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Abstract—The statistical behavior of sidelobe-ambiguity aris-
ing in location estimation in distributed coherent MIMO radar
is studied in this paper. A model is developed for analyzing
the statistics of the localization metric under random sensor
locations. Closed form expressions are obtained for the mean
and variance of the localization metric. It is shown that the
mean is independent of the number of sensors and its sidelobes
decrease with the squared distance from the coherence point
of the MIMO array. With M transmit sensors and N receive
sensors, the variance behaves as 1/MN for locations beyond the
vicinity of the target being observed. When all N sensors function
as transceivers, the variance approaches 2/N2. Except in the
vicinity of the target, the side lobe levels have equal distribution
at every location. The study is extended to derive the statistics
of the peak sidelobe level and a simple expression is obtained
relating the required number of sensors for a tolerated level of
peak sidelobes and a desired confidence level.

Index Terms—MIMO radar, Ambiguity, radiation pattern.

I. INTRODUCTION

MIMO radars with distributed sensors have emerged as a
technology with great potential for surveillance, high accuracy
target localization, and imaging. When a large, extended target
(or group of small targets) presents to distributed radar sen-
sors different radar cross section (RCS) aspects, non-coherent
combination of these returns enhances performance for high
probability of detection cases [1],[2]. Alternatively, when the
target is too small or too far, and the returns are coherent across
the MIMO radar sensors, coherent processing can greatly
enhance the target localization ability leading to resolutions
limited by the carrier frequency rather than the signal band-
width [3],[4]. However, the high resolution capability comes
at the cost of numerous and high sidelobes, i.e., ambiguities
in the localization metric. The sidelobes are rooted in the
severe undersampling of the signals returned from the target. A
related effect is the presence of grating lobes in linear arrays
with thinned, but uniformly spaced, elements. In the 1970’s
and 1980’s, Steinberg and collaborators at the University of
Pennsylvania studied and built a thinned, large, linear array
system with randomly placed elements and have demonstrated
its superior resolution abilities for direction finding [7],[8]. In
context, coherent MIMO radar with distributed sensors may be
viewed as an extension of these early large, linear arrays to two
dimensional arrays with multiple transmitting and receiving
sensors.

The problem addressed in this paper is concerned with the
ambiguity due to sidelobe levels arising in the localization
metric. While the sensors and processing of the system is

tuned to a resolution cell, a target at a different location
may be detected through a sidelobe leading to ambiguities in
localization. Sensors are spaced by hundreds of wavelengths
and are randomly placed with respect to a surveillance area.
Resolution cells in the surveillance area are tested for the
presence of targets. Relevant to this effort is the literature
on linear, random arrays. In [5] and [6], Lo has established
the mathematical framework for studying the statistical be-
havior of random, linear arrays. Later, Steinberg and others
extended these initial studies to examine the effect of different
parameters such as number of elements, wavelength, element
size, beam steering angle, and signal bandwidth (for example
[7],[8]). These studies are basically concerned with angle
of arrival estimation of a signal received from a target and
hence assume far-field radiation patterns. Our present problem,
namely that of distributed MIMO radar, is concerned with
localization (range and angle) in two dimensional space, and
the analysis assumes sensors, each at a different angle with
respect to the surveillance area, i.e., the targets are in the near-
field with respect to the MIMO radar system. In the near field,
the phase of the signal bouncing off the target is a function
not only of the angle of arrival, but also of the sensor-target
range. When processed jointly, distributed sensors form large,
virtual apertures resulting in very high resolution capabilities.

In the sections to follow, we introduce the problem model in
Section II. The statistics of the localization metric are analyzed
in Section III. Closed form expressions for mean and variance
of the metric as functions of spatial coordinates are presented
in this section. The sidelobe at any given location is modeled
using a Gaussian distribution, thus allowing the computation of
different percentile probabilities of the sidelobe levels within
the surveillance area (visible region). The distribution of peak
sidelobe level in the visible region is studied next. The paper
concludes with Section IV.

II. DISTRIBUTED COHERENT MIMO RADAR -
ANALYTICAL MODEL

We seek to study the localization properties of MIMO radar
with distributed sensors and coherent processing. In particular,
we are interested in determining the sidelobe properties of the
localization metric. Coherent processing among the sensors
implies a global phase reference. To further elaborate, consider
the scenario depicted in Fig. 1. For simplicity, we assume
that the target has to be located in a plane rather than a
volume. A signal waveform is transmitted from sensor k at
location P defined by the polar coordinates (ρk, θk) , where
θk is measured with respect to an arbitrary horizontal axis.



The coordinate system has the origin at O and its orientation
is arbitrary. Sensors are placed randomly in a sector extending
between −θmax and θmax. In MIMO radar, sensors may trans-
mit different signals or the same signal. In the former case,
each receiver consists of matched filters to all the transmitted
signals. The surveillance space is illuminated isotropically, if
each sensor transmits isotropically. The localization metric is
formed by post-processing at the receiver. Alternatively, all
sensors may transmit the same waveform. With suitable phase
shifts at each sensor, the energy may be cohered at the desired
observation point O. In this case, the processing is divided
between the transmitter (phase shifts to cohere the energy)
and the receiver (a set of phase shifts applied to the received
signals to cohere the energy at the observation point). For
simplicity of presentation, we adopt the point of view of a
single waveform.

Given a MIMO radar system with M transmit and N receive
sensors cohered at O, we are asking what is the response to
a point target at location R, specified by its polar coordinates
(ρ, α). When a target is found at O, complete coherency
is achieved for all the transmit/receive sensor pairs and the
resultant signal is maximized. When the target is at R, the
phase compensation is not perfect. As the point of interest
R is varied over the two dimensional surveillance area, the
resultant signal forms a pattern with peaks and valleys. In

Fig. 1. Analytical model for sidelobes of the localization metric.

this work, we focus on the effect of phase, so the transmitted
waveform is assumed narrowband in the sense that changes
in the envelope of the received signal over the surveillance
area are negligible. This is a conservative assumption with
respect to the level of the sidelobes, since the autocorrelation
function of the envelope will serve as an upper bound to any
sidelobes. It can be shown that under these conditions and
for an M ×N system, the localization metric under coherent
combining expressed as a function of an index of points in the
surveillance area can be written [3]

A(ξ) =
1

MN

M∑

k=1

N∑

l=1

e−j2πf0τkξl , (1)

where f0 is the carrier frequency. The metric is normalized
such that its peak value is 1. With reference to Fig. 1, τkξl is
the differential between the time delays of paths P − R −Q
and P − O − Q. Considering the paths from the coherence
point O and from the sidelobe point R to the receive sensor
l, τξl = −OA

c , where c is the speed of light. We have OA =

OQ − RQ = ρl

[
1−

√
1−

(
2ρ
ρl

cos(α− θl)− ρ2

ρ2
l

)]
, where

the polar coordinates of R and Q are respectively, (ρ, α) and
(ρl, θl). When ρ << ρl, OA ≈ ρ cos(α − θl). It is seen that
under this model, the differential delay is dependent only on
the bearing angle of the sensor l with respect to the origin O.

It is further assumed that while the angles θk and θl

formed by different sensors are distinct, the surveillance area
of interest is such that all targets in the area are viewed by
a sensor at the same angle. For example, sensor k, views all
targets at angle θk. This implies that the separation between
sensors is of the scale of the distance of the sensors from
the surveillance area, but that the surveillance area is much
smaller than this scale.

For a given location ξ, A(ξ) is a random variable function
of the random sensor locations. As the location index ξ is
varied, A(ξ) becomes a stochastic process. In the following
section, we study the statistics of this process.

III. STATISTICS OF THE LOCALIZATION METRIC

The statistical properties of the localization metric are
discussed in this section. Two different sensor configurations
are considered. In the first case, there are M transmit sensors
which are distinct from N receive sensors. Thus, the total
number of sensors in this case is M + N . In the second case,
there are N sensors, all operating as transceivers. In each case,
the statistics are derived considering two different distributions
for the sensor locations. One distribution considered is a
uniform distribution for the bearing angles of the sensors θk,
θl. The angles θk, θl are assumed independent and identically
distributed (iid) for k = 1, · · · ,M and l = 1, · · · , N . With
the other distribution, the random variables uk = cos(α− θk)
and vl = cos(α− θl) are iid uniform. The latter model lends
itself to analysis, and numerical results show that there is not
much difference between the models.

A. Mean and Variance

The mean and variance of the localization metric are derived
for distinct transmit and receive sensors and for transceivers.
Properties are illustrated by numerical examples.

1) Distinct transmitters and receivers: Using quantities
introduced previously, and assuming that the distance ρ with
respect to the coherence point of a point in the sidelobes is
normalized to the wavelength, the localization metric (1) can
be expressed at some point (ρ, α) as

A(ρ, α) =
1

MN

M∑

k=1

N∑

l=1

ej2πρ(uk+vl). (2)

With M transmitters and N receivers, the mean φ(ρ, α)
of the localization metric is found by taking the expectation



E [A(ρ, α)] over uk and vl as follows.

φ(ρ, α) = E

[
1

MN

M∑

k=1

N∑

l=1

ej2πρ(uk+vl)

]
(3)

The expectation and summation can be interchanged, then the
expectations of the terms in the summation become identical
for all pairs of indices k and l. Thus, in the sequel, the random
variables are written as u and v without the indices. We have
a sum of MN identical terms leading to

φ(ρ, α) = E
[
ej2πρ(u+v)

]

= E
[
ej2πρu]E[ej2πρv

]
. (4)

Last step in (4) follows from the independence between u and
v. Reasonably assuming identical distribution for u and v, we
obtain

φ(ρ, α) = ψ2(ρ, α), (5)

where ψ(ρ, α) = E
[
ej2πρu

]
is the characteristic function of

u which can be computed for a known pdf of u, f(u). As
mentioned earlier, we consider two different pdf’s governing
the location of the sensors. The expectation computed here is
the mean of the localization metric for a continuous aperture
with an excitation function given by f(u). The variance of the
localization metric is given by,

σ2 = E [(A(ρ, α)− φ(ρ, α)) (A(ρ, α)− φ(ρ, α))∗]

= E
[|A(ρ, α)− φ(ρ, α)|2] . (6)

Substitution from (2) and (5) leads to

σ2 =
1

MN
+

(
1

M
+

1

N
− 2

MN

)
|ψ(ρ, α)|2

−
(

1

M
+

1

N
− 1

MN

)
|ψ(ρ, α)|4.

(7)

2) Every sensor as a transceiver: The localization metric
in (2) can be rewritten as

A(ρ, α) =
1

N2




N∑

k=1,(k=l)

ej4πρuk +

N∑

k 6=l

N∑

l=1

ej2πρ(uk+vl)


 (8)

Following steps similar to those in Section III-A1 above, we
obtain

φ(ρ, α) =
1

N
ψ(2ρ, α) +

N − 1

N
ψ2(ρ, α) (9)

and

σ2 =
2

N2
− 1

N3
+ 4

(
1

N
− 2

N2
+

1

N3

)
|ψ(ρ, α)|2

−2

(
2

N
− 5

N2
+

3

N3

)
|ψ(ρ, α)|4 − 1

N3
|ψ(2ρ, α)|2

−2

(
1

N2
− 1

N3

) (
ψ(2ρ, α)ψ∗2(ρ, α) + ψ∗(2ρ, α)ψ2(ρ, α)

)
.

(10)

For ρ = 0, the metric A (0, α) = 1. It is easily verified that
the variances = 0 at ρ = 0 in both (7) and (10). This is in
agreement with the fact that the metric is assumed cohered at
ρ = 0 irrespective of the sensors’ locations.

3) Mean and variance for specific distributions of sensor
locations: Here we make the localization metric A a function
of a single variable by letting α = π/2. This means that
sidelobes are evaluated in the cross-range with respect to the
sensors locations. We further assume two specific probability
distributions for the sensor locations. In the first, u and v are
assumed to be uniformly distributed in [−umax, umax] , where
umax = cos (θmax − π/2) = sin θmax. Computing the mean
of ej2πρu,

ψ(ρ) =
sin 2πρumax

2πρumax
, (11)

from which it follows that the mean localization pattern is
given by

φ(ρ) =

(
sin 2πρumax

2πρumax

)2

. (12)

From (12), it is evident that the mean value of the localization
pattern decays with ρ2. It is also noted that the mean is
independent of the number of sensors and is the same as
that of a filled array between −umax and umax . Fig. 2
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Fig. 2. Mean of the localization metric.
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Fig. 3. Variance of the localization metric.

and 3 show the patterns of the means and variances for the
two sensor distributions and for the two configurations, i.e.,



separate transmitters/receivers and transceivers. As seen in Fig.
2, the mean as a function of ρ from the coherence point is
not significantly sensitive to the sensor configuration or the
distribution of sensor locations. Shown in Fig. 3 are the plots
of MNσ2 versus ρ for separate transmitters/receivers config-
uration and N2

2 σ2 versus ρ for all transceivers configuration.
As observed from these plots and can be verified from (7)
and (10), for distances larger than a few wavelengths, the
variance in the case of distinct transmit and receive sensors
approaches 1/MN, whereas for the case with N sensors
functioning as transceivers, the variance approaches 2/N2.
Thus the variance for transceivers is twice as large as that
with separate transmitters and receivers. This is in agreement
with the fact that with M transmit sensors and N = M
receive sensors there are MN = N2 distinct paths, whereas

there are only N +
(

N

2

)
= N2

2 + N
2 distinct paths in the

case of N transceivers. In the figures, the variances are given
for M = N = 8 sensors. We conclude that in the sidelobes
region, the variance of the localization metric decreases with
the product of the number of sensors. MIMO radar will have
an advantage over a single transmitter - multiple receivers
architecture when M + N << MN.

B. Distribution of the peak sidelobe level
The distribution of the peak sidelobe level is a parameter of

interest. The localization metric in (2) is a sum of iid complex
random variables. By invoking the central limit theorem, the
metric can be modeled with a Gaussian distribution. With the
Gaussian assumption, the real and imaginary parts A1(ρ, α)
and A2(ρ, α) of the metric are mutually independent. The joint
probability density function (pdf) of A1 and A2 is the bivariate
Gaussian pdf given by

f(A1, A2) =
1

2πσ1σ2
exp

{
−1

2

[
(A1 − φ1)

2

σ2
1

+
(A2 − φ2)

2

σ2
2

]}
.

(13)

In (13) above, φ1(ρ, α) and φ2(ρ, α) are the means whereas
σ2

1 and σ2
2 are the variances of respectively the real part

A1 and the imaginary part A2 of the mean pattern φ(ρ, α).
The mean patterns for the separate transmitters/receivers con-
figuration is given in (3) and for the transceivers configu-
ration in (9). Closed form expressions for these variances
have been derived by solving the equations resulting from
the identities E

{|A(ρ, α)− φ(ρ, α)|2} = σ2
1 + σ2

2 and
Re

[
E

{
[A(ρ, α)− φ(ρ, α)]2

}]
= σ2

1 − σ2
2 , Re denoting the

real part. The resulting expressions are omitted here for the
sake of brevity. At any given location ρ, the probability that
|A(ρ)| is below a prescribed value q is given by

Pr{|A| < q} =

∫ q

−q

∫ √
q2−A1

−
√

q2−A1

f(A1, A2)dA1dA2. (14)

This probability distribution can be computed numerically. Fig.
4 illustrates the sidelobe patterns at different percentile values
for the case of separate transmitters/receivers and M = N =
8. Since the variance in the case of N transceivers is twice
that of M = N separate transmitters/receivers, the sidelobe

level outside of the mainlobe for the transceiver configuration
would be

√
2 times as large as that of Fig. 4.
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Fig. 4. Distribution of sidelobes with distinct transmit and receive sensors.

C. Confidence intervals and critical number of sensors
While statistics such as mean and variance provide impor-

tant insight on the behavior of localization metric, a robust
design requires the peak sidelobe levels of the localization
metric to be bounded from above by a tolerable value. The
requirements for a given sidelobe level and a confidence level
are studied in this section.

We modeled A(ρ, α) in the sidelobe region using a Gaussian
distribution as in (13). For large ρ, the means φ1 and φ2 ap-
proach zero. Accordingly the amplitudes |A| have a Rayleigh
distribution. It can be shown that for ρ À 1, the variances
σ2

1 and σ2
2 approach σ2/2 ≈ 1/2MN, 1/N2 respectively

with separate transmitters/receivers and all sensors functioning
as transceivers. Considering the former case, the cumulative
probability of sidelobe level is given by

Pr {|A| < q} =

∫ q

0

p(q)dq = 1− exp
(−MNq2) (15)

To determine the distribution of the peak sidelobe of the local-
ization metric |A (ρ)| , we follow the reasoning in [5], where
the problem is solved for a single transmitter. The statistics
of |A (ρ)| for all ρ of interest are determined by the statistics
over a finite set of values ρ. This is due to the correlation
between the values of |A (ρ)| and |A (ρ + ∆ρ)| , when ∆ρ
is sufficiently small. To determine at how many points the
statistics need to be determined, ∆ρ is evaluated from the
autocorrelation function RA of the localization pattern. We
have

RA (ρ, ν) = E [(A(ρ)− φ(ρ)) (A(ν)− φ(ν))∗] .

After simple manipulations, we obtain for the case of separate
transmitters/receivers

RA (ρ, ν) =
1

MN
[φ (ρ− ν)− φ (ρ) φ (ν)] .

To obtain a closed form solution, we use (12) for the case of
uniform distribution of sensors in the u variable. For ρ, ν in
the sidelobes, φ (ρ) , φ (ν) ≈ 0, hence

RA (ρ, ν) ≈
(

sin 2πρumax

2πρumax

)2

.



We conclude that the width of the autocorrelation of the
localization pattern is approximately ∆ρ ≈ 1/2umax. Let the
surveillance area of interest be |ρ| ≤ ρmax. It follows that the
number of points at which the distribution of |A (ρ)| has to be
evaluated is n = 2ρmax/ (1/2umax) = 4ρmaxumax. Let β be
the confidence level that none of the samples exceeds a given
value q. Then β is related to the number of transmitters and
receivers by

β = Pr {|A(ρ)| < q, ∀ρ, |δ| < ρ ≤ ρmax}
≈ [

1− exp
(−MNq2)]n

. (16)

Here δ defines the region outside the mainbeam of the co-
herence point. In this region, the assumption that the mean
pattern is negligible holds. The approximation is reached since
δ ≈ 1/2umax. Thus using the Taylor series expansion of ex

we obtain
MN ≈ 1

q2

(
log n− log log

1

β

)
.

Fig. 5 shows the critical number of antennas plotted against
the peak sidelobe level of the localization pattern |A(ρ)| for
separate transmitters receivers and sensors distributed uni-
form in u. It can be seen that for a peak sidelobe level of
0.3(= 20 log10 0.3 ≈ −10 dB) with respect to the mainlobe,
a confidence level of 95%, and a surveillance area with
ρmax = 100λ, the critical number of sensors is M = N ≈ 10
(a total of 20 sensors). It is not difficult to show that when all
sensors are configured as transceivers, the above sidelobe level
can be achieved with a total of only 10

√
2 ≈ 14 sensors. In

contrast, with the use of a single transmit antenna, the number
of receiving sensors required to achieve the same performance
is MN = 100. As seen from the curves, for different values
of ρmax, this critical number does not vary drastically even
for substantial changes in the surveillance area.
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Fig. 5. Critical number of sensors as a function of the peak sidelobe level
of the localization pattern |A (ρ)|.

IV. CONCLUSION

In the study presented in this paper, we developed a model
of distributed coherent MIMO radar for active location esti-
mation of targets in the near field. Under assumptions of the

model, we were able to develop closed-form expressions for
the mean and variance of the localization pattern and for the
distribution of the peak sidelobes of the pattern. We obtained
the following results on the mean of the localization pattern
as a function of the distance from the coherence point of the
MIMO radar array: (1) it is independent of the number of
sensors; (2) it decays with the square of the distance from the
coherence point; (3) it is the same as the pattern of a filled
array extending between the extremal points of the MIMO
sensors. The following results were shown on the variance of
the localization pattern: (1) it vanishes in the neighborhood of
the coherence point; (2) the variance of the sidelobes behaves
as 1/MN for separate transmitters/receivers and as 2/N2 for
transceivers, when the sensors are uniformly distributed be-
tween −umax = − sin θmax and umax = sin θmax. Numerical
results show that the variance is materially the same for the
case when the uniform distribution of the sensors is in the
bearing angle rather than in the sine of the bearing angle.
Finally, a relation was developed between the critical number
of sensors required to maintain peak sidelobe levels below
a prescribed level and the desired confidence level of not
exceeding the peak sidelobe level. For instance, it was found
that M = N = 10 sensors are sufficient for limiting the
sidelobe level to -10 dB with a 95% confidence level. It was
found, the critical number of sensors is not sensitive to the
size of the surveillance area.

The results obtained in this paper demonstrate that MIMO
radar with M transmitters and N receivers perform as a radar
system with 1 transmitter and MN receivers. Thus, the results
underscore the gains for MIMO radar for cases when M +
N ¿ MN.

REFERENCES

[1] E. Fishler, A. Haimovich, R. Blum, L. Cimini, D. Chizhik, and R. Valen-
zuela, “Performance of MIMO radar systems: advantages of angular
diversity,” in Proc. of 38th Asilomar Conf. on Signals, Systems and
Computers, Nov. 2004, pp. 305-309.

[2] E. Fishler, A. Haimovich, R. Blum, L. Cimini, D. Chizhik, and R.
Valenzuela, “Spatial Diversity in Radars - Models and Detection Perfor-
mance,” IEEE Trans. On Sig. Proc., vol. 54, March 2006, pp.823-838.

[3] N.H. Lehmann, A.M Haimovich , R.S. Blum, L.J.Cimini, “High reso-
lution capabilities of MIMO radar,” in Proc. of 40th Asilomar Conf. on
Signals, Systems and Computers, Nov. 2006.

[4] H. Godrich, A. M. Haimovich, and R. S. Blum “Target localization
techniques and tools for MIMO radar” invited paper, IEEE Radar
Conference, May 2008.

[5] Y. Lo, “A mathematical theory of antenna arrays with randomly spaced
elements,” IEEE Transactions on Antennas and Propagation, vol. 12,
No. 3, pp. 257-268, May 1964.

[6] V. D. Agarwal, Y. T. Lo, “Distribution of Sidelobe Level in Random
Arrays,” Proc. IEEE, Oct. 1969, 1764-1765.

[7] B. D. Steinberg, “The peak sidelobe of the phased array having randomly
located elements,” IEEE Trans. on Antennas and Propagation, vol. AP-
20, March 1972, pp. 129-136.

[8] B. D. Steinberg, “Radar Imaging from a Distorted Array: The Radio
Camera Algorithm and Experiments,” IEEE Trans. on Antenna and
Propagation, Vol. AP-29, No. 5, pp. 740-748, Sep. 1981.

[9] A. Haimovich, R. Blum, and L. Cimini, “MIMO radar with widely
separated antennas: Reviewing recent work,” IEEE Sig. Proc. Magazine,
January 2008, pp. 116-129.

[10] B. D. Steinberg, Principles of Aperture and Array System Design, John
Wiley 1976.


