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Abstract: A new Model Predictive Control (MPC) algorithm is proposed which is based
on Particle Swarm Optimization (PSO). The proposed method formulates the MPC as an
optimization problem and PSO is used to find the solution to that optimization problem.
The method is applied to the Load Frequency Control (LFC) of a single area power system
to illustrate the performance of the proposed algorithm in the presence of system parameter
variations as well as nonlinearities. It is seen that the variations in load frequency are handled
very well and the frequency is returned to its nominal value very quickly.
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1. INTRODUCTION

The current interest of the industry in Model Predic-
tive Control (MPC) can be traced back to a set of pa-
pers which appeared in the late 1970s. In 1978, Testud,
Richalet, Rault, and Papon described successful applica-
tions of “Model Predictive Heuristic Control” as in Testud
(1978) and in 1979 engineers from Shell outlined “Dynamic
Matrix Control” (DMC) as discussed in Cutler & Ra-
maker (1980) and reported applications to a fluid catalytic
cracker. “Generalized Predictive Control” was presented
by Mohtadi (1987:I) and Mohtadi (1987:II). In all these
techniques, an explicit dynamic model of a plant is used
to predict the effect of future actions of the manipulated
variables on the output, thus providing the name “Model
Predictive Control”.

The success of MPC can be attributed to three factors:

(1) Incorporation of an explicit process model to deal
directly with all features of the plant dynamics.

(2) Consideration of the plant behavior over a future
horizon in time to anticipate and remove disturbances
in advance.

(3) Consideration of process input, state and output
constraints directly in control calculations to avoid
control violations.

The inclusion of constraints most clearly distinguishes
MPC from other process control paradigms as suggested in
Qin (1996). Some good reviews of model predictive control
can be found in Clarke (1994), Richalet (1993), Roberts
(1999), Qin (1997), Lee (1999), and Rawlings (1999). The
basic structure common to all MPC algorithms is shown
in Figure 1 and we can see that an explicit model is used.
It also contains an optimizer which uses a cost function

and process constraints to calculate the optimal inputs for
the process.

Fig. 1. Structure of MPC

Several other practical and well-researched MPC algo-
rithms can be found in Zheng (1998), Kouvaritakis (1999),
Cannon (2001), Imsland (2005).

The typical way to present MPC algorithms and appli-
cations is to apply the algorithm to a challenging prob-
lem/application and observe the results. For example,
Multivariable MPC has been applied to cement mills and
has shwon improved performance compared to previous
LQ techniques with respect to the hardness of the raw
material. This is given in Magni (1999). Load Frequency
Control (LFC) itself has attracted a lot of research also.
Application of Variable Structure Control using PSO to
the LFC problem is illustrated by Al-Hamouz and Al-
Duwaish (2000). The technique that is most closely related
to the work proposed here, is the application of MPC with
Genetic Algorithms to Nonlinear Models by Al-Duwaish



and Naeem in the text, Al-Duwaish (2001). This was a big
leap forward because it was the first time an evolutionary
algorithm (EA) was applied to MPC. Also, this was the
first time MPC was applied to any power system.

2. CONTROLLER STRUCTURE

This section gives the basic structure of the MPC-PSO
controller.

2.1 Model Predictive Controller

In model predictive control, the process output is predicted
by using a model of the process to be controlled. A
disturbance or noise model can be added to the process
model as well. In order to define how well the predicted
process output tracks the reference trajectory a criterion
function is used which is typically the difference between
the predicted process output and the desired reference
trajectory. A simple criterion function, as given in the book
by Soeterboek (1992), is:

J =
Hp∑

i=1

[ŷ(k + i)− w(k + i)]2 (1)

where ŷ is the predicted process output, w is the reference
trajectory, and Hp is the predicted horizon, i.e., the time
in the future up to which the output is predicted using the
model.

Here the controller output sequence uopt over the predic-
tion horizon is obtained by minimization of J with respect
to u. As a result the future tracking error is minimized. If
there is no model mismatch i.e., the model is identical to
the process and there are no disturbances and constraints,
the process will track the reference trajectory exactly on
the sampling instants.

Where u(k), y(k) and ŷ(k) denote the controller output,
the process output and the predicted process output
respectively at the time instant k. w is the desired process
output or the set point. Now, we define,

u = [u(k), u(k + 1), ..., u(k + Hp − 1)]T (2)

ŷ = [ŷ(k + 1), ŷ(k + 2), ..., ŷ(k + Hp)]T (3)

w = [w(k + 1), w(k + 2), ..., w(k + Hp)]T (4)

Using Hp, the predictive controller computes the future
controller output sequence u as shown in Figure 2 such
that the predicted output of the process, ŷ is as close to
the desired process output, w, as possible. This desired
process is called the reference or the reference trajectory.

When the controller output sequence, u(k) is obtained in
the above way for controlling the process in the next Hp

samples, only the first element of u(k) is used to control the
process instead of the complete controller output sequence.
At the next sample, k+1, this whole process is repeated
using the latest measured information. This is called the
receding horizon principle as in the book by Maciejowski
(2002). The reason for using receding horizon technique
is that it allows us to compensate for future disturbances
or modeling errors. The predicted process output is now

Fig. 2. Predicted output and the corresponding optimal
input over a horizon Hp, where u(k) is the optimal
input, ŷ(k) is the predicted output and y(k) is the
process output.

corrected for disturbances and modeling errors activating a
feedback mechanism. Resulting from the receding horizon
approach, the horizon Hp shifts one sample into the future
at every sample instant, predicting the process output
again.

2.2 Particle Swarm Optimization

Particle swarm optimization (PSO), first introduced by
James Kennedy and Russel Eberhart in 1995, is one of the
modern heuristic algorithms which belongs to the category
of Swarm Intelligence methods in Kennedy (2001). The
PSO system is thought of as an intelligent system. This
is because it is based upon artificial life and is a form of
Evolutionary Algorithms (EA).

The difference between PSO and other EAs lies in how we
change the population/swarm from one iteration to the
next. In EAs, genetic operators like selection, mutation
and crossover are used whereas in PSO, the particles are
modified according to two formulas after each iteration.
Conceptually, in PSO, the particles stay alive and inhibit
the search space during the whole run, whereas in EA,
the individuals are replaced in each generation. PSO is a
more robust and fast algorithm compared to other EAs
and it can solve nonlinear, non-differentiable, and multi-
modal problems, generating a high-quality solution within
shorter calculation time and more stable convergence
characteristic than other stochastic methods. Due to this
ability, it is effective in solving problems in a wide variety
of scientific fields as in Parsopoulos (2004).

As in other EAs, a population of individuals exist in PSO.
These individuals “evolve” by cooperation and competi-
tion among themselves through generations. Each “parti-
cle” adjusts its “flying” according to its own experience as
well as its companions’ experience. Each particle in fact,
represents a potential solution to the problem.

Each particle is treated as a point in D-dimensional space.
The ith particle is represented as

Xi = (xi1, xi2, ..., xiD) (5)



The best previous position (the position giving the best
fitness value) of any particle is recorded and represented
as

Pi = (pi1, pi2, ..., piD) (6)

Similarly, the position change (velocity) of each particle is
Vi = (vi1, vi2, ..., viD) (7)

The particles are manipulated according to the following
equations:

V n+1
i = w ∗ V n

i + c1 ∗ rn
i1 ∗ (Pn

i −Xn
i )

+c2 ∗ rn
i2 ∗ (Pn

g −Xn
i ) (8)

Xn+1
i = Xn

i + x ∗ V n+1
i (9)

2.3 State Space Model

The model of the process is the heart of the Model
Predictive Controller concept. All MPCs explicitly use a
model of the plant to be controlled. State space model is
used in this paper to model the example. It is of the form:

ẋ(t) = Ax(t) + Bu(t) (10)

y(t) = Cx(t) + Du(t) (11)
where, x are the states, ẋ represents the derivative of the
states, u is the input and y is the output of the process.
The nonlinearity is added on the states separately.

2.4 Plant Constraints

Most practical control problems are dominated by process
constraints and nonlinearities. Usually, constraints are
on the manipulated and/or state variables and they can
make even a linear system nonlinear. The most common
constraints used are equality & nonequality, as given
below:

k(x(t), u(t), t) = 0 (12)

k(x(t), u(t), t) ≥ 0 (13)

k(x(t), u(t), t) ≤ 0 (14)

2.5 Cost Function

The cost function (also called performance index) is evalu-
ated as the weighted sum of square of errors between actual
and predicted outputs over a finite prediction horizon.
Incorporated into the performance index is the weighted
sum of the square of the change in inputs over the control
horizon, Hc, and the weighted sum of the square of the
input moves over the prediction horizon. This can be
explained more easily in the form of equation below:

J =
Hp∑

i=1

e(k + i)T Qe(k + i) +
Hc∑

i=1

∆u(k + i)T R∆u(k + i)

+
Hp∑

i=1

u(k + i)T Su(k + i) (15)

Subjected to the following constraints:

umin ≤ u(k + i) ≤ umax (16)

∆umin ≤ ∆u(k + i) ≤ ∆umax (17)

ymin ≤ y(k + i) ≤ ymax (18)

In Equation 15 Q, R and S are the weights on the predic-
tion error, e(k), change in the input, ∆u, and magnitude of
the input, u, respectively. The prediction error is defined
as, e = w(k) - ŷ(k), where w(k) is the desired set point.

3. PROBLEM FORMULATION

The problem of MPC-PSO controller is formulated as
follows:

Given a linear or nonlinear plant, construct the PSO based
predictive controller such that:

• Search the best control signals to be applied so that
the plant is operated at desired setpoints

• Minimize the error between the reference and setpoint
in the form of a cost function

• Do this in the presence of disturbances and con-
straints, in minimum time using minimum effort

4. PSO BASED PREDICTIVE CONTROL
ALGORITHM

The proposed controller is shown in Figure 3. The purpose
of the controller is to use the process model to search for
the best control signals to be applied. However, this must
be done while satisfying some constraints and optimizing
some cost function.

Fig. 3. Structure of Proposed MPC-PSO Controller

The algorithm is as follows:

• Initialize particles at the start by assigning them
random values

• Generate set of inputs for the process and apply to
the model

• Evaluate cost function based on the model outputs
• Evaluate fitness function,

fitness =
1
|J| (19)

where J is the cost function or the performance index.
• Find optimal input sequence consisting of physical

control moves or signals using PSO



• Update particles with these values and apply them to
the model again, repeating a certain number of times

• Apply the first optimal control signal and repeat for
the next sample

The number of particles represent the prediction horizon.
If the system is MIMO, the number of particles is increased
proportionally. So for a two input system, the number of
particles is doubled.

5. MPC-PSO FOR LOAD FREQUENCY CONTROL

This section studies the application of our proposed MPC-
PSO to the LFC problem for single area.

5.1 Load Frequency Control

LFC has been one of the most important subjects for
power systems engineers for decades. It is also known as
Automatic Generation Control (AGC) as in Chan and Hsu
(1981). Loading in power systems is never constant, and
changes in load induce changes in system frequency. This is
because imbalance between the real power generated and
loading causes the generator shaft to either speed up or
slow down, resulting in the variation of system frequency.

Hence, to maintain the quality of the power supply, an LFC
is needed to keep the frequency of the output electrical
power at the nominal value. The input mechanical power
to the generators is used to control the load frequency. This
regulates the generator shaft speed, hence the frequency.
The main quality risk involved is that control area frequen-
cies can undergo prolonged fluctuations due to a sudden
change of loading in an interconnected power system. This
is described in detail in Chan and Hsu (1981). These
prolonged fluctuations are mainly the result of system
nonlinearities. One of the main type of nonlinearities is
the Generation Rate Constraint (GRC).

5.2 Model of an LFC System

The block diagram is given in Figure 4.

Fig. 4. Block diagram of single area LFC

The dynamic model for an n-area interconnected system
is given here as in Zribi (2005):

Ẋi(t) = Aixi(t) + Biui(t) +
n∑

j=1, j 6=i

Eijxj(t) + Fidi(t)

yi(t) = Ci(t)xi(t)

Where,

Ẋ =
[
∆ḟi(t) ∆Ṗgi(t) ∆Ẋgi(t) ∆Ṗci(t) ∆Ṗti(t)

]T

Ai =




− 1
Tpi

Kpi

Tpi

0 0 −Kpi

Tpi

0
−1
Tti

1
Tti

0 0

− 1
RiTGi

0 − 1
TGi

−1
TGi

0

KEi
0 0 0 KEi∑

j

Tij 0 0 0 0




Bi = [ 0 0 1/TGi 0 0 ]T

Eij =




0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

−Tij 0 0 0 0




Fi = [−Kpi
/Tpi

0 0 0 0 ]T

di(t) = Pdi(t)

In the model, ∆fi(t) is the incremental change in frequency
for ith area subsystem (Hz), ω is the rotor angular velocity
in rad−1 w.r.t. synchronous speed, H is the inertia con-
stant (s), D is the damping coefficient in (s−1), Pm is p.
u. mechanical power, Pac is p. u. AC power, Pdc is p. u.
power stored in the converter, ωB = 377 rad/s & K = 1.

The control objective of LFC is to keep the change in
frequency, ∆ḟi(t) = x1(t) as close to 0 as possible in the
presence of load disturbance, di(t) by the manipulation of
the input, ui(t).

5.3 Simulation Results

Taking the case of a single area LFC for this paper, Eij is
ignored. The PSO parameters are c1 = c2 = 2.04, and a
time varying weight is used. The population is 20 and the
prediction horizon, Hp = 7.

The constraint on the control signal is:

−0.5 ≤ u ≤ 0.5 (20)

The system is simulated first for the linear case and then
for nonlinear case with parameter variations. Initially, all
states are at zero.

LFC Excluding Nonlinearity In the cost function, Equa-
tion 15, the value of Q = 1, R = 10 & S = 0. Using the
following values:

Ts = 20s, Kp = 120 Hz p.u. MW−1, Tt = 0.3s, K = 0.6
p.u. MW−1 rad−1, Tg = 0.08s, R = 2.4 Hz p.u. MW−1

The corresponding values of A, B & F are:

A =



−0.05 6 0 0

0 −3.33 3.33 0
−5.208 0 −12.5 −12.5

0.6 0 0 0




B = [ 0 0 12.5 0 ]T



F = [−6 0 0 0 ]T

Figures 5 and 6 give the results. The disturbance is given in
the form of 0.03 p.u. (3%) and 0.05 p.u. (5%) step changes
on the load. Frequency deviation is seen at the start of the
steps, however, MPC-PSO quickly controls it and bring it
back to zero. The frequency deviation is apparent at the
load only for a few instants and then remains at zero even
in the presence of up to 5% disturbance.

Fig. 5. Frequency Deviation in Single Area

Fig. 6. Control Effort

LFC Including Nonlinearity and Parameter Variations
Here we consider a challenging case involving two parts:

• 25% parameter variations in the system due to severe
disturbances or modeling errors

• GRC nonlinearity applied on two states, x2 and x4

The corresponding values of A, B & F are:

A =



−0.0665 8 0 0

0 −3.663 3.663 0
−6.86 0 −13.736 −13.736
0.6 0 0 0




B = [ 0 0 13.736 0 ]T

F = [−8 0 0 0 ]T

The nonlinearities are in the form of saturation of states
and can be illustrated by the block diagram in Figure 7.

Fig. 7. Block diagram of single area LFC with GRC
nonlinearities

A GRC value of 0.1 p.u. MW min−1 = 0.017 p.u.
MW sec−1 is taken from Al-Musabi (2003). The results
are illustrated in Figures 8 and 9. It is seen that the
frequency deviation, again is minimal. As soon as there
is a disturbance of 0.1 p.u. in the system, the frequency
deviates by up to 0.008 p.u. and is controlled back to
being 0 p.u. in under half a second by the MPC-PSO
controller. Figure 10 shows the value of fitness function
for the solution given by PSO.

Fig. 8. Frequency Deviation in Single Area with GRC &
parameter variation

6. CONCLUSION

A new model predictive algorithm based on PSO is pre-
sented. It is applied successfully to the load frequency con-
trol of a single area power system while input of the system
is constrained. It is found that the frequency deviation
is kept at zero in the presence of disturbances, even in
the presence of nonlinearities and parameters variations.
The reason for obtaining good results is the combination
of efficient predictive control theory with the robust PSO



Fig. 9. Control Effort

Fig. 10. Fitness Function

technique. Similar results are hoped from future work on
multiarea nonlinear load frequency control.
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