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Absrract- a power system stabilizer (PSS) of a single machine 
power system model has been designed using a neural network 
based variable structure controller ( VSC). The need for 
adaptive VSC comes from the fact that the power system model 
operates over a wide range of operating points, some of which 
are unstable, and hence no single VSC gains are sufficient for 
the entire operating range. Neural networks are used for on-line 
prediction of the suitable VSC gains when the operating point 
changes. Simulation results are included to demonstrate the 
performance of the proposed control scheme. 

I. INTRODUCTION 
In recent years, there is an ongoing interest on the 

application of the variable structure controllers (VSC) to 
different engineering problems including power systems[ 1 - 
121, aerospace [13-151 , robotics [16-171, and many others. 
The VSC is essentially a switching feedback control where 
the gains in each feedback path switch between two values 
according to some rule. The switching feedback law drives 
the controlled system's state trajectory onto specified surface 
called the sliding surface which represent the desired 
dynamic behavior of the controlled system. The advantage of 
switching between different feedback structures is to combine 
the useful properties of each structure and to introduce new 
properties that are not present in any of the structures used. 
The design of VSC involves finding the switching vectors 
representing the sliding surface and the feedback gains. 

The switching vectors are very important in 
improving the system dynamic performance. Selection of 
switching vectors can be done by pole placement or linear 
optimal control theory . Feedback gains selection represents 
the second step in the design of VSC. The objective of this 
step is to find the appropriate feedback gains that will drive 
the system's state trajectory to the switching surface defined 
by the switching vectors. Recently, genetic algorithms have 
been used for VSC feedback gains selection [18-201. 

The feedback gain selection of the VSC is normally 
based on one operating point and its performance away from 
the design operating point is, of necessity, a compromise. The 
limitations imposed on the effectiveness of the VSC by 
different operating conditions can be overcome by using 
adaptive control techniques. In this paper, an adaptive output 
feedback controller using neural networks is proposed to 
enhance the performance of VSC under different operating 
points. A neural network is trained to update the feedback 
gain when the operating point changes. 

11. THEORY OF VSC 
The fundamental theory of variable structure 

systems may be found in [21]. Different control goals such as 
stabilization, tracking, regulation can be achieved using VSC 
by the proper design of the sliding surface. The discussion 
here will be limited to the regulation problem where the 
objective is to keep specified states as close to zero as 
possible. A block diagram of the VSC for the regulation 
problem is shown in Fig. 1. The control law is a linear stare 
feedback whose coefficients are piecewise constant functions. 
Consider the linear time-invariant controllable system given 
by 

i ( t )  = M(t) + BU(t)  (1 )  
Where 
X(t) n-dimensional state vector 
U (t) m-dimensional control force vector 
A nxn system matrix 
B nxm input matrix 

The VSC control laws for the system of (1) are given by 
n 

(2) 
u, =-y, T X = - C y , , x , ; i = I , 2  ,...., m 

, = I  

Where the feedback gains are given as 
a,,,ifx,o,)O;i=I, ...., m 
-a,,,ifx,o,(o;j=1 ,...., n 

and 
o ; ( X )  = C,TX = 0, i = 1, ...., m (3) 

Where c, 's are the switching vectors which are selected by 
pole placement or linear optimal control theory. 

X 
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Fig. 1. Block diagram of variable structure controller 
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The design procedure for selecting the constant switching 
vectors c, using pole placement is described below . 
Stepl: Define the coordinate transformation 

Y = M X  
such that 

MB = r i  .... 

(4) 

LB2 1 
where M is a nonsingular nxn matrix and B, is a nonsingular 
mxm matrix. 
From (4) and (5) 

Y = MX = MAM-'Y + MBU (6)  
Equation (6) can be written in the form 

[;, 1 = [ A , ,  A,, '422 I[ ;,I + [ ;,]U 
(7) 

where A, ,  , A, , ,  A,, , A,, are respectively (n-m)X(n-m), 
(n-m)xm, mx(n-m) and (mxm) submatrices. The first equation 
of (7) together with (3) specifies the motion of the system in 
the sliding modem that is 

r, = 416 + '41,YZ 
CV) = c, I r ,  + G 2 Y 2  

(8) 
(9) 

where C,, and C,, are mx(n-m) and (mxm) matrices, 
respectively satisfying the relation 

[c, , c,,] =cT M - I  (10) 
Equations (8) and (9) uniquely determine the dynamics in the 
sliding mode over the intersection of the switching 
hyperplanes 

The subsystem described by (8) may be regarded as an open 
loop control system with state vector & and control vector 
Y, being determined by (9), that is 

Consequently, the problem of designing a system with 
desirable properties in the sliding mode can be regarded as a 
linear feedback design problem. Therefore, it can be 
assumed, without loss of generality, that C,, = identity 
matrix of proper dimension. 

o , ( X )  = c.2 = 0, i = 1, ...., m 

Y2 = -C;:C, ,r, (1 1) 

Step 2: Equations (8) and (1 1) can be combined to obtain 

~ = [A,  I - A,,C, I IY, (12) 
Utkin and Yang [22] have shown that if the pair (A, B) is 
controllable, then the pair ( A, ,, A,, ) is also controllable. If 
the pair ( A, ,, A,,  ) is controllable, then the eigenvalues of the 

matrix [A,,  - A,,C,,] in the sliding mode can be placed 

arbitrarily by suitable choice of C,, . The feedback gains a, 
are usually determined by simulating the control system and 
trying different values until satisfactory performance is 
obtained. 

111. MULTILAYER NEURAL NETWORKS WITH BACK 
PROPAGATION LEARNING 

In this section, the fundamentals and the architecture of 
multilayer feedforward neural networks are described. 
A multilayer neural network is a layered network consisting 
of an input layer, an output layer, and one or more hidden 
layers. Each layer consists of a set of neurons which are fully 
connected to the neurons in the next layer. The connections 
have multiplying weights associated with them. The number 
of neurons and hidden layers is problem-dependent. 
However, it has been proved that one hidden layer can 
perform any nonlinear and no more than two hidden layers 
are needed [23 ] .  A multilayer feedforward neural network 
with one hidden layer is shown in Fig.2. The connection 
weights between the neurons and thresholds are determined 
using the generalized delta rule [24]. The process of 
determining the weights is called training or learning process. 
The training process requires a set of input and output 
patterns. The patterns are fed into the neural networks. The 
neurons in the input layer receive input signals, the activation 
signals propagate forward, through the hidden layer(s), to the 
output layer. The output layer then gives the desired output. 
The network learns by comparing its output of each input 
pattern with the actual output of that pattern. The error (the 
difference between the actual outputs and the predicted 
outputs of the network) is calculated and propagated 
backwards from the output to the hidden layer to the input. 
This is done by minimizing the error function: 

where t k  is the actual output and yk is the predicted output of 
the neural network. 

i 

Figure 2: A multilayer feedforward neural network 
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Normally, the activation functions are taken as tangential 
sigmoid and linear for the hidden and output layers, 
respectively. Since the input neurons have an activation 
function of unity, then, for each neuron j in the hidden layer, 
the input is given by 

net ;P )  = W J 1  y jp) (14) 
1 

where i is a neuron in the input layer, y, is the output of 
neuron i, wJ,is the connection weight from neuron i to 

neuron j, and p represents a training pattern. The output of 
neuron j is given by 

where 0, is a bias or threshold at neuron j .  The output of a 

neuron k in the output layer is chosen to be a linear sum of all 
inputs coming from the neurons of the hidden layer, that is 

y?’ = WkJy:” (16) 
J 

After calculating the actual output using (1 6), the weights are 
adapted to reduce the output error. The connection weights 
between the hidden neuron j and an output neuron k are 
updated using the following equation: 

AwF) = q6 ip )y f )  + d w r - ’ )  (17) 

g i p )  = ( r i p )  - y ip) )h(netk)  = ( t i p )  - y j p ) k  yJ 
where 

(18) 
J 

The constant q is the leaming rate and a is the momentum. 
The connection weight between an input neuron i and a 
hidden neuron j can be updated using (19): 
A w ( p )  J l  = q 6 j P ) y , ( P )  + d w ( P - ’ )  J l  (19) 

Iv. Adaptive VSC and Simulation Results 

The proposed method is applied the design of a 
power system stabilizer (PSS) of a single machine power 
system model . Fig. 3 shows the block diagram of the 
linearized power system model for low-frequency oscillation 
studies . The dynamic model in state-variable form can be 
obtained from the transfer function model and is given as 
t251 

k(t) = AX@) + Bu(t) +Fd(t)  
where 

x(t) = [Aw(~) A6(t) Aei(t) Aejd(f)P‘ , 
4 0  = q f r o m  VSC) 9 4 6  = AT, 0)  

F = -  0 0 0 [A li 
The system model is a function of the operating 

point defined by active and reactive powers (P, Q). The need 
for adaptive VSC comes from the fact that the model 
discussed operates over a wide range of operating points, 
some of which are unstable. Thus, no single VSC with fixed 
feedback gains is sufficient for the entire operation. The 
neural network is used to model the nonlinear relationships 
between operating points and VSC feedback gains. When the 
operating point changes the neural network will produce new 
feedback gains suitable for the new operating point. 

1 - 1  

Fig. 3. Block diagram of a single machine power system model 

In the adaptive VSC, a neural network with inputs 
(P, Q) is used to generate the VSC gains (a, and a2 ). When 
the operating point changes, the neural network will produce 
new VSC gains suitable for the new operating point. To train 
the neural network, 210 operating points generated by 
changing P from 0.1 to 1 .O and Q from -1 to 1 in steps of 0.1, 
which represent the practical operating range of the studied 
system, are used. For each operating point, VSC gains (a, 
and ) are calculated following the procedure described 
[18]. The neural network used has two inputs (P, e), two 
outputs (a, and a2 ), and 30 neurons in the hidden layer. The 
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results of the training are shown in figure 4 and figure 5 
which indicate good agreement between the actual feedback 
gains and outputs of the neural network. 
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Fig. 4. Actual and predicted values of a, 
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Fig. 5 .  Actual and predicted values of CC2 

The control objective in the PSS problem is to keep 
the change in frequency (Am ) as close to zero as possible 
when the operating point changes by manipulating the input 
(U). 

For the operating point of ( h O . 1 ,  Q=l.O), a fixed 
variable structure controller for the above system has been 
designed. To reduce the complexity of the VSC, the two 
states Ao and A 6  are used for feedback. The switching 

vector is given to be [26] 
C = [-30000 -97.2134 107.0026 1F 

and the feedback gains obtained using genetic algorithms are 
a, =18.5109 ,az =4.2116 

Fig. 6 shows the simulation results of the change in 
frequency (Am ) when the operating point of the systems 
changes from (P=O.l, p1.0) to (P=0.3, Q=-0.9) at time 10 
seconds. The figure demonstrates the effectiveness of the 
adaptive VSC in damping the frequency oscillations. On the 
other hand, Fig. 7 shows the change in the torque angle when 
using the fixed and adaptive VSC. It is quite clear that the 
adaptive VSC drives the torque angle to its steady state value 
much faster than the fixed VSC. Figure 8 shows the control 
efforts of the fixed and adaptive VSC gains. The figure 
clearly demonstrates the lower control effort needed for the 
case of adaptive VSC gains. 

10" 
3.5 1 

-OS t 
11 3 I 

o 2 4 6 a i o  i z  14 16 i a  20 

Fig. 6. Change in frequency (Am )for fixed and adaptive VSC gains: (-) for 
fixed, (. . .) for adaptive 

Time (sec) 

0.7 ,  
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Fig. 7. Change in torque angle ( A 6  )for fixed and adaptive VSC gains: (-) 
for fixed, (. . .) for adaptive 
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Fig. 8. Control efforts for fixed and adaptive VSC gains: (-) for fixed, (. . .) 
for adaptive 

V. CONCLUSION 

In this paper, an adaptive neural network based VSC has been 
developed for a PSS of a single machine power system. The 
neural network is used to predict the suitable VSC gains for 
any operating point. The use of adaptive output feedback is 
motivated by the fact that the single machine power system 
operates over a wide range of operating conditions and hence 
no single VSC gains are sufficient for the entire operation. 
Simulation results indicate that fixed VSC can perform 
satisfactorily for a wide range of operating points, but the 
controller performance can be improved greatly by the use of 
adaptive VSC. 
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