(k+Hp)]T, which can be a set point itself or a close

approximation of it. This criterion usually takes a form of a quadratic function of the
errors between the predicted output signal and the reference trgjectory. Such a simple

criterion function is described as follows [61].

J =§(9(k+i)- Wik +1)2 2.1)

In some controllers the criterion function is augmented with some weighting factor

terms penalizing particular components of y or u at certain future time intervals[62].

Hp He .
3= 9k +i)- wik+)g +@ [Dutk +i - D, (22)
i=1 i=1
where,
Du(k +i- 1) = u(k +i) - u(k +i - 1) (2.3)

Q and R are weighting matrices to penalize particular components of yand u at a
certain future time interval, w(k +1i) is the vector of future reference values (set points),

H , isthe prediction horizon and H. is the control horizon (time after which the input is
held constant). Here the weighting matrix R is often called suppression factor since
increasing it penalizes changes in the input vector more heavily ( increasing in the value

of Rresults in smaller changes in the ?u’s). This cost function was first used in DMC by
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Cutler et a. [56] in 1980, which went on to become one of the most well known of the
commercial predictive control products. DMC was conceived to tackle multivariable
constrained control problems typical for the oil and chemical industries and today thereis
probably not a single magjor oil company in the world, where DMC is not employed in
most new installations or revamps[63].

After the future controller moves sequence is predicted, te first element of the
sequence u(k) is sent to the process whil e the other control moves are rejected. At the next
sample, k+1, the whole cycle of output measurement and input sequence prediction is
repeated using the latest measured information. This is called receding horizon principle

as shown in Fig. 2.3. Assuming that there are no disturbances and no modeling error, the

predicted process output Y(k +1) is exactly equal to the process output. In generd, this

controller output sequence is different from the one obtained at the previous sample.

k k+1 k+Hc k+Hp

| Control horizon
: Prediction horizon
|

Figure 2.3: Definition of optimization problem for MPC
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The advantage of using the receding horizon srategy is that future constraint violations
are anticipated and prevented. In other words, the predicted output of the process is close

to the desired process output.

221 Congraints

A real plant has to work with certain physical limitations e.g. a value which can handle
only a particular range of flow rates, and market forces which result in rigid quality
requirements on the process outputs. Usually a real process involves rate and amplitude

constraints on the input, and may also require outputs constrains to be considered,

Du,, £ Du(k) £ Du,, :RateConstraints

min

u,, £ uk) £ u, : Amplitude Constraints

min

Youn £ 9(K) £ Y., :Quality Congtraints

In practice, most of the processes are nonlinear. The most common nonlinearites are
congtraints on the input of the process, or equivalently, constraints on the output of the
controller. Qin et al. [64] categorized these into two types for MPC technology: hard and
soft. Hard constraints are those which should never be violated i.e. no-violation of the
bounds are alowed at any time. Soft constraints are those for which some violation is
allowed i.e. violations of the bounds can be allowed temperorily for the satisfaction of
other criteria. Most often soft constraints can be taken care of by the minimization of the
criterion function. For instance, the requirement is that the controller output must be held
between an upper and a lower limit. This constraint may be considered as a soft constraint

i.e. a temperory violation of this constraint is allowed if it is required, for example, to
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drive the process output after a load change has occurred. Then the weighting factor in
Eq. 2.2 can be selected such that the soft constraint is satisfied most of the time.

In constrast to soft constraints, hard constraints cannot be handled by minimization
of Eq. 2.2 only. They must be taken into account explicitly when minimizing the criterion

function. This resultsin constrained minimization problem.

2.2.2 Controller Tuning

The prediction and control horizons (H, and Hc) and weights (Q and R) in the criterion of
Eq. 2.3 effect the bahaviour of the closed-loop combination of the plant and the predictive
controller. Usually these are referred to as the adjusting parameters and are in effect
‘tuning parameters which are adjusted to give satisfactory dynamic performance
Increasing the weights R on the control moves relative to the weights Q on the tracking
errors has the effect of reducing the control activity. Increasing theses weights indefinitely
will reduce the control activity to zero, which ‘switches off’ the feedback action. If the
plant is stable, this will result in a stable closed loop system, but not otherwise [61]. The
penalty of increasing the control weigthing will be slow response to disturbances, since
only small control actions will result. On the otherhand, some processes may require no
penalty on the control movesi.e. R=0.

In a similar manner, decreasing the weights Q mean that the tracking error in the
near future is less impotant than in the far future, yielding less active control moves. This
choice is usualy motivated by the fact that a real process cannot track a set point change
in, for example, one sample. As a result the tracking error can be quite large in the first

few samples (near future). By not including these large tracking errors in the optimization
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criteria, the controller will not attempt to make them smaller. Hence smooth control is
achieved. When Q =1 the tracking error is equally weighted over the prediction horizon
The selection of of Hy, and H; is a compromise between the robustness and
performance of the process. Increasing Hp improves the robustness of the process at the
cost of slower process response to set point changes. Similarly incresing Hc resultsin

reduced process robustness but better performance.

2.3 Demethanizer Column

This Demethanizer column is a part of a NGL (natural gas liquids) gas plant in Saudi
Arabia and consists of 19 Koch vave trays. Its primary function is to remove light
hydrocarbons out of the feed gas, condensed in the three chills down trains. There are two
pumps at the bottom of the column. Both these pumps have three stages associated with
them. In the first stage they take the suction from the Demethanizer sump at a temperature
between 25 and 30 °F. In the second stage they increase the liquid pressure from 160 to
300 psig and in the last stage they send it to the NGL surge sphere in the product surge
unit. Additionally there are two Demethanizer reboiler pumps. Their primary function is
to take the suction from tray 1 at a temperature between —15 and —10 °F, pump this liquid
around the Demethanizer reboiler system and return it back to the column below tray 1.
The Demethanizer column has four controlled variables (outputs) and four
manipulated variables (inputs). In addition to these, there are two measured disturbances

associated with this column. They are afollows:

Output variables (CV’s):

- Bottom C1 over C2
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- LP residue gas pressure Setpoint
- Demethanizer pressure differentia

- Demethanizer Tray 6 temperature

Input variables(MV’s):

- LP residue gas valve opening
- Jump-Over valve opening

- Trim re-boiler valve opening

- Tray 6 bypass valve opening

Disturbance variables:
- Ambient temperature
- Feed compressor discharge pressure
This process can be explained by Fig. 2.4. Here the controlled variables
are represented by 'y, (Output-1), vy, (Output-2), Yy, (Output-3), and Yy, (Output-4).

The manipulated variables are represented by u, (Input-1), u, (Input-2), u, (Input-3),

o d,
Uz Y1
U Y2
Demathanizer Column
Us Y3
Ug Y4

Figure 2.4: Block diagram representation of Demethanizer Column
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u, (Input-4) and measure disturbance variables are represented by d, (Disturbance-1) and

d, (Disturbance-2).

2.4  Open Loop System Identification

System identification is the task of constructing mathematical models of dynamical
systems from measured data. It involves four basic steps namely experiment design,
selection of a suitable model structure, parameter estimation and model validation.
Experiment design involves issues like choice of which signas to measure, choice of
sampling time, choice of excitation signals. Once these issues have been settled, the actual
identification experiment can be performed and process data be collected. The next step is
to decide on a suitable model structure. This is a crucial step in the identification process
and to obtain a good and useful model, this step must be done with care. Once a suitable
model structure and measured data is obtained, the actual estimation of the model

parameters is performed. Before the model is finalized, it has to pass some validation test.

Model validation can loosely be said to deal with the issue of whether the identified
model is also “good enough” for its intended use. Common validation procedure is so
called, cross-validation, where the model is simulated using “fresh” data and the output is
compared to the measured output. If the first model fails to pass the validation tests, some,
or dl, of the above steps have to be iterated until a model that passes the validations tests

is found.

For the Demethanizer column, one month open loop data is collected at a sampling

time of 1 minute using step testing. The step tests are typical in MPC projects. They
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generate good data with good enough signal-to-noise ratio but do not disturb the actua
process operation A total of 9434 data samples are gathered for the fours inputs, four
outputs and two measured disturbances. Different identification methods such as least
squares, subspace, prediction error etc. are employed to identify a 6-input-4-output model
(including the disturbance model) for this column. Among these the subspace method is
found to give the best possible identified model and is therefore selected. The simulation

results for this step are presented in the following subsection.

2.4.1 Subspace | dentification Method

In the category of state space model identification schemes, the most commonly used
algorithm is NASID short for Numerical algorithm br Subspace State Space System
Identification. It was proposed by Peter Van Overschee and De Moor [65] in 1994. It is
can be summarized as follows:

Letu T A™, y T A' be the observed input and output generated by the unknown

system described by Eqgs 2.4 and 2.5.

X = A +BU + W (24)

Y. = Cx, +Du, +v, (2.5)
or in innovation form

Xy = AX +Bu, + Ke, (2.6)

Yo = Cx +Du, +e 27)

where the vectors u, I A™ and y T A' are the measurements at time ingtant k of m

inputs and | outputs of the process respectively. The vector X, is the state vector of the
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process at discrete time instant k, v, 1 A' is caled the measurement noise and
w, I A "is called the process noise. K is the Kalman gain.

Given a large number of measurements of the inputs u, T A™ and outputs Y, 1 A'
generated by the unknown system of Egs. 2.4 and 2.5, the problem can then be defined as

of simply determining the order n of the system, the system matrices Al A"*",
BT A™™ CT A™, DT A™™ upto within asimilarity transformation and if required
K, without any prior knowledge of the structure of the system. Fig. 2.5 gives ablock
representation of this algorithm. The left hand side shows the subspace method approach
where the (Kalman filter) states are first estimated directly from input and output data,
then the system matrices are obtained. The right hand side shows the classical approach in
which the system matrices are found first and then the estimate of the states. The usual

steps involved in N4SID algorithm are described in Appendix B of thisthesis.

I nput-Output data

Uk s Yk
Orthogonal /Oblique Classical
projections Identification
Kaman states System matrices
Least Squares Kaman filter
System matrices Kaman states

Figure 2.5: Numerical algorithm for subspace state space system identification
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2.4.2 Simulation Results

The state space model identified using the N4ASID (subspace) algorithm is given in Egs
2.8 - 2.11 for the four outputs respectively. The identified model shal be used as
benchmark through out this thesis. For the purpose of identification the data is first pre
filtered to remove bad data ard outliers 70% of the data samples are used for
identification and the remaining 30% are used for validation The goa of model validation
is to ascertain whether the identified model is good enough to represent the process. The
simulation results are shown in Figs 2.6 - 2.9 in which the dotted line is the model
response and the solid line is the actual response. The results show a very good
performance of the identified open loop model (dashed), considering the presence of high
noise and nonlinearity in the actua data (solid). The mode delivers aimost accurate
results for the first two outputs. The third and fourth identified outputs exhibit a small
error due to the presence of high disturbance and noise in the original data. However, the
models obtained for the four outputs are by far the best ones that can be achieved by state
space modeling technique. This can be seen from the corresponding distribution of
prediction errors are shown in Figs. 2.10 - 2.13. These show that the errors are mostly
between + 0.4 for al outputs. The step responses for the four outputs corresponding to the
four inputs respectively are shown in Figs 2.11 - 2.26, for 700 sampling instants It is
noticed that the settling time for the process is quite large.

As said before, the quality of the state space model identified by using subspace
methods is exceptionally good and is the best amongst all the identification methods, the
results of which are irrelevant to this work. This model is from here on referred to as open

loop process model and will be used as a benchmark in the analysis of closed loop
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2.5 Design of MPC

In this section, MIMO MPC is designed for the Demethanizer column. The following

criterion function is minimized

Hp gc -
3= |9k +i)- wk +i)[} ) +& [Dutk +i- D)7, (212)
i=1 i=1

In chapter 2 this cost function has aready been discussed. In the first step, unconstrained
MPC is designed. This is done to ersure that the designed scheme is stable and robust.
The following subsections detail the steps followed in this regard. The most important
thing in MPC design is the selection of the tuning parameters as discussed in section

222

25.1 Set Points

The set points are chosen as - 0.2£ y, £0.2 for bottoms C,/C,, - 0.09£ y, £0.09 for
LP residue gas valve opening, - 0.09£ y, £0.09 for Demethanizer pressure differential

and - 0.13£y, £0.13 for tray 6 temperature

2.5.2 Prediction and Control Horizons

The prediction and control horizons are tuning parameters for the Demethanizer column

process running with MPC. The selected prediction and control horizons are H, =5

and H_ =4 respectively. Selection of these parameters for the horizons generates a very

good and robust performing MPC scheme in which the controller meets all the

requirements (set points) as far as the tracking performance is concerned. It is found that
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varying the values of Hcresultsin poor performance of the controller. Similarly increasing

Hp results in reduce tracking performance of the controller.

2.5.3 Selection of weighting matrices Q and R

The weighting matrices Q and R in Eq. 2.2 are chosen as

Q= 1, and R =0,
where
& 0 0 Of & 0 0 0f
: G : G
Lo @10 o, = & 000
& 0 1 0d & 0 0 0u
0 00 1§ 0 0 0 of

This means that the weight on the tracking error is 1 resulting in equally weighted
tracking error over the prediction horizon. Selection of R to be zero means that there is no
weight on the control moves and the process does not rquire certain components of the
controller output to be enhanced or attenuated.

Figs 2.30 - 2.33 show the unconstrained tracking performance of the process. MPC
performs very well and the process is stable. Optimal inputs generated by the designed
MPC for the Demethanizer column process are shown in Figs. 2.34 - 2.37. Large peaks
are observed at these inputs which show that the controller reacts strongly to the set point
changes. Here no (amplitude) constraints have been added on the control moves The
resulting controller is stable and meets the requirement of the process (set points).
However, in the next section this process, running with MPC, will be subject to different

process constraints and the effect of measured disturbances will be taken into account.
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254 Cae 1 — With Amplitude Constraints, Noise and Measured
Disturbances

The designed MPC is now subjected to input amplitude constraints, noise and measured
disturbances. Disturbances cannot be ignored in practice. In order to take the disturbances
into account, they have to be modeled first Thisis aready done in Egs. 2.8 - 2.11. These
disturbances are often referred to as deterministic disturbances. In addition to
deterministic disturbances there are also stochastic disturbances present in a process.
These are discrete white noise sequence with zero mean and a certain standard
deviations .

MPC is penalized with the following constraints on the inputs.

-07617 £ u £1 (2.13)
-05 £ u, £ 05411 (2.14)
165 £ u, £ 1238 (2.15)
-09 £ u, £ 08 (2.16)

These constraints are a requirement of the process itself. The controller inputs are not
required to exceed these values. With the addition of these constraints the predictive
controller must anticipate violations and correct for them in a systematic way such that no
violdions are allowed while keeping the operation closed to these constraints.

The standard deviations of the two measured disturbances (d; and dy) are selected as
0.14. Thisis a high value considering the process dynamics the signal to noise ratio. The
standard deviation of the white noise sequence is selected as 0.01 beyond which the noise
is too high for the process. The responses of the MPC process are shown in Figs. 2.38 —

2.41. The optimal inputs are shown in Figs 2.42 — 2.45 where the constraints are shown
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by dotted lines. It can be seen that no violation of the bounds is allowed at any time. The
controller takes the constraints into account and alows the process to operate closed to
these physical limitations. In addition to this, it is observed that the high value of
disturbance causes perturbations in all the outputs, especialy in the case of outputs 2 and
4. The effect of noise is aso visible as it is forcing the responses to deviate dightly from
the set points. However, the performance of MPC under constraints is acceptable for the
purpose of thisthesis. This closed loop data for the four inputs and four outputs process is
collected as ‘case1’ and will be used later in Chapter 3 where closed loop identification is

performed.
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255 Case 2 — With Amplitude and Rate Constraints, Noise and
Measured Disturbances

In this subsection, rate constraints are added to the designed MPC. Recall, that rate
congtraints refer to the limitation of MPC output per sample between two values. In other
words, large changes in input moves are avoided to limit large changes at the output of the

process. The following rate constraints are added to the designed process.

-06 £ Du, £ +06 (2.17)
-06 £ Du, £ +06 (2.18)
-06 £ Du, £ +06 (2.19)
-06 £ Du, £ +06 (2.20)

It has already been discussed that in the presence of amplitude constraints, any violation
may lead to a performance degradation of the system. In a similar manner, the presence of
rate constraints may lead to an unstable system [61]. It hes been observed that the MPC
works very well under amplitude constraints. Now, the effect of rate constraint is
ascertained. In these simulations, the high value of the two disturbances is reduced a little.

In the previous subsection, the disturbance values were kept very high (s =0.14)
depending on the signal to noise ratio. In this design, the standard deviations of the two
disturbances d; and d, are reduced to 0.08. The four outputs of the process are shown in
Figs. 246 — 2.49. The outputs show improved tracking behavior with reduced
disturbances. The deviation of output 2 from the set point is reduced. The affect of rate
congtraints is evident from the optimal inputs shown in Figs. 2.50 —2.53. The noise level

has not been changed in this design.
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256 Case 3 — With Amplitude Constraints, Noise, Measured
Disturbances and Plant Model Mismatch

According to Gracia and Morari [66], an important property of model predictive
controllers is that no stability problems exist under perfect model conditions, even in the
face of constraints on the manipulated variables. However, if the model is not the same as
the plant, in particular if the steady state gain of the model is incorrect, then the plant
output will reach an incorrect final value. This means that in the face of significant model
inaccuracies, the control system generally is unable to satisfy all of the true performance
criteria specified for the process

To observe this phenomenon, MPC designed earlier using the notion that an exact
plant-model is available, is now subjected to this reality of plant-model mismatch. All the
parameters of the original process model in Egs 2.9 —2.11 are altered to a percentage of
6. This change is large considering the highly sensitive nature of the process A higher
value than this causes the performance of MPC to degrade drastically and the process
becomes unstable.

The amplitude constraints remain the same but the input rate constraints are not
applied for this case. The disturbances are further reduced in this case, depending on the
signal to nose ratio. The standard deviations of the two measured disturbances are selected
as 0.03. The standard deviation of the noise is kept the same to 0.01. The response of the
designed MPC isdepicted in Figs. 2.54 - 2.57. The optimal inputs are shown in Figs 2.58
—2.61. Theinputs are not allowed to violate the constraints imposed on them. The results
show degradation in the performance of MPC and high oscillations are observed at the
outputs. MPC is no longer able to exhibit robust tracking ability and is slow in meeting

the set points changes. This is in fact the main motivation of this thesis. The plant model
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mismatch is the main problem in any MPC design scheme. Practical solution is to shut
down the controller and model the actual open loop plant again. For the case of closed
loop identification it is however, a unique opportunity to see if the actual open loop
process model can be identified by using the closed loop data from such a worse case
scenario. The input and output data from this plant model mismatch MPC scheme is
collected as ‘case 3’ and will be used in the analysis of closed loop identification in

Chapter 3.
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2.6 Chapter Summary

In this chapter, subspace identification method is used to identify a state space process
model for the Demethanizer column from open loop data collected from the actual
process. It is found that the state space model gives accurate results and shows a very
good performance when compared with the actual data. The errors remain mostly between
+0.4

Theidentified state space process model is then used to design MPC for three cases.
In the first design, amplitude constraints, disturbances and noise are taken into account.
For the second design, rate constraints are also added to the process;, and in the last
design, plant-model mismatch is taken into account. From al these simulations closed
loop data, which is from here on referred to as ‘ssimulated MPC closed loop data’, is
collected.

The goal of the next chapter is to study the feasibility of using closed loop data for
identifying the open loop process model. This will offer a number of practical advantages
such as better models, validation, controller maintenance and most of all no need for open
loop identification which involves MPC controller shutdown. In addition to this, open
loop identification schemes will be brought forward that give good modeling results from

the simulated closed loop MPC data obtained from simulations in this chapter.



Chapter 3

Closed Loop Identification - MPC

3.1 Introduction

As mentioned in chapter 1, closed loop experiments are natural when the intended model
use is control design. The three main categories of al closed loop identification methods
are direct approach, indirect approach and joint input-output approach. As per Ljung and
Forsell [22], the direct approach gives consistency and optimal accuracy, and therefore,
the direct approach should be regarded as the first choice of methods for closed loop
identification.

In the indirect approach, the main focus is on correct modeling of the closed loop
system and consistency can be obtained even for incorrect noise models. This approach is
more complex than the direct method. For MPC, this method is redundant and cannot be
used as it requires complete knowledge of the controller as a structure. Unlike PID and
other controller design techniques, MPC is an algorithm and is not expressed in terms of
some linear relationship.

The joint input-output approach is an alternate approach to both direct and indrect

approaches. In this approach, no explicit knowledge of the controller is required except

70
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that it must be known or assumed to be of a certain (linear) structure. This assumption
again is not possible in the case of MPC.

In the following sections, direct identification approach is used and a benchmark of
the performance of different parametric identification techniques is devised. In summary,

four different model structures are used in all identification methods. They are:

- ARX

- ARMAX

- OE

- State space

3.2 Modd Structuresand Estimation M ethods

In this section, some notations and model structures used in this thesis are introduced.
Given a multivariable process with m manipulated variables (or inputs) and p controlled

variables (or outputs) the data sequence collected from an identification test is

ZN = {u@), u(2),ud.-.....u(N), y@, (2, y3),......y(N)} (31)

where u(t) is m-dimensional input vector (MVs), y(t) is p-dimensional output vector
(CVs) and N is the number of samples or data points. It is assumed that the data is

generated by the following linear process:

y(t)=G(a ) u(t)+ H(a ") e(t) (32)
Here g is the unit time delay operator, G(q%) is the process transfer function and

H(q*) is the noise model and e(t) isa p-dimensiona white noise vector. The model to

be identified is the same structure as in Eq. 3.2.
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y(t) =G(q ) u(t) + H(a™) e(t) (33)
Depending on how to parameterize the modd in Eq. 3.3, different parameter

estimation methods studied in literature can be derived.

3.2.1 ARX (AutoRegressive with eXternal input) M odel

The ARX model structure corresponds to the choice

G(g "= q“’—iggili and H(q™") = A(:'l)

where, A(q'l):1+éa_ a.q* and B(q‘l):g b.g™* arepolynomial matrices. dis the

k=1 k=0

delay of the system. This model can be expressed as

A@ )y =a"° B@ ) u(t) +e(t) (34)

The coefficient of polynomials A and B are estimated by minimizing the sum of the
sguared equation error e(t) defined as the difference between the actual and estimated

outputs.

e(t) =y() - (tla)=y(®)-j "®)q (35)

where q is the parameter vector and j is the regression vector, which contains al the past

inputs and past outputs. They are defined as

i ©=[y(t-2--y(t-n,) ut-1)--u(t-d- n,)"

q :[_al..._ a, bo...bnb]T

(36)

This estimation method is called least squares and is explained in Appendix A (A.1).



73

3.2.2 ARMAX (AutoRegressive Moving Average with eXternal input)
M odd

This model structure has a more genera structure than the ARX:

_C(a?)
AQ )

B(A) g

H (gt
AqY) (@)

G@H=q"

Here C(q) =1+ g ¢ g isapolynomial, the presence of which means that noise term is
k=1

explicitly modeled. Thismodel can be expressed as

A y() =g B(g ) u(t) +C(ae(t) (37)

The coefficients of the polynomials A, B and C are estimated by minimizing the sum of

the squared prediction error e(t) which is defined as in Eq. 3.8.

e(t) =y(®)-J(tla)=y(®)-j "(t.a)q (38)
where q is the parameter vector and | is the regression vector defined as

i ®©=[yt-D--yt- n) ut- D--utt- d- n,) eta)-—ett- n,)l"

q :[- a - ana bObna Cl"'CnC]T

(3.9)

The regression vector depends on the model parameters and is no longer linear as in the
case of ARX. This makes the estimation of model parameters more conplicated. For this
case, the parameter estimation technique is referred to as Prediction Error Method (PEM)

and is explained in Appendix A (A.2) of thisthesis.
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3.2.3 OE (Output Error) Modd

The output error (or paralel) model structure is used in the case when the process output

is disturbed by only white measurement noise. It corresponds to the following choice:

B(q")
F@?

GahH=q* and H(g'H) =1
This model is expressed as

B(g")
F(q™)

y(t)=q* u(t) +e(t) (310)

where F(q1) =1+ é F.q “ is a polynomial matrix. As in the case of ARMAX models,

k=1
the polynomial F and B are estimated by using Prediction error Method. The regression
vector | and parameter vector q are defined as
i ©=[9¢- D9~ n) ut- D--utt- d- n)]"

q:[_ fl'“_ fnf bO'“bnb]T

(3.11)

3.24 State Space mode

State space model of a multivariable process is described by the following set of

difference equations:

X = AX, +BuU, +W,

Y. = Cx, +Du, +v, (312)

where, w, and v, are zero mean, white noise sequences. The vectors u, T A™ and
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y. 1 A' are the measurements at time instant k of m inputs and | outputs of the process

respectively. The vector X, is the state vector of the process at discrete time instant Kk,

v, T A" js called the measurement noise and W, 1 A "*is called the process noise. The
matrices A, B, C and D are estimated by using N4SID (numerical algorithm for subspace
state space identification) method. A review of this method is given in Appendix B of this
thesis.

In essence, a model of a dynamic systemis a rule which makes it possble to
construct some sort of an inference (relationship) based on observations of input-output
data. ARX, ARMAX, OE and State space models are called parametric models and are

shown to be more compact than nonparametric models such as FIR models [36].

3.3 Closed Loop Identification

In chapter 2, MPC was designed and simulated subject to various levels of externa

disturbances, noise and constraints. Closed loop input-output data was collected for three
cases It will be the objective of this section to bring forward identification schemes that
will work with closed loop data. Direct Identification approach is used for closed loop
identification. Recall that in the direct identification approach, the method is applied
directly to measured input-output (U, y) data and no assumptions whatsoever are made on
how the data was generated. Hence only the input and output data of the process need to
be collected. This has aready been done in Chapter 2. Using these data samples, closed
loop models are identified and compared with the open loop state space process model
used in the MPC design. The purpose is to observe which modeling technique, if any, will

yield the best possible results by recovering the open loop process model from given
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closed loop data collected under feedback, which is contaminated with noise and has
strong correlation between the input and process disturbances. Recommendations are

made on the basis of these simulations.

3.3.1 Casel-Closed loop Identification

In the analysis of closed loop identification methods for use on MPC scheme, simulated
input-output data is collected as in Figs. 2.38 - 2.41, whichillustrate case 1 where the
MPC is running under high disturbances d; and d, with standard deviation of 0.14. The
standard deviation of noise is 0.01. The amplitude constraints are specified in Egs. 2.18 -
2.21. The performance of ARX, ARMAX, OE and state space estimation and modeling
schemes are compared and discussed respectively for this case in the following

subsections.

3.3.1.1 Performance of ARX model

ARX modeling scheme is used to identify the open loop process model using the
simulated closed loop data. Least squares method is utilized to estimate the unknown
parameters. It is pertinent to mention here that modeling multivariable systems is often
challenging. In particular, system with several outputs such as the Demathanizer column
in this thesis is difficult to model [36]. A basicreason given in open loop identification is
that the coupling between several inputs and outputs often lead to more complex models.
Basically it is essentially just a matter of choosing the model order. It is even more
difficult to model from closed loop data due to the presence of feedback. Recovering
information about the original open loop process model from such a data (with strong

correlation between the inputs and noise) is not smple.
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The model orders (ny) of the process outputs are selected as 2, 3, 2 and 2
respectively and the unknown model parameters are identified. For comparison, the step
responses of the identified closed loop model and open loop model are plotted with each
other in Figs. 3.1 - 3.16. The solid line indicates the current open loop model and the
dashed line corresponds to the direct identified closed loop ARX model. There is a little
or no mismatch for the first, second and fourth process outputs but the model shows a
dight bias in process output three because of the high disturbance (nonlinearity)
associated with this output. However, from a theoretical point of view it can be concluded
that the current open loop model does not contain enough dynamics and there are higher
order dynamics that need to be taken into account, which are represented in closed loop
model. The results indicate that this simple conventional approach is very effective in
identifying the open loop process model with MPC closed loop data. Good steady state
gain fit is achieved to a large extent. The parameters of the identified model are given in
Egs. 3.13 - 3.16. It is clearly seen that the process and the noise/disturbance model have

the same poles which is a characteristic of ARX modeling scheme.

- 0.0035 + 0.0026g*
yit) = d

= (i
1- 0.8498q:- 0.1395q'2q i(1)

0.0063 - 0.0104q*

+ Zu,(t
1- 0.8498q* - 0.1395q'2q (1)

0.0006 - 0.0014q*
1- 0.8498q* - 0.1395q *
0.0035 - 0.0033q"
1- 0.8498q " - 0.1395q 2
N 1
1- 0.8498q " - 0.1395q 2

+ a2 uy(t)

+ q 2 u,()

e(t) (3.13)
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3.3.1.2 Performance of ARM AX mode€

ARMAX models are another type of parametric models. They are sometimes referred in
the literature as prediction error ARMAX models. The similarity between ARMAX and
ARX models is that the noise and input are subjected to the same dynamics (same poles).
This is reasonable if the dominating disturbances enter early in the process (together with
the input). This is also a precondition for obtaining a stable model [36]. The difference
between ARX and ARMAX models is that the noise in ARMAX modeling scheme is
modeled explicitly. Also the numerical complexity is higher for ARMAX scheme because
the prediction error involves complex optimization routines.

This modeding scheme is now used for estimating a closed loop model from the
simulated MPC closed loop data. The parameters identified are given in Egs. 3.17 - 3.20.
The orders (na) of the process outputs are selected as 4, 3, 4 and 4 respectively. Asin the
case of ARX models, the step responses of both open loop process model and the
identified closed loop ARMAX models are plotted in Figs. 3.17 - 3.32. The solid line
indicates the current open loop process model and the dashed line @rresponds to the
direct identified closed loop AMARX model. The results show the excellent performance
of the identified closed loop ARMAX model. There is nontrivial bias for the first output
asis seenin Figs. 3.17 — 3.20. The results compared to ARX modeling scheme are much
better as the steady state gain is a perfect fit. For output 2 the identification results are
very accurate and again good steady state fit is achieved with no bias. However, as
compared to ARX modeling scheme output 3 in Figs. 3.25 3.28 has no bias (error) at all
and the model manages to capture the steady state part much better. This can be attributed

to the fact that in ARMAX modeling scheme noise is being explicitly modeled resulting
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in better open loop process model. Similarly for output 4 in Figs. 3.29 — 3.32, the results
are very good and the open loop dynamics are recovered to a full extent. Thus, this direct
identification based ARMAX modeling scheme is able to recover successfully the open
loop process model from given closed loop data and captures the steady state part of the

responses accurately.
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3.3.1.3 Performance of OE model

The output error models are a special case in which the properties of the disturbance
signals are not modeled, and the noise model is chosen fixed as 1. These are used in the
case when thepurpose is to model the system dynamics only. The noise source e(t) in this
model is regarded as the difference (error) between the actua output and noise free
output. They have been commonly used in literature and are considered a good option in
open loop identification schemes, as they produce the most compact (minimum
parameters) representation of a plant.

This modeling technique is now used to identify the open loop process model from
the closed loop data obtained from ssimulation. The orders (n,) of the process outputs are
2, 3, 3, and 3 respectively. The step responses of the dentified closed loop OE model
(dashed line) are compared with that of the original open loop demathanizer model (solid
line) used in ssimulations of chapter 2. Figs. 3.33 - 3.36 show the step responses of process
output 1. The results show large bias and high mismatch between the two models. Only
the step response from input 2 is matched. The other dynamics related to inputs 1, 3 and 4
are not captured at all. Figs. 3.37 — 3.40 show the step responses of the process output 2.
Again the dynamics related to input 1 and 2 are not modeled accurately. However, the
steady state gain fit is captured for input 3 and 4. Figs. 3.41 -3.44 give the step responses
of output 3. As is the case with the first two process outputs, the dynamics of input 3 and
4 are not modeled accurately. Figs. 3.45 — 3.48 show the step responses of process output
4. Again large bias and mismatch is observed. In general, the closed loop model exhibits
large bias (error) and gives an inaccurate representation of the process dynamics. To an

extent, the results are good for outputs 2 and 3, but the steady states are not reached
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completely. Thisis one drawback with having a fixed noise model in the OE scheme. The

closed loop data from case 1 has high levels of disturbance and noise, which if not

modeled at al will result in inaccurate identification of the process models. The

parameters identified are given in Egs. 3.21 - 3.24
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3.3.1.4 Performance of State space modd

In recent years, the method of subspace has been proposed and studied in the literature.
One of the most important conceptua ideas behind subspace algorithms is to introduce
the concept of the state of a dynamic system within the system identification context. In
contrast to ‘classical’ identification algorithms, subspace algorithms first
estimate/calculate the state (sequence), while next the (state space) model is determined.
The subspace methods have indeed proven to be a vauable dternative for classica
prediction error methods. However, so far it has been shown to be effective and consistent
for open loop dentification by Overschee and De Moor [65]. Closed loop identification
properties of this method have not been investigated thoroughly yet. In this section, this
method is applied for closed loop identifying a state space closed loop process model for
MPC.

Simulated closed loop data is now used to recover the open loop process model by
using state space modeling scheme. The step responses are plotted for the identified
closed loop state space model (dashed) and the open loop process model (solid) to assess
the performance of this scheme. The results are show in Figs. 3.49 - 3.64, which indicate
that this method does not give accurate estimates for all process outputs. Although in al
cases the steady state gain has the same sign, but the bias (error) between the origina
open loop process and the closed loop identified model is very high. The modd fails to
give accurate description of the system dynamics athough the steady state gains of the
step responses have the correct sign. Only process output 3 in Figs. 3.57 — 3.60 has a
match to an extent but the steady state gain is not a complete fit. The identified model in

state space format is given in Egs. 3.25- 3.28
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3.3.2 Case2-Closed loop Identification

The performance of the four modeling techniques namely ARX, ARMAX, OE and state
gpace are now analyzed on MPC simulated closed loop data obtained by reducing the
disturbances and adding rate constraints (see Sec. 2.5.5). The simulations in case-1 have
shown that OE and state space models give biased results with closed loop MPC data
probably due to the presence of high disturbance and nonlinearities in the data. In this set
of identification simulations, the disturbances have been reduced to a standard deviation
of 0.08 and constraints on the rate of change of inputs have been added. Taking this into
consideration, all of the modeling techniques are once again employed and the results are

discussed individually.

3.3.2.1 Performance of ARX mode

ARX modeling scheme is used to identify the open loop process model using the
simulated closed loop data. The unknown parameters are estimated by using least squares.
The orders (ny) of the process outputs are 2, 3, 5 and 3 respectively. For comparison the
step responses of the closed loop identified ARX model (dashed line) are plotted against
the actual open loop process model (solid line). Figs. 3.65 - 3.68 show the step responses
of the identified process output 1 and the actual open loop process output 1. There is
practically non mismatch between the two models. The closed loop identified ARX model
has recovered the information of the open loop process output 1 exactly. Figs. 3.71 —3.72
give the step responses of the identified model with that of the actual open loop model.
Again there is a perfect match between the two models. Figs. 3.73 — 3.76 give the step

responses of the identified process output 3 with that of the open loop process output 3.
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Although perfect steady state gain fit is not achieved but overall there is nontrivial bias
with very little mismatch between the two models. Figs. 3.77 — 3.78 shows the step
responses of the closed loop identified process output 4 with that of the original open loop
process output 4. Again there is a perfect match between the two and the steady Sate part
of the response is captured accurately. Generally, the four-input four-output closed loop
model has no mismatch with the open loop process model, revealing the extraordinary
performance of ARX modeling technique on closed loop MPC data. It isby now clear that
ARX modeling scheme is an idea candidate for closed loop identification of processes
running with MPC. The parameters identified are given in Egs 3.29 - 3.32 |t can be seen
that the poles of the process model and the noise model are the same which is a
characteristic of the ARX scheme. As compared to case 1, the results for this case are very
good. It can be concluded that with reduced disturbances the performance of ARX

improves towards perfection.
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3.3.2.2 Peformance of ARM AX mode€

As mentioned in case 1, the difference between ARX and ARMAX models is that the
noise in ARMAX modeling scheme is modeled explicitly. This in turn requires complex
computations and optimization routines resulting in higher numerica complexity.
However, it has aso been observed that ARMAX modeling and estimation technique
gives good estimates of the open loop process in the case where MPC is subjected to high
disturbance. Incase 2, it is again used for identifying a closed loop model from simulated
MPC closed loop data.

Prediction error method is used to estimate the unknown parameters of the ARMAX
model. The orders (n,) of the process outputs are selected as 5, 3, 2 and 4 respectively.
Figs. 3.81 — 3.84 show the step responses of the identified closed loop process model
(dashed) versus the actual open loop process modd (solid) for output 1. The results
indicate a perfect match of the two models. There is no bias and the steady state part has
been captured accurately. Figs. 3.85 -3 87 shows the step responses of the closed loop
identified ARMAX model with that of the open loop model for process output 2. Again
there is no mismatch between the two models. Figs. 3.89 — 3.92 shows the step response
of the closed loop identified ARMAX nodel with that of the open loop process model for
output 3. Compared to ARX the mismatch is trivial. This can be attributed to the fact that
the disturbance is explicitly modeled in ARMAX scheme and therefore the process model
is much more accurate. Similarly, the step responses of the ARMAX closed loop
identified model are shown against the actual open loop process model for output 4 in
Figs. 3.93 — 3.96. The results again demonstrate that closed loop ARMAX model gives

the best fit and managesto capture the steady state part accurately. The parameters
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identified are given in Egs. 3.33 - 3.36.
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3.3.2.3 Performance of OE model

In case 1 it was seen that this technique did not give good models due to the presence of
high disturbances and noise in the smulated closed loop data. The identification
capability of this modeling scheme is now tested for this case where the disturbances have
been reduced to s =0.08. With reduced disturbances, it is hoped that this scheme will
yield better results than in case 1.

The procedure adopted is similar to case 1. The orders (n,) of the process outputs are
selected as 4, 2, 3 and 2 respectively. The step responses of the actual open loop (solid)
and identified closed loop OE modd (dashed) for processoutput 1 are shown in Figs 3.97
- 3.100. The results show only a dight improvement in the performance of OE model. The
step responses frominputs 1 and 2 are clearly mismatched. However, compared to case 1
the step responses from input 3 and 4 are greatly improved and the mismatch is non
trivia. In Figs 3.101- 3.104, the step responses of the actua open loop (solid) and
identified closed loop OE model (dashed) for process output 2 are shown Again a marked
improvement is observed at the step response from input 1. But the other dynamics from
input 2, 3and 4 are highly mismatched and unstable Figs. 3.105 - 3.108 gives the step
responses for process output 3. There is very little mismatch between the step responses
from inpus 1, 2 and 4. However, the step response from input 3 indicates that the model
is mismatched and is not able to capture the entire dynamics. The step responses of the
process output 4 are shown in Figs 3.109 — 3.112. It is obvious that the models are
mismatched with large bias. Overall, mismatch remains and the closed loop model is

largely inaccurate. The parameters identified are given in Egs. 3.37 - 3.40.
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3.3.24 Performance of State space modd

The performance of State space modeling scheme in Case 1 was not very good. The
closed loop model identified was largely mismaiched with the original open loop model.
In this case, the disturbance has been reduced and the performance of this scheme is tested
on the simulated closed loop data.

Sub space method is used to estimate the unknown parameters of the state space
model. The order for the four process outputs are selected as2, 4, 2 and 4 respectively. In
Figs. 3.113 — 3.116, the step responses of the actual open loop model (solid) and the
identified state space model (solid) for process output 1 are shown. Compared to case 1,
the results have improved somewhat but large inaccuracy remains. The step response
from inputs 1, 3 and 4 show large bias and mismatch between the two models Figs. 3.117
— 3.120 give the step response for the process output 2. The results indicate oscillatory
response of the closed loop model and high mismatch with the open loop model. The step
responses for process output 3 are shown in Figs. 3.121 — 3.124. The response from input
4 has a different steady state gain sign than the open loop model. Clearly the modd isin
accurate. The results for process output 4 are shown in Figs. 3.125 — 3.128. Compared to
case 1 the results are improved but nevertheless inaccurate. As before, the state space
model is unable to identify the open loop process dynamics correctly from the given
simulated closed loop data collected from the Demathanizer column running with MPC.

The identified model in state space format is given in Egs. 3.41 - 3.44.
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Figure 3.118 : Case 2- Step response of
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Figure 3.122 : Case 2- Step response of
Output-3 from Input-2 (State space)
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Figure 3.124 : Case 2- Step response of
Output-3 from Input-4 (State space)
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Output-4 from Input-3 (State space)
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3.3.3 Case 3- Closed loop Identification

The first two cases for which closed loop identification is performed are somewhat idedl,
in a sense that no mismatch between the actua plant and model is considered. In this last
set of simulations (on ssimulated MPC closed loop data), performance of ARX, ARMAX,
OE and state space modeling schemes is analyzed individually on closed loop data from
MPC process subject to high plant-model mismatch (see Sec. 2.5.6).

Before presenting the results, a comment is in order here. Output error and state
space modeling schemes gave inaccurate estimation when applied directly to closed loop
MPC data. On the other hand, least squares (ARX) method and prediction error
(ARMAX) method work fine and give consistent estimates of the open loop system. This
is later discussed at the end of the chapter. However, to benchmark the performance of all
these models all four schemes are used for this case as well. Recall that the disturbance

present in this data is nominal.

3.3.3.1 Performance of ARX model

ARX modeling scheme is now tested on ssmulated closed |oop data obtained from a MPC
scheme with plant model mismatch. Least squares method is sued to estimate the
unknown parameters of the model. The orders (n,) of the process outputs are selected as
7, 10, 2, and 7, respectively. Figs 3.129 — 3.132 show the step responses for the closed
loop ARX model (dashed) and actual plant model (solid) for process output 1. The results
are very good and the steady state part is captured accurately. Figs. 3.133 — 3.136 show
the step resporses of the process output 2. The results show no bias and good steady state

gain fit achieved. For process output 3, the step responses are shown in Figs. 3.137 —
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3.140. There is nontrivial bias and very little mismatch between the open loop and closed
loop identified models. Similar results are achieved for process output 4 whose step
responses are shown in Figs. 3.141 — 3.144. Overall, the ARX modeling scheme again
gives an accurate description of the process dynamics with trivial mismatch. The
identified modd is given in Egs 3.45 - 3.48, which show that in the presence of high

plant-model mismatch, a high order ARX will generally give consistent and unbiased

results.
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Figure3.131 : Case 3- Step response of
Output-1 from Input-3 (ARX)
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Output-1 from Input-4 (ARX)
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Figure 3.135: Case 3- Step response of
Output-2 from Input-3 (ARX)
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Figure 3.143 : Case 3- Step response of
Output-4 from Input-3 (ARX)
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Figure 3.142 : Case 3- Step response of
Output-4 from Input-2 (ARX)
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Output-4 from Input-4 (ARX)
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3.3.3.2 Performance of ARM AX mode€

ARMAX modeling scheme have also shown excellent performance in the two previous
cases. Now it is tested for its consistency and performance in this case of plant-model
mismatch MPC scheme.

Prediction error method is used to estimate the unknown parameters of the ARMAX
model. The orders (n,) of the process outputs are selected as 7, 8, 4 and 7 respectively.
Figs 3.145 — 3.148 shows the step responses of the identified closed loop process model
(dashed) with that of the actual open loop process model (solid) for ouput 1. The results
indicate a perfect match of the two models. There is no bias and the steady state part has
been captured accurately. Figs. 3.149 -3.152 shows the step responses of the closed loop
identified ARMAX model with that of the open loop model for process output 2. Again
there is no mismatch at all between the two models. Figs. 3.153 — 3.156 shows the step
response of the closed loop identified ARMAX model with that of the open loop process
model for output 3. Unlike ARX modeling scheme, ARMAX model does not have a
perfect fit at the steady state part, but the slight mismatch is insignificant. Similarly, the
step responses for output 4 are shown in Figs. 3.157 — 3.160. The results again
demonstrate that closed loop ARMAX model gives accurate fit and manages to capture

the steady state part accurately. The identified model is given in Egs 3.49 - 3.52.



141

~ - 00013
yAt) = - — = — —.
1-1.2q +0.09449q 2 + 0.1566q > + 0.1443y * + 0.07684q

Cuy(t
- 0.08908q° - 0.168q 97w

- 00059
1- 1.29°1 +0.09449q 2 + 0.1566q % + 0.1443 *+0.07684q °

+

O u,(t
- 0.08908q - 0.168q ’ a7

- 00012
+
1- 1.29°*+0.09449q * + 0.1566q % + 0.1443y *+ 0.07684q"°

Cu(t
- 0.08908q°° - 0.168q ’ 4 w0

03391
+
1- 1.2q°" +0.09449q 2 + 0.1566q° + 0.1443q * +0.07684q °

Cu,t
- 0.08908q ° - 0.168q a7 )

.\ 1- 0.06754q*
1- 1291 +0.09449q %+ 01566 q *+ 0.1443q “+0.07684 ¢ °

(3.49)
e(t)

- 0.08908¢ ° - 0.168q "



0.0023

142

yA(t) =

1- 2.017g*+1.2397% + 0.008153y % - 0.2353y *-

0.02559q ° +0.077q °

q°° uy(t)

" +0.05969q -

00021
+

0.09236q®

1- 2.0179*+1.23q *+ 0.008153q *- 0.2353q “ -

0.02559q °+0.077q ®

" +0.05969q -

- 01682

9
t
0.09236q ® a0

+
1- 2.0179*+1.23q %+ 0.008153q *- 0.2353q “ -

0.02559q °+0.077q ®

? uy(t)

" +0.05969q -

04991

0.09236q°

+
1- 2017t +1.23q 2+ 0.008153q 3~ 0.2353q *-

0.02559q °+0.077q°®

" +0.05969q -

1- 06268q

u,(t
0.09236q a4 )

1 20179* +1.23q % + 0.008153q° - 0.2353q * -

0.02559q ° +0.077q ¢~

&(t)

7 +0.05969q 7 -

00026 + 0.0019q*

0.09236 q°®
(3.50)

y3(t) =

0.0124 - 00052q

1- 1.312q"+0.4404q % + 0.4404q > - 0.1215q " +0.006652 q

79 2 uy(t)

T 1T 1312q 7 +0.4404q 2+ 0.4404q 2 - 012150

0.0000009512 - 00000(D4838q

-2 t
+0.006652 q°* a- )

T 1013127 +0.4404q 2+ 0.4404q 2 - 01215
0.0014 - Omﬁq

Ut
+0.006652q'4q (1)

1 1.312q™* +0.4404q 2+ 0.4404q 2 - 0.1215q°°

1- 0.2754q*+ 0.2349q?

2u,(t
+0.006652q'4q «(®)

e(t)

T 312~ +0.4404q 2 +0.4404q 2 - 0.1215q°°

+0.006652q *
(351)



143

0.00006517
1- 3.325q 1 +4.182q 2- 2.158q° + 0.2072q *- 0.09961q °

yA(t) =

q % uy(t)

- 0.34420°%- 0.1498q7

+ 0.0006623
1- 3.325q" +4.182q - 2.158q° + 0.2072q *- 0.09%61q ®"~

Zu,(t
- 0.3442q°° - 0.1498q'7q (1)

. 0.00002452
1- 3.325q" +4.182q°* - 2.158q° + 0.2072q *- 0.09961q° "~

Pug(t
- 0.3442q° - 0.1498q'7q s(t)

. 0.0001169
1- 3.325q"+4.182q° % - 2.158q % + 0.2072q * - 0.09961q°

q 2y,

- 0.3442q °- 0.1498q ’

.\ 1- 2.472q° 1 +2.192q7% - 0.679q 2
1- 3325q 1 +4.182q 2- 2.158q *+ 0.2072q *- 0.09961q° "~

e(t)

. 03429 °- 01498q 7
(352)



Step Response
T -

0 T T
Identified y1 from ul i'
Original y1 fromul
01 -
0 100 200 300 400 500 600 700
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Figure 3.147 : Case 3- Step response of
Output-1 from Input-3 (ARMAX)
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Figure 3.146 : Case 3- Step response of
Output-1 from Input-2 (ARMAX)
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Figure 3.148 : Case 3- Step response of
Output-1 from Input-4 (ARMAX)
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Figure 3.149 : Case 3- Step response of
Output-2 from Input-1 (ARMAX)
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Output-2 from Input-3 (ARMAX)
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Figure 3.150 : Case 3- Step response of
Output-2 from Input-2 (ARMAX)
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Figure 3.152 : Case 3- Step response of
Output-2 from Input-4 (ARMAX)
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Figure 3.159 : Case 3- Step response of
Output-4 from Input-3 (ARMAX)
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3.3.3.3 Performance of OE model

Incase 1 and 2, it was seen that this technique did not give good estimates of the open
loop process model from closed loop simulated data. The identification capability of this
modeling scheme is now tested for this case where the MPC scheme had a mismatch
between the plant and the model

Prediction error method is used to estimate the parameters of this modeling scheme The
orders (ny) of the process outputs are 2, 6, 3 and 2 respectively.. The step responses of the
actual open loop (solid) and identified closed loop OE model (dashed) for process output
1 are shown in Figs. 3.161 - 3.1164. The results show large mismatch between the two
models. The closed loop OE model has not captured any of the dynamics of the open loop
model. The step responses from al inputs are clearly biased. In Figs. 3.165- 3.168, the
step responses of the process output 2 is shown Agan the model is unable to capture the
steady state part of the open loop process model. Figs. 3.169 - 3.1172 give the step
responses for process output 3. Unlike for process output 1 and 2, there is very little
mismatch between the step responses from inputs 1, 3 and 4. However, the step response
from input 2 indicates that the model is dightly mismatched The step responses of the
process output 4 are shown in Figs 3.173 — 3.176. It is obvious that the models are
mismatched with large bias. Except for the response from nput 2, the rest of the step
responses are unable to capture the steady state part accurately. Overall, the closed loop

model is largely inaccurate. The identified model is given in Egs 3.53 - 3.56.
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3.3.3.4 Performance of state space mode

In the two previous cases state space modeling scheme failed to give accurate process
models from given closed loop data. Its performance is now evaluated on this last case of
plant model mismatch.

As before, sub space method is used to estimate the unknown parameters of the state
space model. The order for the four process outputs are selected as 4, 3, 2 and 3
respectively. In Fgs. 3.177 — 3.180, the step responses of the actua open loop model
(solid) and the identified state space model (solid) for process output 1 are shown The
results show large bias and mismatch between the two models for al inputs. The steady
state gain sign is aso different for responses from inputs 1 and 4. Figs 3.181 — 3.184
give the step response for the process output 2. The responses from inputs 2 and 4 are to
an extent accurate with non-trivia mismatch However, the responses from inputs 1 and 3
are inaccurate and exhibit large mismatch with the actual open loop model. The step
responses for process output 3 are shown in Figs. 3.185 — 3.188. The responses from
inputs 3 and 4 have different steady state gain signs as compared to the open loop model
Clearly the model is inaccurate The results for process output 4 are shown in Figs. 3.189
— 3.1192. As before, the state space model is unable to identify the open loop process
dynamics correctly. The effect of plant model mismatch is apparent on the performance
of this scheme. Large inaccuracies and mismatch is observed between the identified state
space model and the actua process model. For this case, the identified model is given in

Egs. 3.57 - 3.60.
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3.4 Chapter Summary

In this chapter some important results related to closed loop identification with MPC have
been presented. ARX, ARMAX, OE and state space modeling schemes have been applied
to three possible cases of MPC process. In the first case closed loop datais collected when
the MPC process is running under high disturbances, noise and amplitude constraints.
Models are identified in closed loop using this data. From the results it is found that ARX
and ARMAX models are the only ones that gave good estimation from the closed loop
data. In the second case the disturbances are reduced and rate constraints are added. Again
ARX and ARMAX models give accurate estimation from the closed loop data. Although
state space modeling scheme did show some improvement but overal the results
demonstrated a high mismatch between the actual open loop MPC model and the
identified state space closed loop model. In the third case, plant-model mismatch is taken
into account. Again identification schemes based on ARX and ARMAX models manage
to give good results. From these results, following important observations can be stated in

the case of closed loop identification for MPC:

- Direct identification method works regardless of the complexity of MPC.

- Consistency and accuracy is achieved if the model structure contains the true
system (including noise properties) as in the ARX and ARMAX modeling
schemes.

- OE modeling scheme with a fixed noise model yield biased and inaccurate

parameter estimates irrespective of the levels of disturbance and noise.
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- State space models fail to give accurate representation of the process. This can be
attributed to the fact that the input is correlated with high disturbance. Thisisin
possible contradiction with the subspace method where it is assumed that the input
is uncorrelated with the process noise and disturbances.

- In ARX and AMRAX modeling schemes the poles of the process and
disturbance/noise model are the same which is a precondition for obtaining a
stable model [36]. Thisis not the case for OE modeling scheme.

- The compactness of ARMAX modeling scheme is highest because the disturbance
is explicitly modeled. This means that the order of the system is generally smaller
as compared to ARX. Same holds for OE and State space modeling schemes.
Further discussion on this subject isgivenin [34].

- The numerical complexity is highest for ARMAX scheme because prediction error
method involves complex optimization routines which results in a large amount of
numerical computations. Same is true for OE modeling scheme.

- State space models are much ssmpler to implement as the Kalman filter states are
obtained directly from input output data using linear algebra tools, after which the

identification problem reduces to least squares problem.

From these results a benchmark of all these models can now be made in tabulated form
Table 3-1 categorizes these parametric models in terms of their compactness (less
parameters to describe the process dynamics) and numeric complexity (optimization
routines). In Table 3-2 the results of the smulations are presented which summarizes the

findings of this work.



Table 3-1 Comparison of various model structures

Model Structure Numerical difficulty Compactness
ARX Low Medium
ARMAX High Highest
OE High High
State space Low High

Table3-2 Comparison of performance of various model structures

Amplitude . Amplitude &
M odel constraints, high Ampllt_ude & Rate constraints, nominal
. constraints, medium X )
Structure distur bances, . ) distur bances, noise,
X disturbances, noise .
noise mismatch
ARX Best Best
ARMAX Best Best
OE Poor Poor
State space Poor Poor
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Chapter 4

Closed Loop Identification —Process Data

4.1 Introduction

In Chapter 3, it has been shown that ARX and ARMAX modeling schemes work fine and
give consistent estimates of the open loop system with closed-loop data. In this Chapter,
the results of model estimation from closed loop process data collected during normal
process operation are presented. The process is again the Demethanizer column controlled
using MPC from a gas plant in Saudi Arabia. The data is collected over a three month
time period with a sampling time of 1 minute It is essential to point out here that closed
loop data samples collected have to be large enough so as to exhibit the process dynamics
correctly. Data for a month or less may not be enough for closed loop identification
purposes as the relevant plant behavior to specified set points may not be represented in it.
Before proceeding with identification from this data it is necessary to do some pre-

processing of the closed loop data. This is explained in the next section.
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4.2 Pre-Processing of the Closed Loop Data

4.2.1 Outliersand Bad Data

Real closed loop data collected from the process under operation is subject to possible
missing data samples mostly due to malfunctions in the sensors or communication links.
Moreover, certain measured values can be in obvious error due to measurement failures.
Such bad values are often called outliers, and have a substantial effect on the model
estimation. To deal with outliers and bad data, there are a few possibilities. One is to cut
out segments of the data sequence so that portions with bad data are avoided. In this case
it is natural to select segments of the original data set which are considered to contain
relevant information about the dynamics of the system. There is no hard and fast rule for

this procedure and it is basically subjective to intuition and process insights.

4.2.2 Driftsand Trends

Low-frequency disturbances, offsets, trends, drift and periodic variations are not
uncommon in closed loop data. They typically stem from external sources that may not be
relevant to modeling. Ljung [36] has suggested a basic approach to dealing with such a
problem. It involves removing these trends by explicit pretreatment of the data. This
involves removing trends and offsets by removing the mean values from the signal. This
procedure simply implies that the mean values of both output (y) and input (u) data are

computed as follows

R §70 @.1)

t=1
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u' () =%g ut) (4.2)

and then compute the ‘detrended’ data by

y(t)=yt)- y () (4.3)
() =u(t)- u(t) (4.4)

4.3 Closed Loop Process Data

As mentioned in section 4.1, closed loop field data is made available from the
Demethanizer column process running with MPC. It is collected for three months period
a a sampling time of 1 minute using step testing After some pre-processing and
detrending, the data is made ready for the purpose of modeling and estimation. ARX and
AMRAX modeling schemes have shown to be effective in estimating a reliable model
from closed loop data collected from processes running with MPC. These schemes are
now tested and verified on this ‘rea’ closed loop data. The following subsections give

further details about the results of these simulations.

4.3.1 Performanceof ARX Models

ARX models are now used to estimate relationships between the outputs and inputs of the

given closed loop field data. Recall that the ARX models are of the form as given below.

A Y y(t) =g B@ ) u(t) +et) (4.5)

The order n, of the polynomial A is selected as 3, 2, 5and 5 respectively for the four

process outputs. Least squares method is used to estimate the unknown parameters of the
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ARX model. The estimated moddl is given in Egs 4.6 - 4.9. The response of the identified
ARX closed loop modé is plotted with the actual closed loop data for each output in Figs.
4.1 — 4.4. The results demonstrate excellent performance of the identified ARX model in
reproducing the actual data. The error is minimal between the two responses. In order to
analyze the performance of the identified ARX model in recovering open loop process
model from the closed loop field data, the step responses for the actual open loop process
model (solid line) and the closed loop identified ARX model (dashed line) are plotted in
Figs. 4.5 - 4.20. These results reaffirm the excellent capability of the ARX modeling
scheme. There is minima or no mismatch between the responses of the two models. For
all process outputs the steady state part is captured accurately. No mismatch, whatsoever
is observed in the step responses. This has verified that closed loop identification for
processes running with MPC can be performed successfully by using ARX modeling
scheme, which can estimate the open loop process dynamics in closed loop. This has aso
confirmed the conclusion made in chapter 3, where ARX modeling scheme is shown to
have given good representation of the open loop process model from simulated data.
Thus, if suitable amount of data samples are collected from processes running with MPC,

open loop process model can be identified using this scheme without MPC controller

shutdown.
- 0.0001963 )
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Figure 4.5 : Step Responses of the Actual

Open Loop and Identified ARX models
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4.3.2 Performance of ARMAX Modéds

In addition to ARX scheme, ARMAX modeling scheme have aso shown equivaent
performance if not better, when used for identification from closed loop dita obtained
from a process running with MPC. In this subsection, ARMAX modeling scheme is tested

for its performance on real closed loop data. Recall that an ARMAX model is of the type

A@)y(t) =B(a ") u(t) +C(a)e(t) (4.10)

The order n, of the polynomial A is selected as 2, 2, 3 and 3 respectively. Responses
of the closed loop ARMAX model and the actual closed loop data are shown in Figs 4.21
- 4.24. As in the case of ARX modeling scheme the response of the identified ARMAX
model is identical to the actual closed loop field data. Not taking into consideration the
oscillations in the actual data due to disturbance and noise, it can be stated that the
response of the model is a perfect match. This identified ARMAX model is now
compared with the actual open loop process model. The step responses of the actual open
loop model (solid) and the closed loop ARMAX model (dashed) are shown in Figs. 4.25 -
4.40. It is noted that for process output 1 there is no mismatch between the responses. For
process output 2 there is however a trivia mismatch at the steady state, but the error is
very small. Reponses for process outputs 3 and 4 show perfect fit at the steady state This
also confirms the conclusion made in Chapter 3. ARMAX modeling scheme manages to
successfully recover the open loop dynamics of the process from closed loop data. The
estimated modd is given in the transfer function format in Egs. 4.11 - 4.15, where unlike

ARX scheme the noise has also been estimated explicitly.
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4.4  Chapter Summary

In this chapter, identification based on ARX and ARMAX modeling schemes have been
successfully applied to actual process closed loop data obtained from a Demethanizer
column running with MPC. As discussed in Section 3.4, the compactness of ARMAX
model as compared to ARX moddl is higher. The order of ARMAX is 2, 2, 3and 3
wheresas the order of ARX is 3, 2, 5and 5, respectively for the four outputs

Sometimes it may be required to have a closed loop model while a process running
with MPC isin operation. In this case, the model has to be based on observations up to the
current time. For this purpose recursive identification methods are used. These methods
are sometimes also referred to as on-line or real time identification methods. In this regard
recursive identification schemes based on ARX and ARMAX modeling schemes can also
be used. These recursive variants will give smilar results to batch ARX and ARMAX

schemes, if not better.



Chapter 5

ldentification - Neural networks

5.1 Introduction

In conventiona linear identification schemes whether it be least squares or prediction
error methods, the focus has been on estimation of the true plant from closed loop data
using linear models for the purpose of MPC design. However, a new direction has
emerged in the past few years in which nonlinear models are being used in the design of
MPC. This emerging field is termed as NonLinear Model Predictive Control (NLMPC).
NLMPC is presently viewed as one of the most promising areas in automatic control. This
is partly due to the increasing industrial need for advanced control techniques that address
explicitly the process nonlinearity and operation constraints and the ever-demanding
control performance requirement.

However, despite the wide publicity and the intensive research efforts, it is still
being perceived as an academic concept rather than apractical control strategy. One
reason for this disparity is the inability to construct a nonlinear model on a reliable and

consistent basis. An important factor that has been emphasized throughout this thesis is

184



185

that the identified models are to be used in a closed loop environment. Because systems
input output pattern can change dramaticaly after closing a loop, it is entirely possible
that a model that provides good performance in open loop may lose that capability once
the predictive controller is designed and loop is closed. While it may be possible to
establish patterns of disturbances and system noises before a closed loop implementation,
either from prior knowledge or from available open loop plant data, it is generally very
difficult to do the same for manipulated inputs whose patterns will depend on, among
many things, the controller. Therefore, in NLMPC, a model should be able to handle
accurately the effects of both known and unknown changes on the system (output)
behavior in a closed loop ®tting. For this purpose, a Multilayer FeedForward Neura

Network (MFNN) model can be used.

5.2 Neural Networksfor System Identification

Neura networks, in general, are not new to the field of identification. Since 1990 many
papers have not only demonstrated promising results in applying the approaches of neuro-
identification, but aso have begun to address fundamental issues such as system
approximation and identification, controllability, observability and stability theory.
Although maor results in approximation and identification of systems using neural
networks are available, only a small group of people are actualy familiar with them.
Perhaps the most popular structure has been the static Multi-layer FeedForward Neural
Network (MFNN) trained via the back propagation learning algorithm. In this structure,
the neurons are generally grouped into layers. Input signals propagate through the

network in a forward direction, layer by layer, through to the output layer. On the other
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hand, with the incorporation of feedback connections and delay elements within the
neurons, static neural networks are made recurrent by construction. Recurrent Neural
Networks (RNN) are characterized by their internal memory and thus are very suitable for
imitating the behavior of dynamic systems. This type of networks alow connections
between any pair of neurons but keep the concept of input and output neurons inherent to
MFNN. Such networks were first proposed by Hopfield in 1982 and have recently been
rediscovered as dynamic neural networks (DNN) in the context of identification and

control of dynamic system.

53 Major Workson MFENN for System Identification

Much of the early research on neural networks for system identification date back to
beginning 1990s when Narendra and Parthasarathy [67] demonstrated that MFNN
structure could be effectively used for identification and control. The same year Bhat et d.
[68] used neural networks for modeling nonlinear chemical process systems such as
steady-state reactor and a dynamic pH continuously stirred tank reactor. They used the
back-propagation algorithm for interpreting biosensor data by utilizing MFNN modeling
scheme. In 1991, Ta et d. [69] presented a survey report on he agorithms and
techniques of neural networks including MFNN implemented in the areas of identification
and control. Around the same time, the lack of generic and efficient methodology for
nonlinear system identification with unknown system architecture prompted Qin et al.
[70] to re-derive pattern learning and batch karning rules for both MFNN and RNN
respectively. This was one of the pioneering works in black-box modeling vis-avis neural

networks. Chen and Mars [71] discussed the feasibility of using MFNN for system
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identification. They scrutinized the work of Narerdra et. al. [67] and provided some
solutions to the constraints pointed out in that work. In 1993, Yamada and Y abuta [72]
proposed practical design methods for the identification of both the direct and inverse
transfer functions of a nonlinear dynamic system through the use of neural networks.
Sjoberg [73] in 1994 utilized MFNN based NNARX modeling techniques to simulate
nonlinear systems having different kinds of non linearities.

In 1995, Songwu and Tamer [74] presented system identification schemes in a
neural network framework, using FFNN. Both MFNN and Radial Basis Function Neural
Networks (RBFNN) were used to identify nonlinear systems in the presence of unknown
driving noise. Judistky et al. [75] surveyed and discussed different techniques including
MFNN for this purpose. As a companion paper to this Sjoberg et al. [76] compared by
simulation, the performance of MFNN based NNARX model to other nonlinear
identification techniques Abdallah et a. [77] in their technical report addressed issues of
capabilities versus actual performance of MFNN for both discrete time and continuous
time cases.

In 1996, Mhaskar [78] examined the complexity of MFNN required to approximate
an unknown system to a degree of accuracy for a worst-case scenario. Moody [79]
presented a new ‘dependence identification’ algorithm for developing a new form of
MFNN for system identification. This proposed agorithm transformed the training

problem into a set of quadratic optimization problems that were solved by a number of

linear equations. Suykens and Bersini [80] studied nonlinear system identification using
MFNN with respect to model based control. Mauro[81] in his PhD thesis applied MFNN
for model updating in closed loop. Duwaish et a. [82] showed the use of MFNN for

learning nonlinear relationships from plant input output data.
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In 1998, Sorensen [83] used NNARMAX modeling technique to identify and predict
a nonlinear system. Songwu and Tamer [84] used MFNN and RBFNN to identify
nonlinear systems in the presence of driving noise. They used H and genetic based
identification algorithms for network parameters update In 2000, Bendtsen and Sorensen
[85] used MFNN networks for the identification of a nonlinear injection valve for a super-
heater attemporator at a power plant. In 2001, Miima et a. [86] utilized MFNN for
modeling input-output behavior of points on a deforming bridge. Recently Norgaard et al.
[87] have developed two toolsets for system identification and control with neural

networks. These are NNSYID and NNCTRL for use in Matlab engineering software.

5.4 MFNN

In feedforward family of neural networks, MFNN structure is the most widely used. It isa
network structure composed of several ordered layers of neurons connected n sequence
without lateral inhibition. The first layer is accessible from outside through its input and
outputs can be observed from the last layer. The information flows only in one direction.

In MFNN the model structure selection is basically dependent on two issues:
Selecting the inputs to the network and selecting internal network architecture. An often
used approach is to reuse the inputs from the linear models while letting the internal
architecture be multilayer feedforward network. This approach has severa attractive
advantages.

It isanatura extension of the well known linear model structures

The internal architecture can be expanded gradually as a higher flexibility is needed

to model more complex nonlinear relationships.
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The structural decisions required by the user are reduced to a level that is reasonable
to handle.
Suitable for design of control systems.

Nonlinear counterparts to the linear model structures (A1.1) are obtained by using

the following predictor form

tla)=gf ©.9]+e) (51)

where f (t) is the regresson vector while ? is the vector containing the adjustable
parameters in the neural network known as the weights. g is the function realized by the
neural network and it is assumed to have a feedforward structure. Depending on the
choice of regression different nonlinear model structures can be selected. The most
common is the NNARX which is the acronym for Neural Network ARX. Figure 5.1
shows such a general structure of MFNN. The figure shows three layers but more layers
are adirect generalization. The input layer has n = ny M + nu N neurons, where M is the
number of outputs N is the number of inputsand ny and n, are the maximum lags at the
input and output vector sequences respectively. The input to neural networks is then

defined by Eq. 5.2.

X(©) =[w®),u,®),.- U, OT
=[YT(t-9,... T(t-n),UT(t-0),..0" - n)I

(52)

The input vector of the network consists of the past values of the network and output

vector of the system. The input layer smply feeds the vector X(t) to the hidden layer
without any modification. The hidden layer has user-defined n, neurons with nonlinear

transfer functions (such as sigmoid function). The output layer has M neurons, which
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Figure 5.1 The MFNN for Nonlinear Identification



191

correspond to the M outputs of the system. The output of the network is represented as

70(0= 9,88 wal Y+ 53
j=1 @

| . . . P . ..
where W is the synaptic weight of the neuron | inlayer | that is fed from neuron i in
layer 1 -1, g;(t) isthe output signal of neuron i in the previous layer 1-1, b isthe
biases function of neuron j inlayer | and g, (-) is the activation function. The output

vector provided by the network is defined in Eq. 5.4 and the error is defined asin Eq. 5.5.

MOESACRAGINAG) (54)

E() =Y()- Y(t) (55)

The weights are updated by using backpropagation algorithm. It is expressed as in

Eq. 5.6.
w (t+1) = wi) (1) +hd (1) g (1) (56)

where h is the learning coefficient. The local gradients ds for the neuron j in output layer

L and in hidden layer | are defined by Eq. 5.7 and 5.8 respectively.

(

d0(t) =- 26t (t)eg ga Wi (1) g (t)+b;”<t)% (57)
i 2

a0 ) = 7, Ga W) a) (t)+b<1>(t);jué PEWNE  (E8)
g &= k=1

The biases can be updated by using the following expression of Eq. 5.9.
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bOt+)=bO@)+d"  for h=12 (5.9

5.5 Open Loop Identification

MFNN is now used to model the Demethanizer column process. One month data is
collected at sampling time of 1 minute For the purpose of training the network, 70% of
the data samples are used. The rest of the 30% data samples are kept for testing and
validating the identified MFNN model. The maximum lags for the output and input vector
sequences in Eq. 5.2 are selected as 2 and 1 respectively. One hidden layer with 10
neurons is used. Tangent sigmoid nonlinearity is selected as the activation function for
these neurons. The results for training are presented in Figs. 5.2 - 5.6. The results are
shown for 300 data samples for better display. The results demonstrate the accuracy by
which the MFNN is trained. There is practicaly no mismatch between the two models.
However, to check or validate the performance of the trained MFNN model, test data
which has not been used previoudy in the training, is utilized. The results of the
vaidation are shown in Figs. 5.6 - 5.9, where the actual data is shown by a solid line and
the MFNN response is shown in dashed line. For all process outputs, no mismatch is seen
and the trained MFNN model manages to reproduce the test data excellently.

Now that MFNN model is trained and validated on open loop process data from the
Demathanizer column, the next logical step is to use it for MPC design. However, as
mentioned earlier, a model that provides excellent performance in open loop may not be
able to maintain the same when the loop is closed (feedback). For this reason, the next
section deals with the validation of the trained MFNN model from closed loop field data

such as to ascertain if this model is reliable for close loop operation
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5.6 Performance of MFNN on closed Loop Data

The trained MFNN model in now tested for its consistency and accuracy on closed loop
field data collected from MPC process. This is done to ascertain the performance of this
model in closed loop environment especially when MPC is running. According to
Norgaard et a. [90], validation of a neural network model is highly dependent on its
intended use. In this case the MFNN model is required to predict the future behavior of
the plant in an MPC environment. This means that the MFNN model has to be consistent
and its performance should not deteriorate with closed loop operation. Recal that the
system input and outputs patterns can change dramatically after closing the loop. Keeping
this in mind, the closed loop data collected from Demethanizer column process running
with MPC (see Sec. 4.1), which is unfamiliar (totally fresh to the trained model is now
used to validate the performance of this model. The entire data is used for this purpose.
Figures 5.10 - 5.13 illustrate the excellent performance of the MFNN model. The
response of MFNN model is shown in dashed line and the actual field data is shown by a
solid line for all process outputs. The model trained with open loop data exhibits its
versatility on closed loop data and manages to predict the correct behavior of the process.
Thisis an essentia requirement, as the model is going to be used in MPC scheme where it
is required to predict the future behavior of the process in order to determine the next
control action In Figs. 5.18 - 5.21 the error distributions associated with the performance
of the neural network model are shown. The errors are very small and remain mostly

between the ranges of + 0.2.
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5.7 Chapter Summary

The idea of modeling a particular behavior using neural networks is attractive for several
reasons. Neural networks are computing systems characterized by the ability to learn from
examples rather than having to be programmed in a conventional sense. Their use enables
the behavior of complex systems to be modeled and predicted through training without
a priori information about the systems structures or parameters.

This chapter has dealt with this issue thoroughly and has shown that a trained
(identified) MFNN model is a suitable candidate for MPC scheme. The model is
identified with open loop data and its massive prediction capability and richness has been
tested on closed loop data. This model certainly represents a good choice for use in the

design of MPC.



Chapter 6

Conclusions and Future Work

In this chapter, some concluding remarks on this work are presented and the main

contributions of this thesis are highlighted.

6.1 Concluding Remarks

The importance of plant model identification in closed loop operation has enhanced in
recent years. For the purpose of model based controller design, closed loop identification
offers a number of advantages such as better models, controller maintenance and
validation.

MPC applications in industry involve dozens of inputs and outputs. To determine
such a multivariable model from a given data puts an unprecedented demand on model
identification and estimation techniques. To deal with this predicament, direct closed loop
identification method is implemented for MPC applicatiors in this thesis. Different
identification techniques based on ARMA, state space and neural network modeling
schemes are analyzed in this regard. Their performance is examined on both simulated
and field data. An industria application is used for this purpose. It is shown through

simulations that identification schemes involving linear ARX and ARMAX models give

203
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consistency and optimal accuracy, on both simulated and field data. The advantages of
using these closed loop identification and modeling schemes amongst other things,
encompass performance improvement, reduced identification costs, controller diagnosis,
online retuning of models, performance monitoring and avoiding unnecessary plant shut
down for maintenance.

It is dso shown that a MFNN model with its massive parallelism and learning
capabilities can offer a new promising direction towards MPC design. In this regard,
simulation results have shown that a neural network model trained with open loop data
can perform extremely well and retain its prediction capability even when the loop is

closed.

6.2 FutureWork

During the course of this thesis, it was found that future research can be directed towards

the following areas:

The state space framework provides a powerful tool for designing and anayzing

MPC. Improvement of subspace (N4SID) algorithm for MPC closed loop relevant

identification and model estimation would prove useful.

Further work is required to design a robustly performing predictive controller based

on these identified models.

RNN based models have not been considered in this thesis. They can aso be

investigated for MPC relevant identification.



Appendix A

Least Squares and Prediction Error Methods

The family of methods that minimize the error between the predicted and the observed
values of the output are called prediction error methods. Consider the genera model

structure of the from

y(t) =G(a,q) u(t) + H (0,q) et) (AL])

where G is the dynamics model and H the noise model. u(t) and y(t) are measured inputs

and outputs respectively and e(t) is an uncorrelated random sequence. The parameter

vector ? isconfined to asubset of A?, called D, whered isthe dimension of ?

ql D,1 A (AL.2)

The set of models in which the estimation procedure will search for the best model is
determined by Eqs Al.1 and Al1.2. The one step ahead predictor for the model structure

inEq. Allis

y(tla)=H"(q,q) G(a.q)u(t)+ (I - H*(qq)) y(t) (AL3)
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y(t|q) denotesa prediction of y(t) given the data up to and including time t - 1 and based

on the model parameter vector ?. The prediction errors are

e(t,q) = y(t) - ¥(t.q)=H *(a.a) (y(t)- G(a.a) u(t)) (AL.4)

Given the model of Eq A1.3 and measured data Z", the prediction error estimate is

determined through

ay =argmin v, @,2") (AL5)

by minimizing the following criterion function

V@2 =~ § e’ (ta) (ALO

t=1

For predictors that are linear in the data a closed form solution (least squares method) can
be found. In other cases nonlinear search algorithms (prediction error method) are

required to find a solution.

A.l Least Squares Estimate

If the predictor is alinear function of the unknown parameters then the model in Eq. 1.1

can be expressed as:

y(t,a) =j T(t)q +e(t) (AL7)

Heref isan n-vector of regressors, the regression vector and q is an n-vector of unknown

parameters. The prediction error becomes
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e(t,q)=y(t)- j "(t)q (ALY

and the criterion function resulting from Eg. A1.6 is

=300 1 0’ (L9

Vy(@.2%)=

This is the least squares criterion for the linear regression of Eg. Al.7. The name

‘eguation error method’ also appears in the literature. The unique feature of this criterion,
developed from the linear parameterization and the quadratic criterion is that it is a
quadratic function in ?. Therefore, it can be minimized analytically, which gives, provided

the inverse exists, the least squares estimate (L SE).

s -3 N R N
qy =argmnV,(@.27)=a—aj O] Oy —ai ®yt) (AL10
eN t=1 u N t=1

The Eg. A1.10 can also be expressed as

q=(F"F)'FY (AL.11)
where
& "(1)0
1o
F=g ( ~,an (N | n) matrix (AL.12)
| '(N)g
aey(1) 9
Y= gy(ZZ): an (N| 1) matrix (A1.13)
EyN5

Least sguares estimate method is also known as a specia case of the prediction error
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(identification) method. This method holds for FIR and ARX models only.

In the case of ARMAX and OE models, a numerical search algorithm is required to

find the parameter estimates (i that minimizes Vy (?). Guass-Newton agorithm is
commonly used for this purpose. This algorithm is briefly discussed in the following sub-

section.

A.2 Gauss-Newton Algorithm (Prediction Error Method)

In generd the criterion function of Eg. A1.9 cannot be minimized by analytical methods.
Least squares estimate method does not give consistent estimates if the noise is not a
sequence of independent and identically distributed random variables (white) in Eq Al.1.
In this case, methods for numerical minimization of the function V(?), update the estimate

of the minimizing point iteratively. Thisis usually done according to

A

qi =q® +a O (Al1.12

where f © is a search direction based on information about V(?) acquired at previous

iterations, and a is a positive constant such that an appropriate decrease in the value of
V(?) is obtained. Normally the correction in Eq. A1.12 is chosen in the Newton direction

[36]:

10=- bgdo] ve@) (AL13)

Here q® denotes the ith iteration point in the search The criterion of Eq. A1.6 has the

gradient (Soderstrom et. al. [7])
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V#@.2")=- <Ay ta)e(ta) (AL14)
t=1
where the notation
t, T
y (ta) =- Sela)g (AL15)
e 19 o
and
14 1 &
Vh&n(q,z“)=ﬁay ta)y "(t.q)- ~Nay &t.q)e(t,q) (A1.16)

At the global minimum point e(t,q becomes asymptotically (as N ® ¥) white noise

(e(tq,) =e,(t)) which isindependent of y (t,q) . Then

VE@.2")» =3y ta)y () (AL17)

It is appealing to neglect the second term in Eq. A1.16 for two reasons. First is that by

construction V@ (q) is guaranteed to be positive definite. Therefore the loss function will

decrease in every iteration if a is chosen appropriately. Second, the computations are

simpler. The algorithm obtained in this manner is written as

AR TOVW Tt gq® e 0] ~0yU
q=q"+a y ta”)y ' ta")y; ecayta”)eta")y (AL.18)
€=l u et U

This is caled Gauss-Newton algorithm and is generally referred to as the prediction error

method.



Appendix B

Sub Space Identification Method

Subspace identificatio n aims at constructing state space models from input-output data. In
this method first the (Kalman filter) states are estimated directly (either implicitly or

explicitly) from input-output data, then the system matrices are obtained. In the model in
Egs. Bl.1and B1.2, u, 1 A™ istheinput, X, 1 A" isthestateand y,1 A' isthe output.

w, and v, are zero mean, white noise sequences.

Xy = AX, +BuU, +w, (B1.1)

Y, = Cx, +Du, +v, (B1.2)
The main steps in N4SID algorithm are the following [65]:

- Determine the model order n and a state sequence estimates X, %, - X, .

They are found by first projecting row spaces of data block Hankel matrices, and
then applying a singular value decomposition

- Solve a least squares problem to obtain the state space matrices A, B, C, and D.
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B.1 Notation

In this section, some notations are introduced. In Section 1.1, the notations for the data

block Hankel matrices and in Section 1.2 for the system related matrices are presented.

B.1.1 Block Hankel Matrices and State Sequences

Block Hankel matrices with output and/or input data play an important role in subspace
identification algorithms. These matrices can be easily constructed from the given input

output data. Input block Hankel matrices are defined as

geuo u Uu U, 9
u u, u; - U=
Uou-l:g... e TA (B1.3
gui-l u U, - ui+j-25

The number of block rows (i) is selected as larger than the maximum order i.e. i > n. The
number of columns (j) is typicaly equd to s-2i+1, which implies that all s available data
samples are used. In any case, j should be larger than 2i-1.

From here on the following input matrices notations are used
U,=Ugin » Uy =Uing (B1.4)
Here, the subscript ‘p’ refers to ‘past’, ‘f’ refers to future. The matrices U | and U; on
the other hand are defined by shifting the border between past and future one block row
down. They are defined as U; =Uqy and U} =U,, 5 ;. Similar definitions hold for the

block Hankel matrices with the output vectors, which will denoted by Y, and Y, .

For prediction purposes a combination of input and output are used as regressors and
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defined as

0|1 m+
0||1 é | Ay (BL.5)
o||1g

State sequences play an important role in the derivation and interpretation of

subspace identificationalgorithms. The state sequence X; isdefined as:

def

X :(Xi X 0 Xy |+11)TAnlJ (B1.6)

where the subscript i denotes the subscript of the first element of the state sequence.

B.1.2 Modd Matrices

Subspace identification algorithm makes extensive use of the extended observability

matrix G which is defined as:

e C
gCA
=G ca?
G ¢ .
¢ -
SCA1

I A" (B1.7)

S TR R N N e 1

It is assumed that {A,C} are observable, which impliesthat the rank of G isequal to n.

B.1.3 Geometric Tools

In section 2.1 through 2.2 the main geometric tools used to reveal some system
characteristics are introduced. They are described from alinear algebra point of view,
independent of the subspace identification framework which will be discussed in the next

sections.
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In the following sections it is assumed that the matrices AT A® 7, BT A9 and
Cl1 AP are given (they are dummy matrices in this section). It is also assumed that

j 3 max(p,q,r), which will always be the case in the identification algorithm.

B.1.3.1 Orthogonal Projections

The orthogonal projection of the row space of A into the row space of B isdenoted by A/B

and its matrix representation is
AB=AO,=AB" (BB")'B (BL.9)

where - denotes the Moor-Penrose pseudo-inverse of the matrix and O, denotes the

operator that projects the row space of a matrix onto the row space of the matrix B.

Similarly A/B" is short hand for the projection of the row space of Aonto B", the

orthogonal complement of the row space of B:
AB"=A0,=A- AIB=A(,- 0;) (BL.9)

The combination of the projections O, and O .. decomposes a matrix A into two

matrices, the row spaces of which are orthogonal:
A=AO,+AO . (B1.10)

The matrix representation of these projections can be easily computed using RQ

decomposition of éﬁg which is the numerical matrix verson of the Gram-Schmidt
@

orthogonalization procedure. Let A and B be matrices of full rank and let RQ

decomposition of @2 be denoted by
gAﬂ



214

aBo__ . _aR,
Gy "0 kR,

(7]

0 9a®) 0

= T Bl.11
R, ¢§Q§ P (BL1D

where R A9 (9 s Jower triangular, with R,T A9, R, T AP% R,1 A"P and
o Mo} a2, 00
Qi A **9 are orthogonal i.e. QTQ=§%T HQ Q2)=§ Y I Then, the matrix
Qz (] 0 I (2]
representations of the orthogonal projections can be written as

AB=R, Q (BL.12)

AB" =R, Q; (B1.13)
B.1.3.2 Oblique Projections

A matrix A can aso be decomposed as a linear combination of the rows of two non
orthogonal matrices B and C and of the orthogona complement of B and C. This can be

written as

A=R,B+ RCC+RBA’CA§ (B1.14)

QIO

The matrix R:C is defined as the oblique projection of row space of A along the row

space of B into the row space of C:

A ,C=R.C (B1.15)
The oblique projection can also be interpreted through the following recipe: project the
row space of A orthogonally into the joint row space of B and C and decompose the result
along the row space of Band C.
B9
If the RQ decomposition of ¢C+ isgiven by Eq. B1.17,
&AD
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8&0 aR, 0 0 086‘521 0
QC__QRzl R,, —QQz- (B1.16)

8Aﬂ 8R31 R32 33ﬂgQag

then the matrix representation of the orthogonal projection of the row space of A onto the

joint row space of Band C is equal to (see previots section):

a@o 0, 0
Ry Ru)&Z (B1.17)
gcz VRl
This can also be written as linear combination of the rows of B and C:
@o 0 6a®) ©
z=(R,B R.C)=(R, R.) * (B1.18)
g IZJ ngl 22ﬂ§Q

The oblique projection of the row space of A along the row space of B onto the row

space of C can thus be computed as

A C=R.C= RazRézl (R21 Rzz)gngg (B1.19
2 @

B.2 Subspace Identification Algorithm (N4SID)

In this section N4SID algorithm for the identification of A, B, C, D, Q, Rand S matrices
is presented. The algorithm works in two main steps. First the row space of Kalman filter
state sequence is obtained directly from input output data, without any knowledge of the

system matrices. This is explained in Section 3.1. In the second step, which is given in
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Section 3.2, the system matrices are extracted from the state sequence via a least squares

problem.

B.2.1 Calculation of a State Sequence

The state sequence of a combined deterministic-stochastic model can again be obtained
from input output data in two steps. First, the future output row space is projected along
the future input row space into the joint row space of past input and past output. Singular
value decomposition is carried out to obtain the model order, the observability matrix and

a state sequence, which has a very precise and specific interpretation.
B.2.1.1 Oblique projection

RQ decomposition is used to compute the oblique projection Y / éY T.Let Ugyy

bethe2mi xj and Y, ,,, the 2li xj block Hankel matricesof the input and output obs-

ervations. Then the RQ decomposition of gig ispartitioned as follows:
7]

geUO“_l 9 E;aeRﬂ 0 0 0 O 0 oan 0

¢ Uiy +¢Ry R, 0 0 O —QQz-

Uima € 0 0 0°7qQ:
Dinal_{Ru Ro R 0XAI g
G Y0|i-1 N ¢Ryu Ry, Rz Ry O 0 +¢Q, * N

g YIII — 9R51 R52 Rss R54 R55 0 -ng—

8Yi+1l2i -1 é Rel Rez Res R64 Res 66 ﬂSQ

The matrix representation of the oblique projection Y / g T of the future output row

space along the future input row gace onto the joint space of past input and past

output, isdenoted by 0, and is obtained as follows (see section B1.3.2):



adJ
0; :Yf/ Y = Ru Ran +R, (R41 Ry Ris R44)

where,

3@
QQ

A

1+
27

aR,[ 0 0]o0s

R{)ERﬂ R, 0 |0<_aR: |R, R,
IR, | Ry Ra| 07 &Ry Ry Ro
§R41 R42 R43 R44ﬂ

Rs,0
Reig
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(B1.21)

(B1.22)

from which RJ RU and RY can be calculated. The oblique projection 'Y / §Y* 5

denoted by o, ,, on the other hand, is equal to

&Ql 0
:Ru &Ril 08Q1+ R(* 41 R42 R43 44 _(;Q
§R21 zzﬂng o P gRSl R, Rs R, ssﬂgQS
4 .
erra
where,
aR, O 0 0 0 0
__8R21 R,| 0|0 0=
O -
gﬁeu; Rup Y;;gR?)l Ro| Ry | O O +:(R61 Re |F%3| Re. Res)
CRy Ri| Rz Ry 0:
&R Ry | Ry [Ry Rap

Under the assumption that:

(B1.23)

(B1.24)

- Theprocess noise w, and measurement noise v, are uncorrelated with input u,

- The input ug is persistently exciting of order 2i



- The number of available datais large, sothat j® ¥
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It can be shown [65] that the oblique projection o; is equal to the product of the extended

observability matrix G and a sequence of Kalman filter state.
0, =G X
Similarly the oblique projection o, ; isequd to
0.,=G, X,

B.2.1.2 Singular value decomposition

The singular value decomposition of I'-\’Up (R, 0 0 O+ &p (Ry Ry Ry

equal to:

0.. T =
F\)up (Rn 00 O)+R(p(R41 Ry, Ry R44)=(U1 U2)§ OngTg
eV, g

=Ul SlvlT

(B1.25)

(B1.26)

R.) is

(B1.27)

where U,T A" ", ST A" " and V,T A" ". Then the order of the system of Eq. B1.1 is

equa to the number of singular values in Eq. B1.27. The extended observability matrix

G ischosenas:

G=U,8"

and the state sequence )?i isequd to:

(B1.29)
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&)y 0

_ gQTT

X =(G) o, =SVALT 2 B1.29
Q o

The *shifted’ state sequence X_.., on the hand can be obtained as

i+1?

X..=(G) o, (BL.30)

where G =G_, denotes the matrix G without the last | rows.

B.2.2 Computing the System Matrices
From previous section, the following information has been found.

- The order of the system from inspection of the singular values of Eq. B1.27

- The extended observability matrix G from Eq. B1.28 and the matrix G, as G

which denotes the matrix G without the last | rows.
- The state sequences >zi and >zi+1.

The state space matrices A, B, C and D can now be found by solving a set of over

determined equations in a least squares sense:

A

%—Ziﬂ?_@‘ é9$>Zg
é i 5 (éC DB§UmB

Thisisthe N4SID agorithm commonly used in state space modeling schemes.

(B1.31)



Nomenclature

Abbreviations

ARMA
ARX
ARMAX
CVv
DMC
MV
MENN
MIMO
MPC
N4SID
NNARX
OE

PEM
RBFNN
RNN
SISO

Notations

A@™)
dy
d;

AutoRegressive Moving Average

AutoRegressive with eXternal input

AutoRegressive Moving Average with eXterna input
Controlled Variable

Dynamic Matrix Control

Manipulated Variable

Multilayer Feedforward Neural Network

Multi-1nput Multi- Output

Model Predicative Control

Numerical agorithm for Subspace State Space System Identification
Neural Network AutoRegressive with eXternal input
Output Error

Prediction error method

Radial Basis Function Neural Network

Recurrent Neural Network

Single-1nput Single-Output

The polynomial for the poles of the system
Measure disturbance 1 (Ambient Temperature)

Measure disturbance 2 (Feed Compressor Discharge Pressure)
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The set of values over which g ranges

White noise sequence with zero mean

The error vector for MIMO system

Mathematical expectation

Search direction at iteration i

Activation function

Transfer function in amodel set, corresponding to parameter value q
Prediction horizon

Control horizon

Available data samples

Oblique projection of the row space of Y, ,; , along the row space of
U, 2., ontherow spaceof W, ,

Backward shift operator g x(t) = x(t-1)

Output signal of neuron i

Tracking error weighting matrix

Set point variable at time t

Control move penalty weight matrix

Input variable at time t

Controller output and process input at sample time k
Input variable 1 (LP Residue Gas Pressure Set point)
Input variable 2 (Jump Over Vave Opening)

Input variable 3 (Trim Re-boiler Valve Opening)
Input variable 4 (Demethanizer Tray 6 Temperature)

Input block Hankel matrix. The subscript indicates the indices of the
first column of the matrix

Past inputs U,
Measurement noise
Criterion to be minimized
Process noise

The weight of a connection between neuronsi and



w(k)
x(t)

Xi

y(®

Y1

Y2

Y3

Ya

y(K)
y(tla)

Greek Symbols

a

b

G

d®
e(t,q)
j @

y (t.9)
h

g
O,
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Reference trgjectory at sample time k

State vector at timet

State sequence.

Output variable at time't

Output variable 1 denotes Bottom C1 over C2

Output variable 2 denotes LP Residue Gas Vave Opening
Output variable 3 denotes Demathanizer Pressure Differential
Output variable 4 denotes Tray 6 Bypass Vave Opening

Process output at sample time k

Predicted output at time t, based on data samples Z'*

Learning rate

Basis function of neuronj in layer|
Extended observability matrix
Gradient of neuron j in layer |
Prediction error

Regression vector at time t

Gradient of e(t,q) withrespecttoq
Learning coefficient

Vector used to parameterize models

Operator projecting the row space of a matrix onto the row space of B
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