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Chapter 1

Introduction

1.1 Integrated Optics

Integrated Optics is a relatively new and exciting field of activity which is primarily

based on the fact that light can be guided and confined in very thin films (with

dimensions on the order of the wavelength of light) of transparent materials on

suitable substrates. The term Integrated Optics was first proposed in 1969, by S.E.

Miller of Bell Labs [1, 2]. By a proper choice of the substrate, film and a proper

configuration of the waveguide, one can perform a wide range of operations such as

modulation, switching, multiplexing, filtering or generation of optical waves. Due

to the miniature size of these components, it is possible to obtain a high density of

optical components in space unlike the case of bulk optics. Thus, integrated optics is

the name given to a generation of opto-electronic systems in which wires and cables

are replaced by waveguiding optical fibers, respectively and conventional integrated

1
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circuits replaced by optical integrated circuits (OIC).

An optical integrated circuit (OIC) is a thin-film circuit that provides enhanced

stability and compactness by integrating optical sources, detectors, switches or mod-

ulators, and interconnection of optical waveguides on a single substrate. All these

devices are guided wave devices and operate on guided waves only. From the point

of view of wave optics, OIC’s represent the third generation of optical devices, and

have numerous advantages over previous technologies [3]. These devices are ex-

pected to be rugged in construction, have good mechanical and thermal stability,

be mass producible with high precision and reproducibility, and have a small power

consumption.

One of the most promising applications of the integrated optics is in the field of

optical fiber communications. The optical fiber has assumed importance because of

its high information carrying capacity; it is here that integrated optics will play an

important role in optical signal processing at the transmitting and receiving ends and

on regeneration at the repeaters [4]. Other important applications are envisaged to

be spectral analysis, optical signal processing and wavelength division multiplexing

(WDM).

An optical waveguide is a structure which confines and guides the light beam

by the process of total internal reflection (TIR). The most extensively used opti-

cal waveguide is the optical fiber which consists of a central cylindrical core and

cladding. The refractive index of the cladding material is always chosen to be lower

than the refractive index of the core material (in order to trap the field energy inside
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the core by the phenomenon of TIR).

Longitudinal discontinuity problems in the optical waveguide are also of consid-

erable theoretical and practical interest. They play an important role in designing

practical devices such as tapers, bends, y-junctions, couplers, mode converters, fil-

ters, connections of different waveguides, etc. Much effort has been made in the

understanding of the reflection and transmission phenomena at a discontinuity in-

terface. The present thesis focusses on such waveguides with longitudinal disconti-

nuities.

In integrated optics, two types of waveguides are used; these are the planar

waveguides and the channel (or strip) waveguides. In planar waveguides, the con-

finement of light energy is achieved only along one transverse dimension and the

light energy can diffract in the other direction. In contrast to planar waveguides,

strip or channel waveguides confine the light energy in both transverse dimensions.

Depending on the refractive index profile, the waveguides can be classified into

two main categories, namely, step-index and graded index waveguides. A waveguide

with a uniform refractive index profile in each layer comes under the first category

whereas a waveguide with a continuously varying refractive index profile comes under

the second category.

Due to the difficulty in modeling (both theoretical and numerical) waveguides

having two dimensional confinement, the work in this thesis will only address waveg-

uide structures having one dimensional confinement.
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1.2 Numerical Techniques to Model Waveguide

Structures

Analysis and modeling of guided optical waveguide problems have been an important

research topic since the last two decades. Several numerical methods have been

developed to model waveguide structures. Among these methods are the Beam

Propagation Method (BPM) [5, 6, 7], the Finite Difference Time Domain (FDTD)

Method [7, 8], the Collocation Method [9], the Mode Matching Method (MMM) [10]

and the Method of Lines (MOL) [7, 11, 12].

1.2.1 Different Numerical Methods

The FDTD is one of the most widely used numerical technique methods. It is univer-

sal, robust, methodologically simple and descriptive. The wave propagating through

the structure is found by a direct integration in the time domain of Maxwell’s equa-

tion in discretized form. Discretization is done both in time and in space using a

staggered grid (or a cubic grid). The main shortcoming of the FDTD method is its

high computational demand.

The BPM is the most widely used numerical method for the modeling of inte-

grated and fiber-optic devices. It also involves a discretization of the electromagnetic

field. It is computationally efficient, and methodologically even simpler than the

FDTD. The main underlying assumption in the BPM is the use of the slow varying
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envelope approximation along the direction of the field propagation, leading to the

parabolic form of the wave equation. In addition, the BPM generally assumes slow

changes in the waveguide profile.

The Collocation Method is based on the Helmholtz equation and does not require

the Fresnel approximation for its implementation [13]. In this method, the field is

expanded into a set of suitable orthogonal basis functions φn(x) in the transverse

direction. The choice of the basis functions depend on the problem geometry. Since

these basis are not eigen-modes of the problem, we need a larger number of basis

functions to achieve accurate results.

1.2.2 The Method of Lines (MOL)

The Method of Lines is a well-established and efficient numerical procedure for the

analysis of a variety of optical and microwave waveguides. Its advantages stems from

the fact that it is a semi-analytical approach that leads to a comparatively small

numerical effort and high calculational accuracy. The MOL can easily account for

both, the backward reflected field and the forward transmitted field as well as its

ability to account for optical structures with large refractive index contrast. This is

an important advantage leading to the popularity of the MOL in analyzing longitu-

dinally inhomogeneous structures. Detailed formulation of the MOL is presented in

chapter 3.
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1.3 Overview of the Thesis

The section briefly states the objective of the research work that has been carried

out in this thesis and the organization of the thesis in a comprehensive manner.

1.3.1 Objectives of the Thesis

The work to be addressed in this thesis includes

• Developing an automated user-friendly MOL (Method of Lines) program that

accounts for arbitrary longitudinal discontinuities in an efficient manner.

• Improving the accuracy of the automated MOL program by employing im-

proved higher-order approximations of the transverse second derivative oper-

ator with appropriate interface conditions. Employing the Perfectly Matched

Layer (PML) absorber that utilizes a non-uniform loss profile in order to ef-

fectively terminate the problem space.

• Applying the program for the analysis of 1D guided wave deep grating struc-

tures (or bandgap structures) and their use as wavelength filters. The work

includes the analysis of periodic waveguide deep gratings and the effect of the

groove depth and the number of periods on its spectral response, using the

automated program.

• Analysis of symmetrically and asymmetrically coupled 1D bandgap structures.

The effect of the filling factor (i.e. the ratio of width of the air region and the
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grating period) on the spectral response is studied. The effect of the uniform

distance which separates the two coupled structures is also studied.

• Analysis of 2D bandgap structures. Defects such as the line defect, point

defect, are studied. A device which bends the light wave by 180 degrees (using

two 90o bends)(called as the U-turn waveguide) with small radiation loss is

also studied towards the end of this thesis.

1.3.2 Thesis Organization

This thesis is organized in a comprehensive manner so that the reader may easily

follow the progress of the work. It starts from a brief review of basic slab waveguide

theory and then proceeds in a comprehensive manner to our results and discussions

of the optical devices that we assume would be helpful in the Wavelength Division

Multiplexing (WDM).

Chapter one is an introductory chapter, which surveys the historical background

of integrated optics. Then, an overview of the different numerical techniques to

model optical structures is given throwing light on the MOL technique.

Chapter two is completely devoted to the quantitative understanding of a simple

planar optical waveguide (dielectric slab waveguide). The theory is presented briefly

along with the eigen value equation of both the TE and TM guided modes.

Chapter three starts with the introduction to Method of Lines (MOL), which is

applied for the solution of the wave equation in the present thesis. The complete
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mathematical formulation of the MOL is also presented. Later in the chapter, ex-

tensions to the basic MOL is discussed. The necessary interface conditions for the

structures with longitudinal index discontinuities is presented briefly. The improved

five-point approximation of the transverse second derivative operator with appropri-

ate interface conditions is discussed. The implementation of the Perfectly Matched

Layer (PML) absorber with graded loss profile is explained. The above mentioned

extensions to the MOL are applied and are used in the later work to calculate the

spectral response of various guided wave structures.

In chapter four, MOL analysis of waveguides exhibiting longitudinal disconti-

nuities are discussed. The chapter starts by considering a waveguide with a single

longitudinal discontinuity. Comparison with published work is done to confirm the

accuracy of implementation. Later, multiple longitudinal discontinuities are dis-

cussed. The algorithms that are used to simulate such structures are presented and

the results are compared with published work. Chapter five ends with the discussion

of the development of the automated program along with an example.

In chapter five, the guided wave grating structure is analyzed and the effect of the

number of periods and the depth of the groove, on the spectral response is studied.

Both TE and TM guided modes are discussed.

Chapter six and seven are devoted to optical devices that are formed by coupling

the basic guided wave grating structure (discussed in chapter 6). Symmetrical and

asymmetrical coupled structures are discussed in chapter six and seven, respectively.

Chapter eight throws light on the analysis of an optical waveguide structure that
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bend the incident wave by 180 degrees (in the form of a U-turn utilizing two 90o

bends) within small space with small radiation loss.

In the final chapter (chapter nine), the presented work is summarized along with

the conclusions and some suggestions for future extensions.



Chapter 2

Planar Optical Waveguide

2.1 Introduction

Since the waveguide forms the backbone of all integrated optical devices, a very brief

introduction to the three layer step index slab waveguide is going to be given in this

chapter for reference. The reader may refer to [14, 15, 16] for detailed analysis. The

waveguide selected for analysis is an asymmetric one because almost all waveguides

used in integrated optics are asymmetric in nature (the refractive indices of all the

layers are different) and thereby making it easier to understand the physical prin-

ciples of the more complicated guiding structures. The slab waveguide is also used

for light guidance in integrated optical circuits [14, 17, 18, 19, 20].

10
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2.2 The Three Layer Step-Index Dielectric

Slab Waveguide

In this section, a brief idea about the derivation of the scalar wave equation and its

application to the planar waveguide and its guided modes will be discussed.

2.2.1 The Wave Equation

A simple planar three-layer step-index dielectric slab waveguide structure is shown

in fig.2.1 which has a core of refractive index n2, superstrate and substrate with

refractive indices n1 and n3 (n1 > n2 > n3), respectively. The coordinate system

used throughout in this thesis is also shown in the same figure. The material of

each layer is assumed to be non-magnetic and homogeneous. A time-harmonic field

of the form e−jωt is assumed. The time harmonic, three dimensional vector wave

equation which is derived from the Maxwell’s equations, is shown below

∇2E + k2
on

2E = 0 (2.1)

Where E is the electric field (equation 2.1 is equally applicable for the magnetic

field H), ko (equal to 2π/λ0) is the free space wave number and n is refractive index

of any layer (n1, n2 or n3). On employing a further assumption of a 2D structure, i.e.

infinitely wide and uniform structure in the y-direction, we may use ∂
∂y

= 0. In order

to obtain modal solutions corresponding to wave propagation in the z direction, the

field is assumed to vary as ejβz in the z direction (β is the longitudinal propagation
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z

n3 Superstrate

x

0

2d

              n1 Core

n2    Substrate

Figure 2.1: The Three Layer Step Index Slab Waveguide.

constant). In this case, equation 2.1 reduces to the well known Helmholtz equation

given below [14]

d2E

dx2
+ (k2

on
2 − β2)E = 0 (2.2)

Using equation 2.2 and imposing appropriate boundary conditions at each interface

[superstrate/core (x = 0) and core/substrate (x = 2d)], the modal solutions (guided

modes) of the structure as well as the corresponding propagation constants can be

obtained.

2.2.2 Transverse Electric (TE) Guided Modes

For TE-polarized waves, the electric field has a single component in the y-direction,

namely:
−→
E = Ey

−→ay . The magnetic field H has two components so that
−→
H =

Hx
−→ax + Hz

−→az . By solving equation 2.2 in each layer of the slab waveguide (along
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with the application of the boundary condition that Ey is continuous at the in-

terface), Ey can be obtained. Using Maxwell’s equations, the corresponding two

non-zero components of the magnetic field Hx and Hz can also be obtained. These

components are given below

Ey =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ae−rx , x ≥ 0

A cos(qx) + B sin(qx) , 0 ≥ x ≥ 2d

(A cos(2dq) − B sin(2dq)) ep(x+2d) , x ≤ 2d

(2.3)

Hx = − β

ωµo

Ey (2.4)

Hz = − j

ωµo

∂Ey

∂x
(2.5)

where q2 = n2
1k

2
o − β2, p2 = β2 − n2

2k
2
o and r2 = β2 − n2

3k
2
o . Substituting equation

2.3 in equation 2.5, to obtain Hz and again applying boundary conditions for the

continuity of Hz, the following TE eigenvalue equation can be obtained.

tan(2aq) =
q(p + r)

q2 − pr
(2.6)

Equation 2.6 relate the wavelength, refractive indices, core thickness and propa-

gation constant. The longitudinal propagation constant β is the only unknown

quantity in equation 2.6, and hence it can be easily obtained using zero finding

programs (see appendix D). An example of the TE mode patterns for a three-layer

symmetric slab waveguide is shown in fig.2.2.
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Figure 2.2: TE Modal Field Patterns of a Symmetric Slab Waveguide.

2.2.3 Transverse Magnetic (TM) Guided Modes

Solving equation 2.2 (when it is in terms of the magnetic field H), the only non

zero magnetic field component Hy of the TM-polarized waves can be obtained in

the three regions as

Hy =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ce−rx , x ≥ 0

C cos(qx) + D sin(qx) , 0 ≥ x ≥ 2d

(C cos(2dq) − D sin(2dq)) ep(x+2d) , x ≤ 2d

(2.7)

Again using Maxwell’s equations, the two non-zero components of the electric
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field namely Ex and Ez are obtained as

Ex = − β

ωn2
i εo

Hy (2.8)

Ez = − j

ωn2
i εo

∂Hy

∂x
(2.9)

In a similar fashion as done in the TE case, an eigenvalue equation for the TM

modes can also be obtained and is given below

tan(2aq) =
qn2

1 (n2
3p + n2

2r)

n3
2n

2
3q

2 − n4
1pr

(2.10)

The guided mode patterns for the TM polarized modal field for a symmetric slab

waveguide (n1=n3) are found to be in general similar to the TE mode patterns

(fig2.2) except that a sudden change in the slope of the magnetic field occurs at

material interfaces.



Chapter 3

The Method of Lines (MOL) and

its Extensions

3.1 Introduction

The Method of Lines is a partial discretization technique. This numerical method

forms a versatile tool for the analysis of optical and microwave waveguides. Due

to its semianalytical approach, the computational effort is much less than other

methods applied to the same problem. In MOL, the equations are discretized only

as far as necessary and all other calculations are done analytically. As interface

conditions can be easily employed in this method, discontinuous filed curves can be

described accurately. This leads to the popularity of this method for solving more

complicated problems. Later in the chapter, extensions to the MOL are presented.

16
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3.2 MOL Formulation

In order to solve the two dimensional wave equation using the MOL, the field is

discretized in one dimension (the transverse dimension, x in our case) and solved

analytically in the direction of wave propagation (the z direction) [15, 16, 21, 22].

The MOL has been used to analyze waveguides exhibiting longitudinal disconti-

nuities. Waveguide structures with a single [23, 24] and multiple discontinuities

[25, 26, 27, 28, 29] using the MOL have been reported in the literature. Non-linear

waveguide problems [30] and the diffraction problem from waveguide ends [31], has

also been analyzed by this method.

The waveguide’s interfaces are kept parallel to the direction of propagation (z-

axis) and then discretized along the transverse direction (x-axis). The field will be

calculated along these discretized lines (known as mesh lines or points) which are

kept equidistant from each other. The structure is considered to be bounded by

electric or magnetic walls (in order to terminate the problem space). The resulting

system of difference equations is then decoupled and manipulated through algebraic

expressions.

Consider the two dimensional wave equation

∂2ψ(x, z)

∂x2
+

∂2ψ(x, z)

∂z2
+ k2

on
2ψ(x, z) = 0 (3.1)

where

ψ = Electric or Magnetic Field (Ey or Hy)

ko = 2π/λo
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Figure 3.1: Mesh Discretization used in the MOL.

λo = Free space wavelength

n = Refractive index of the medium

The refractive index is assumed to be locally uniform in the z-direction, i.e.

n(x, z) = n(x). The field ψ(x, z) and the refractive index n(x), are discretized along

the x-axis. On applying the three-point central difference approximation to the

transverse second derivative operator (refer to appendix A) of ψ with respect to x

(equation 3.1), we obtain a system of ordinary differential equations. Each equation

can be written as (at the ith grid)

ψi+1(z) − 2ψi(z) + ψi−1(z)

(∆x)2
+

d2ψi(z)

dz2
+ k2

on
2
i ψi(z) = 0 (3.2)

where ∆x is the mesh size (fig. 3.1).

If the field in the x-direction is discretized into M points, then equation 3.2 yields
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the following M equations:

i = 1 :
1

(∆x)2
[ψ2 − 2ψ1 + ψ0] +

d2

dz2
[ψ1] + k2

on
2
1 [ψ1] = 0 (3.3)

i = 2 :
1

(∆x)2
[ψ3 − 2ψ2 + ψ1] +

d2

dz2
[ψ2] + k2

on
2
2 [ψ2] = 0 (3.4)

i = 3 :
1

(∆x)2
[ψ4 − 2ψ3 + ψ2] +

d2

dz2
[ψ3] + k2

on
2
3 [ψ3] = 0 (3.5)

...

i = M :
1

(∆x)2
[ψM+1 − 2ψM + ψM−1] +

d2

dz2
[ψM ] + k2

on
2
M [ψM ] = 0 (3.6)

The above system of equations can be assembled in matrix form as

1
(∆x)2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 1

1 −2 1 O

1 −2 1

. . . . . . . . .

O 1 −2 1

1 −2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψ1(z)

ψ2(z)

ψ3(z)

...

...

ψM(z)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ d2

dz2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψ1(z)

ψ2(z)

ψ3(z)

...

...

ψM(z)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+k2
o

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n2
1

n2
2 O

n2
3

. . .

O . . .

n2
M

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψ1(z)

ψ2(z)

ψ3(z)

...

...

ψM(z)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

...

...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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or, can be cast into the more compact form:

1

(∆x)2
CΨ +

d2

dz2
Ψ + k2

oNΨ = 0 (3.7)

and finally

d2

dz2
Ψ + QΨ = 0 (3.8)

The resulting vector Ψ = [ψ1(z), ψ2(z), ..., ψM(z)]t represents the discretized field.

The square matrix Q is given by

Q =
1

(∆x)2
C + k2

oN (3.9)

where C represents the tri-diagonal central difference approximated transverse

second derivative matrix , N is a diagonal matrix containing the discrete values of

the square of the refractive indices in the transverse direction.

Thus, the solution to the above 2nd-order ordinary matrix differential equation

(equation. 3.8) is simple, given as [12]

Ψ = ej
√

QzA + e−j
√

QzB (3.10)

where A and B are constant vectors having the same dimensions as Ψ. The terms

e±j
√

Qz represent field propagation in the ±z, respectively. The M × M matrices
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ej
√

Qz and e−j
√

Qz are evaluated by first diagonalizing matrix Q to find the eigenvalues

and eigenvectors as shown below

Q = UV U−1 (3.11)

where the diagonal matrix V contains the eigenvalues of Q and the square matrix U

contains the corresponding eigenvectors. Hence the term e±j
√

Qz can be evaluated

using the following expression:

e±j
√

Qz = Ue±j
√

V zU−1 (3.12)

3.3 Extensions to the MOL

Important extensions to the MOL which results in an increase of its numerical effi-

ciency will be discussed in this section. Those extensions include, improvement to

the transverse second derivative operator using an improved higher order finite dif-

ference approximation. The use of Perfectly Matched Layer to absorb the radiative

field effectively. The results to be presented in this section confirm the accuracy of

our implementation.
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3.4 Improved Higher Order Finite Difference Ap-

proximation of the Transverse Second Deriva-

tive Operator

The central difference approximation of the second derivative operator ∂2

∂x2 (see equa-

tion 3.2) has some major drawbacks. It is a 3-point central difference formula with

an accuracy of O(h2) in regions of uniform refractive index. Its accuracy decreases

at index discontinuities. Because central difference is used to derive equation 3.2,

a non uniform mesh size cannot be used in this case. Equation 3.2 also does not

account properly for the TE and TM boundary conditions at material (refractive

index) discontinuities. Thus, equation 3.2 is limited to the case of low index contrast

in the transverse direction. If applied to TM polarized waves in high index contrast

waveguides, equation 3.2 fails and gives erroneous results. In addition, it requires

very fine mesh size (small ∆x) to give an acceptable level of accuracy which leads to

increased matrix size in the MOL and hence much increased runtime. The numerical

accuracy of ∂2

∂x2 can be improved without an excessive number of discretization lines

by using higher order approximations of the transverse second derivative operator.

A higher order approximation scheme discussed in [32], will be implemented in

this thesis. This technique is more efficient and more flexible than the one reported

in [33]. It accounts for both TE and TM polarized waves and uses a non-uniform

meshing scheme for added efficiency. This results in a much reduced matrix size in
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the MOL, faster computational speed and lower memory usage.

In the subsequent sections, a brief idea about the interface conditions (I.Cs.) for

an arbitrary mesh size and index discontinuities is given followed by final expres-

sions of the higher order approximation of the transverse second derivative operator

algorithm.

3.4.1 Interface Conditions

Before moving to the approximation algorithm, a clear idea about the behavior of

the field at the interface (where refractive index discontinuity occurs) is required.

This can be achieved by reviewing in brief, the interface conditions (I.C’s).

The I.C’s can be derived using equations 2.5 and 2.9 for TE and TM modes,

respectively and are shown in detail in [15, 16]. Using the above equations and

applying the boundary condition i.e. continuity of electric field Ey, Ez and magnetic

field Hy, Hz, on the either side of the interface results in the following equations

E0+

y = E0−
y (3.13)

∂E0+

y

∂x
=

∂E0−
y

∂x
(3.14)

H0+

y = H0−
y (3.15)

and

1

n2
2

∂H0+

y

∂x
=

1

n2
1

∂H0−
y

∂x
(3.16)
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Equations 3.13,3.14 and 3.15, 3.16 corresponds to the TE and TM modes, respec-

tively.

Therefore, from the above equations it can be concluded that the tangential

electric field Ey and its first derivative is continuous across an interface and that the

tangential magnetic field Hy is continuous but its first derivative is discontinuous at

the interface. All the higher order derivatives of both Ey and Hy are discontinuous

at an interface.

3.4.2 Higher Order Transverse Second Derivative Operator

Algorithm

There are many algorithms reported in the literature that discuss higher order ap-

proximation of the second derivative operator [33, 34]. Although these algorithms

give sufficiently high accuracy of the modal field profile and the effective indices,

there are some limitations. The approach of [33] inspite of having an advantage by

utilizing non uniform mesh and handles both TE and TM modes efficiently at the

interfaces, it requires the presence of a uniform mesh size and a uniform refractive

index on both sides of a discontinuity point (discontinuity due to mesh size, refrac-

tive index, or both). Due to this limitation, the number of points in the MOL has

to be increased thereby decreasing the efficiency of the MOL.

The algorithm that will be presented here [32] does not suffer from such limita-

tions. Therefore, this algorithm will be used throughout this thesis. This improved
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algorithm allows both the mesh size and refractive index to change in a completely

arbitrary manner from one layer to the next, without any restrictions. This basic

difference leads to a number of advantages, which includes flexibility, efficiency and

accuracy of the results. The approach used in this reference, for obtaining higher

order approximation of the transverse second derivative operator, can be easily ex-

tended from the 3-point to the 5-point, the 7-point etc. Contrary to the approach

presented in [33], which requires separate treatments for the points surrounding a

discontinuity point, the present approach treats all point equally.

The algorithm will not be derived here and only the relevant final expressions will

be given approximating the transverse second derivative operator ψ with respect to

x is presented. The reader is referred to [32] for detail derivation. Only the results

of the 5-point approximation will be presented. Referring to fig.3.2, the following is

the final expression for the 5-point approximation technique approximation⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψi

ψ
(1)
i−

ψ
(2)
i−

ψ
(3)
i−

ψ
(4)
i−

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= C−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψi−2

ψi−1

ψi

ψi+1

ψi+2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.17)

where ψi is the field at the ith interface of thickness hi and uniform refractive

index ni. The minus and plus signs in ψi−(+) represents the field immediately to the

left (right) of the ith mesh point, respectively. The superscript in ψ(d) denotes the

dth derivative of ψ with respect to x. ψi−(+)1 represents the field at previous mesh
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Figure 3.2: Generalized refractive index and mesh size distribution.

point (next mesh point). The elements of third row of C−1 provide the required

finite difference coefficients for approximating the second derivative operator. The

matrix C in equation.3.17 is defined as

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q−i−1M
−1
i−1N

−
i

q−i

1 0 0 0 0

q+
i+1Mi

q+
i+2Mi+1N

+
i+1Mi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.18)

where the matrices M , q and N are given below

M±1
i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0

0 ρ±1
i 0 0 0

∓δi 0 1 0 0

0 ∓ ρ±1
i δi 0 ρ±1

i 0

δ2
i 0 ∓ 2δi 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.19)
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q±i =

[
1 ±hi

h2
i

2!

±h3
i

3!

h4
i

4!

]
(3.20)

N±
i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ±hi
h2

i

2!

±h3
i

3!

h4
i

4!

0 1 ±hi
h2

i

2!

±h3
i

3!

0 0 1 ±hi
h2

i

2!

0 0 0 1 ±hi

0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.21)

where ρi = 1 for the TE waves and ρi =
n2

i+1

n2
i

for the TM waves, and δi =

k2
0(n

2
i+1 − n2

i ).

The expressions corresponding to the 3-point and the 7-point approximation are

presented in appendix B for reference.

3.4.3 Numerical Results

High Contrast Asymmetrical Waveguide

The developed algorithm for the three-point, five-point and seven-point approxi-

mation of the transverse second derivative operator ( ∂2

∂x2 ) are used to model the

high-contrast asymmetric waveguide shown in the inset of fig. 3.3. The effective

index of the TE0 mode of this slab waveguide is calculated using the 3, 5 and 7-

point approximation as a function of the mesh size (that is increasing the number

of discretization points M) in the problem space at λ0 = 1.00µm. The outer layers

thickness is kept sufficiently large so that the modal field decays to a sufficiently
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small value before it reaches the exterior wall of the problem space.

The exact value of the effective index of the TE0 mode, calculated by STF1

program (see Appendix D), is given by neff,TE0 = 3.0708680179441. The absolute

error |neff,exact −neff,calc|, as a function of the number of mesh points M is shown in

the same figure (fig.3.3). The error is seen to decrease smoothly with M and the error

order is very close to O(h2), O(h4) and O(h6) for 3,5 and 7-point approximations,

respectively. The corresponding absolute error in the effective refractive index of

the TM0 mode (for the same waveguide) is shown in fig.3.4, which appears to be

similar to the TE0 mode case. The exact value of the effective index up to 14 digits

is given by neff,TM0 = 2.5237142996534. It is observed that the 7-point formula

gives a better estimate of neff with relatively few sample points when compared to

the 5-point and the 3-point formulas.

3.5 Absorbing Boundary Conditions

For the analysis of any waveguide structure, the waveguide has to be enclosed in

a box called ”the computational window” or ”the problem space”. This is done in

order to limit the computational effort and model an open space problem using a

finite width window. The truncation of the field at the edges of the computational

window is usually obtained by assuming an electric wall (Ey = 0) or a magnetic

wall (Hy = 0) at both edges of the computational window. The presence of these

walls is undesirable, causing the radiative waves to completely reflect backwards
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Figure 3.3: Variation of the error with the total number of mesh points (TE0 Mode).
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into the computational window. These reflected waves interfere with the field inside

the computational window, leading to erroneous results. In order to improve the

accuracy of the MOL, absorbing boundary condition are used for the purpose of

absorbing the radiated field.

3.5.1 Perfectly Matched Layer (PML)

Perfectly matched layer (PML) is an example of an absorbing boundary condition. If

the PML region (assumed to exist near the boundaries of the computational window)

is made sufficiently wide, only negligible electromagnetic reflections at the extreme

edges of the computational window may occur [35] (see fig.3.5)(because most of the

field will be absorbed by the PML).

Background

The PML used in this work is based on transforming real space into the complex

domain [35, 36]. The distance x within the PML is mapped into the complex domain

according to x → x(1 + jσ) [�x → �x(1 + jσ) in discretized form]. This results in

the formation of an attenuation factor in the PML (towards the inside of the PML)

followed by a termination of the mesh points. The parameter σ (σ > 0) controls

the rate of decay within the PML. The radiative wave e+jkx propagating in the +x

direction in the real space will be transformed to

e+jkx(1+jσ) = e+jkxe−kσx (3.22)
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Figure 3.5: PML incorporated in Mesh Discretization.

in the complex space. Hence, the term e−kσx causes wave attenuation in the +x

direction. The choice of the decay factor σ is discussed in reference [36].

If the term �xσ remains unchanged throughout the PML, then we have a uni-

form PML. If this term is gradually increased into the PML, following a certain

profile, then the PML is termed non-uniform or graded PML. In general, the graded

loss profile is superior in performance to the uniform profile [37]. This will be shown

by considering an example in the next subsection. The present work utilizes a PML

with a graded loss profile. Therefore, more explanation will be provided which

which should be sufficient to general understanding. The reader is refered to [37]

for details.

For a graded PML, we define first

xi =
i π/2

Mp + 1
(i = 1, 2, 3, .....Mp) (3.23)
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where Mp is the number of mesh points in the PML region. Then, the parameters

η and xi are used to define the the non uniform loss profile as η
Mp

f(xi). Where f(xi)

is a function that defines the loss profile (for instance, tangent, exponential, secant,

cubic, linear, etc). The present thesis utilizes the tangent graded loss profile and

therefore, its performance will be evaluated and compared with the uniform loss

profile in the subsequent section.

3.5.2 Numerical Results

Gaussian Field Propagation in Glass

In order to asses the performance of the PML, the propagation of a two-dimensional

Gaussian beam in glass is simulated using the MOL. The beam has a spot size of

w = 2µm and the operating wavelength λ0 = 1.0µm is launched at z=0. Glass

occupies the region (|x| < 6µm)(shown in fig.3.6). Two identical PML layers are

placed on either side of the problem space having η = 1.0 and Mp = 12. Glass is

discretized into 60 mesh points. Both PML follow the Tangent loss profile [i.e. f(xi)
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= η
Mp

Tan(xi)]. The analytical results (obtained from [37, 38]) are compared with

the calculated results which are shown in fig.3.7. The beam propagation is shown

at z=0, 30, 60, 90 and 120µm, respectively. The curves are displaced successively

by 0.7 on the vertical scale for clarity. From this figure, it can be seen that the

simulated results agree with the analytical results, thus establishing the accuracy of

of PML.

In figure 3.8, comparison of the graded tangent loss profile and the Uniform loss

profile is made with the same parameters mentioned above, at z = 100µm. As seen

in the figure, good agreement between the theoretical and the calculated fields when

the tangent profile is used. However, relatively strong reflection is seen to develop

at the glass/PML interface, when the uniform loss profile is used. Thus, from this

result it can be concluded that the graded PML has a better performance compared

to the uniform PML.
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Figure 3.7: Theoretical and Calculated Gaussian Beam Propagation in Glass using
a Graded PML with a Tangent Loss Profile.
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Chapter 4

MOL Analysis of Longitudinal

Discontinuities

4.1 Introduction

Discontinuity problems in the optical guided-wave devices are of considerable the-

oretical and practical interests. They play an important role in designing practical

devices such as tapers, bends, y-junctions, couplers, mode converters, wavelength

filters, connections of different waveguides, etc. Much effort has been made towards

the understanding of the reflection and transmission phenomena at a discontinuity

interface.

Fig.4.1 illustrates some examples of guided wave grating structures exhibiting

longitudinal discontinuities. These structures may be broadly classified into pe-

riodic corrugated structures (see fig.4.1(a)) and arbitrary or aperiodic corrugated

35
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structures (see fig.4.1(b)). A more complex structure which exhibits both periodic

and arbitrary longitudinal discontinuities is shown in fig.4.1(c).

The periodic structure consists of rectangular periodic gratings of groove depth h

and period T . The structure is usually composed of thousands of such periods. Each

period consists of two discontinuities. The total reflected and the total transmitted

field of the structure is the phasor sum of all the individual reflected and transmitted

fields at each discontinuity.

The arbitrary waveguide structure shown in fig.4.1(b) consists of five distinct

regions. Each region may have a different refractive index contrast and the width

can also varies in an arbitrary fashion.

The third example (fig.4.1(c)) is a more complex structure consisting of two

periodic structures with widths T1, T2 and depths h1, h2 respectively. These are

combined with different arbitrary regions. MOL analysis of such a guided structure

is a relatively laborious task. In this thesis we have developed a program that

can handle such complex structures in a numerically efficient way. The program

is developed with an eye on reducing the human effort required to program such a

structure, efficiently.

Gratings applications also include, wavelength dispersion, conversion, modula-

tion and control of guided wavefronts in optical integrated circuits [39]. The gratings

structures have dimensions which are suitable for fabrication and integration process.

On the basis of applications, they can be classified as active and passive device com-

ponents. Distributed Feedback (DFB) [40] and Distributed Bragg Reflector (DBR)
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lasers [41, 42] are examples of corrugation-based active devices. [3] gave some ex-

amples of passive grating components, which includes grating couplers, deflectors,

reflectors, mode converters, wavelength filters, etc. They can also be classified on

the bases of structure as index modulation and relief types [3]. Gratings are also

used as couplers for coupling the electromagnetic field into and out of integrated

optical waveguides and devices [43, 44]. This application relies on electromagnetic

coupling through phase matching of the different fields by the corrugated region.

The MOL is especially suitable for the analysis of discontinuities in optical waveg-

uides [23, 24, 26], because it can account for both the transmitted and reflected

fields. The MOL has been applied to solve non-linear scattering problem from a

single discontinuity [45] and surface-plasmon mode scattering [46, 47]. Apart from

the MOL, many other numerical techniques has been adopted by the researchers to

analyze the waveguide discontinuities such as the Mode Matching method [48], the

Ritz-Galerkin variational technique [49], the Equivalent Transmission-Line Network

Method [50], the Beam Propagation method [5, 6], etc.

4.2 Single Longitudinal Discontinuity

A single longitudinal discontinuity is shown in Fig.4.2, which consists of two longi-

tudinally uniform regions, region 0 and region 1. The field is incident from region

0 resulting in a reflected field back into region 0 and a transmitted field in region

1. The total field in each region is the sum of the forward field, e+jSz, and the
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Figure 4.2: Single Longitudinal Discontinuity and the simulated Structure.

backward field, e−jSz, where S =
√

Q. The total field Ψ0 in region 0 is the sum of

the incident and the reflected fields whereas the total field in region 1 consists of

only the transmitted field.

By applying the appropriate boundary conditions at the discontinuity, it is possi-

ble to express B0 (reflected field) and A1 (transmitted field) in terms of A0 (incident

field). For the TE polarization, the resulting relations are [15, 16]

A1 = 2(I + S−1
0 S1)

−1A0 = TA0 (4.1)

B0 = (I − S−1
0 S1)(I + S−1

0 S1)
−1A0 = RA0 (4.2)

and for the TM polarization

A1 = 2(I + S−1
0 N0N

−1
1 S1)

−1A0 = TA0 (4.3)

B0 = (I − S−1
0 N0N

−1
1 S1)(I + S−1

0 N0N
−1
1 S1)

−1A0 = RA0 (4.4)

where N0 and N1 are the diagonal matrices containing the square of the refractive
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indices of region 0 and region 1, respectively. The terms A0, B0 and A1 respectively

represents the incident field, reflected field, and the transmitted field at z = 0, which

is the assumed location of the discontinuity. The square matrices T and R are the

transmission and reflection matrices respectively. The above equations can also be

written as

A1 = B0 + A0 (4.5)

= RA0 + A0 (4.6)

= (R + I)A0 = TA0 (4.7)

The above results are valid for the symmetric as well as asymmetric single lon-

gitudinal waveguide discontinuities.

4.2.1 Modal Power and Coefficients Calculation using MOL

Before moving to the numerical results of a single waveguide discontinuity, an idea

about the modal power calculation is given in this section which has been used

throughout the thesis. The mode power can be calculated by the basic method of

squaring the amplitude of the modal field. The modal field amplitude calculation

can be done using the overlap integral method. This method has been explained and

derived in appendix C. In this section, the general expression of the overlap integral

(equation C.7) is used to obtain the expression for the modal field amplitude of a

single waveguide discontinuity (see fig.4.2(a)).
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Considering TM modes, the incident magnetic field is given by

Hy = e+jS0zA0 (4.8)

where the M × 1 column matrix, A0, represents the incident field at z = 0 and

the M × M matrix S0 =
√

Q0 where Q0 is defined in chapter 3. Using Maxwell’s

equations, the x component of the incident electric field for TM modes is given by:

Ex =
j

ωεon2
i

∂Hy

∂z
(4.9)

where ni is the sampled refractive index on the ith discretization line. Substituting

equation 4.8 into equation 4.9, we have:

Ex =
j

ωεoN0

∂

∂z
(e+jS0zA0) (4.10)

= − 1

ωεoN0

S0e
+jS0zA0 (4.11)

where the matrix N is defined in chapter 3. Hence, the incident electric and the

incident magnetic field components, Ex and Hy, at z = 0 are given by:

Ex|z=0 = − 1

ωεoN0

S0A0 (4.12)

Hy|z=0 = A0 (4.13)

The average power flow (per unit length in the y-direction) in the z direction is

given by:

Pz =
1

2
Re

∞∫
−∞

ExH
∗
ydx (4.14)
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For discrete field, integration is replaced by summation over the index of the

array.

Pz =
1

2
Re

[
M∑

m=1

ExmH∗
ym(∆x)m

]
(4.15)

Substituting Ex and Hy from equations 4.12 and 4.13 into equation 4.15, we

obtain expression for calculating the input power:

Pz =
1

2ωεo

Re
[
N−1

0 S0A0A
∗
0

]
∆x (4.16)

The above equation can be used for the calculation of the reflected and trans-

mitted power of the waveguide. The modal field amplitude can also be obtained by

calculating the modal expansion coefficient αm of the waveguide by using the modal

coefficient formula C.6, that is

αm =
AtN−1

0 Fm

F t
mN−1

0 Fm

(4.17)

where the M ×1 vector Fm represents the discretized modal field distribution of the

mth mode, A is the discretized field and the superscript t represents transpose of

a vector. The above formula can be used for the TE modes by replacing matrix N

with the identity matrix I.

On squaring the modal expansion coefficient one can obtain the required mode

power. Since the thesis is emphasized on obtaining the modal reflectivity and trans-

missivity of various guided-wave structures, the definitions of these terms are given

below
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Modal Reflectivity (R) is defined as the ratio of the modal reflected power to

the modal incident power and modal transmissivity (T) is defined as the ratio of the

modal transmitted power to the modal incident power, satisfying the conversation

of power R + T = 1. The fraction of the power radiated can be calculated using

the above formula i.e. Ra (Radiation loss) = 1 - R - T.

4.2.2 Numerical Results

The formulation of a single longitudinal discontinuity has been evaluated and com-

pared with published results [51]. The chosen structure is shown in fig.4.2(b), which

represents a simple laser-facet. The structure is modeled at λ0 = 0.86 µm. The core

width D is varied from 0.05 to 1.00µm and the fundamental modal reflectivity of

the TE wave is calculated as a function of D. The computational window is made

large enough so that the field is negligible at the electric walls. The TE0 modal field

is assumed to be incident on the laser facet from the left. Our results are shown in

fig.4.3 along with the results of reference [51]. From the figure we can see that our

results are in close agreement with that of reference [51], thereby establishing the

accuracy of implementation.

Fig.4.4 shows the reflectivity of the fundamental TE and TM waves for different

index contrast. The cladding refractive index is first expressed as 3.6(1−�), with �

selected to be 10% and 3%. Our results and the results of [51] show good agreement

with slight deviation in the curves for the TM0 case.
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Figure 4.3: Fundamental TE mode Reflectivity of the Waveguide Structure shown
in fig.4.2(b).
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4.3 Analysis of Multiple Longitudinal

Discontinuities

A number of theoretical methods have been reported in the literature for the analysis

of waveguides with periodic corrugations. Marcuse [20] used coupled-mode theory

to analyze a slab waveguide with sinusoidal deformation on one of its interfaces. The

spectral response of a grating filter using the coupled-mode theory was calculated

and compared with experimental work in [52]. In reference [53], the Effective-Index

method was used to model a waveguide grating and the results were compared

with coupled-mode theory. A major limitation of the coupled-mode theory is that

it can only model small waveguide perturbations which is due to its approximate

formulation.

The Method of Lines is widely used for the analysis of periodic as well as aperiodic

finite length gratings. There are a number of algorithms that utilizes the MOL for

the analysis of such waveguides [28, 54, 55]. In this thesis two such algorithms are

discussed and will be used throughout the work.

The first algorithm is called the Layer by Layer method [28], which is a recursive

procedure that accounts for multiple discontinuities by accounting for a discontinuity

at a time. We start this procedure at the last discontinuity (at the output side of

the structure) and work backwards layer by layer, until the first discontinuity is

reached. This procedure is a simple one. However it requires much computational

time and memory when the number of discontinuities is large. However, the main
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advantage of this approach is that the field within the structure can be obtained in

addition to the overall transmitted and reflected fields.

The second algorithm which will be used in this work is called the Cascading

and Doubling procedure [54]. It is a stable approach that can be used to account

for multiple waveguide discontinuities. It is very efficient when applied to periodic

structures with a large number of discontinuities. However, this procedure can only

be used to obtain the overall reflected and transmitted field. The field inside the

discontinuous structure cannot be obtained by this procedure.

In the current chapter, a brief review of the MOL formulation of these algorithm

is explained and compared.

4.4 The Layer By Layer Algorithm

Consider the multi-discontinuities layer structure shown in figure 4.5. It consists of

N discontinuities divided in N + 1 regions (from 1, 2......, N,N + 1), di = zi − zi−1

(i=0, 1, 2......, N), represents the distance between the two successive discontinuity.

The total field is composed of forward and backward fields. Thus, the total field in

the layers is expressed as:

Ψ0 = e+jS0zA0 + e−jS0zB0 (4.18)

Ψ1 = e+jS1zA1 + e−jS1(z−z1)B1 (4.19)

...
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Figure 4.5: Multiple Waveguide Discontinuities in the z direction.

Ψk = e+jSk(z−zk−1)Ak + e−jSk(z−zk)Bk (4.20)

...

ΨN+1 = e+jSN+1(z−zN )AN+1 (4.21)

The subscript k in Ψk and Sk denotes the column vector Ψk and the matrix Sk

in k region. In figure 4.5, the wave is incident on the interface located at z = 0 from

the left. In region N +1, the transmission region, the wave is assumed to propagate

without reflection in the +z direction. At each discontinuity, the boundary condition

for TE waves requires the continuity of the tangential fields, Ey and Hz. In other

words, the continuity of Ψ and dΨ
dz

must be satisfied at the interfaces.

Application of these conditions at z = zk (i.e. to equation 4.20), results in the

following relationships [28]
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ejSkdkAk + Bk = Ak+1 + ejSk+1dk+1Bk+1 (4.22)

and

Uk(e
jSkdkAk − Bk) = Uk+1(Ak+1 − ejSk+1dk+1Bk+1) (4.23)

Where Uk is defined in chapter 4, that is Uk = Sk for TE waves and Uk = N−1
k Sk

for the TM waves. Using the above two equations and after simple mathematical

manipulation, it can be shown that [28]

Bk = 0.5[(I − U−1
k Uk+1)Ak+1 + (I + U−1

k Uk+1)Dk+1Bk+1] (4.24)

and

DkAk = 0.5[(I + U−1
k Uk+1)Ak+1 + (I − U−1

k Uk+1)Dk+1Bk+1] (4.25)

where Dk ≡ ejSkdk and I is the identity matrix (whose size is same as that of Uk).

By introducing a square reflection matrix (for simplicity) Γk, the relation between

the incident and the reflected field in region z = zk may be expressed as

Bk ≡ Γk(e
jSkdkAk) = Γk(DkAk) (4.26)

Substituting equation 4.26 in equations 4.24 and 4.25 and after some manipula-

tion we obtain
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Γk = [(I − U−1
k Uk+1) + (I + U−1

k Uk+1)Dk+1Γk+1Dk+1] ×

[(I + U−1
k Uk+1) + (I − U−1

k Uk+1)Dk+1Γk+1Dk+1]
−1 (4.27)

where k = 0, 1, 2, ..., N . For k = 0, d0 = d−1 = 0 and for k = N , BN+1 = 0. This

is a recursive relationship which expresses the reflection matrix of layer k in terms

of the reflection matrix of layer k + 1. We start from the last layer, in which there

is only a forward wave (BN+1 = 0), where ΓN+1 = 0. With this initial value, we

use equation 4.27 recursively in the backward direction. Once Γ1 is known, using

equation 4.26, we have

B1 ≡ Γ1(e
jS1d1A1) = Γ1(A1) (4.28)

where z = 0, i.e. d0 = 0, so that d1 = 0, which gives ejS1d1 = I (A1 corresponds to

the incident field). Using the above procedure, we can find the total reflected field

in terms of the incident field for any number of discontinuities in the z-direction.

Similar procedure can be adopted to find the reflected field in the intermediate

layers. The transmitted field in each layer, or the total transmitted field of any

number of layers in terms of the incident and the reflected field can be calculated

using the following equation.

Ak+1 = 0.5[(I + U−1
k+1Uk)DkAk + (I − U−1

k+1Uk)Bk] (4.29)

Using equation 4.29 along with the stored values of Γk, one can find Ak+1 and hence

the field inside the layers or the overall transmitted field.
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4.4.1 Numerical Results

A waveguide with periodic gratings is considered to show the effectiveness of the

algorithm. The waveguide grating is shown in the inset of fig.4.6. It is a high index

contrast with a groove depth of 0.04µm and a total of 50 periods. The TE0 mode

field is launched in the waveguide and the modal reflectivity is plotted in the same

figure (fig.4.6), as a function of wavelength. The results show a central main lobe

in the modal reflectivity centered at 0.9µm and several side lobes can be observed.

In another simulation, the results obtained by our algorithm is compared with

those of reference [56]. The waveguide structure which consists of 64 periods, is

shown in the inset of fig.4.7. The waveguide is excited using the fundamental TE

mode and the modal reflectivity is calculated as a function of wavelength. As seen

in fig.4.7, our results almost coincide with those of [56], thereby establishing the

effectiveness of our algorithm and implementation.

4.5 The Cascading and Doubling Algorithm

The Cascading and Doubling procedure discussed in detail in [15, 16, 54] offers an

efficient way of calculating the transmitted and the reflected fields of waveguides with

many multiple discontinuities. This can be applied provided knowledge of the field in

the intermediate regions is not required. Referring to figure 4.8, the two regions ‘A’

and ‘B’ represent two asymmetric distributed discontinuities, which are separated by
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Figure 4.8: Two Waveguide Discontinuities Cascaded Together.

a uniform region of width d. The field reflection and transmission coefficients of both

regions are assumed to be known, therefore, the quantities [RA1, TA2 (RA2, TA1)], of

the first region (i.e. discontinuity ‘A’, when the field is incident from left(right) of

the discontinuity) and [RB1, TB2 (RB2, TB1)], of the second region, are assumed to

be known. When both discontinuities are joined together (see Fig.4.8) then, the

reflection and transmission coefficients of the combined structure are given by [54]

T02 = TB2

(
I − ejSdRA2e

jSdRB1

)−1
ejSdTA2 (4.30)

R01 = RA1 + TA1e
jSdRB1

(
I − ejSdRA2e

jSdRB1

)−1
ejSdTA2 (4.31)

The matrix S is associated with the uniform region separating the two discontinu-

ities. Thus equations 4.30 and 4.31 gives the Cascading Algorithm which gives the

net reflection and transmission matrices of a cascaded structure composed of two

sub-structures in terms of their individual reflection and transmission matrices. The

relations for R02 and T01 are as seen from the right-hand side are easily obtained

from 4.30 and 4.31 by interchanging A ⇀↽ B and 1 ⇀↽ 2 [54].
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When A and B are symmetric discontinuities, i.e. R1 = R2 = R and T1 = T2 = T ,

equations 4.30 and 4.31 reduce to

R01 = RA + TAejSdRB

(
I − ejSdRAejSdRB

)−1
ejSdTA (4.32)

T02 = TB

(
I − ejSdRAejSdRB

)−1
ejSdTA (4.33)

If structures ‘A’ and ‘B’ are identical and symmetric, then RA = RB = R and

TA = TB = T . So the relations are further simplified to:

R01 = R + TejSdR
(
I − ejSdRejSdR

)−1
ejSdT (4.34)

T02 = T
(
I − ejSdRejSdR

)−1
ejSdT (4.35)

Finally, in the important special case, in which the above two identical and

symmetric discontinuities, are attached directly to each other, such that d = 0, then

we end up with the very simplified relationship

R01 = R + TR
(
I − R2

)−1
T = R02 (4.36)

T02 = T
(
I − R2

)−1
T = T01 (4.37)

The above equations 4.36 and 4.37 can be used to model a periodic waveguides

with a large number of periods in an efficient manner. This can be done by combining

two periods using the above equations, then the two periods are again be combined

using the same equation to find the reflection and transmission matrices of four

periods. The same process is continued for the whole structure. Therefore, as can

be seen, this algorithm works in a power of 2. For 2N periods, it requires repeated
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use of equations 4.36 and 4.37, N times only, thus improving the efficiency of the

procedure. To get a better understanding of the procedure, the reader is referred to

references [15, 16, 54].

4.5.1 Numerical Results

The algorithm discussed above is applied to calculate the spectral response of waveg-

uide gratings and a comparison is done with published results. Fig.4.9 shows the

modal reflectivity curve as a function of wavelength for the same waveguide struc-

ture (shown in the inset of fig.4.7) but having 256 periods instead of 64 periods. The

TE0 polarized wave is incident on the left of the waveguide and the reflected field

is calculated. Using equation 4.17, the modal reflectivity is calculated. Our results

are compared with those of reference [57]. From the results we can infer that our

results and those of [57], are same.

Figure 4.10 shows the modal reflectivity of an asymmetric waveguide grating

having 262144 periods. The parameters of the waveguide are nsup = 1, ncore =

1.53, nsub = 1.52, core width d = 2.4µm, groove depth h = 0.5µm and l0 =

0.106456µm, l1 = 0.106553µm (where l0 + l1 is the period of the grating). As

seen from the figure, the modal reflectivity has an asymmetric central main lobe

and densely packed side lobes. Thus the algorithm is valid for waveguide grating

structures with large number of periods.
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Figure 4.9: Deep Grating TE Modal Reflectivity.
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Figure 4.10: Deep Grating TE Modal Reflectivity, Semi-Infinite.
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4.6 Comparison of Both Algorithms

The algorithms presented above, namely the layer by layer algorithm and the cas-

cading and doubling algorithm are used to calculate the modal reflectivity of the

grating structure shown in the inset of fig.4.11. From the figure (fig.4.11) it can

be inferred that the results of both the algorithms are identical. The cascading

and doubling algorithm took 2.5 second per wavelength where as the layer by layer

method took 5.5 second per wavelength, to calculate the modal reflectivity.

Both the algorithms can model periodic and aperiodic gratings structures or

combination of both. The cascading and doubling algorithm handles a large periodic

gratings in an efficient manner. Doubling algorithm and then cascading algorithm

can be applied to the periodic structure for numerical efficiency. The same periodic

gratings can also be analyzed using only the cascading algorithm with the expense of

numerical efficiency because the algorithm treats each discontinuity as an arbitrary

discontinuity and calculates the modal reflectivity and transmissivity. The layer

by layer method is a straightforward algorithm which treats aperiodic as well as

periodic structures in a similar manner (i.e. arbitrary discontinuity). Therefore

numerical efficiency cannot be achieved from the layer by layer method for large

periodic grating structures. For a grating structure with small number of periods,

both the algorithms are efficient where as for large number of periods, the cascading

and doubling algorithm serves superior than the layer by layer method (it requires

lot of human effort and memory as well).
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Figure 4.11: Comparison of the Layer by Layer method and the Cascading and
Doubling Algorithm.

Therefore the cascading algorithm and the cascading and doubling algorithm are

used to develop an automated program whereas the layer by layer algorithm is kept

as a verification tool.

4.7 Development of the Automated Program

Application of the MOL into a multilayered structure in an efficient manner is not

straightforward. It requires calculation of reflection and transmission matrices of

each arbitrary region , and then using the cascading and doubling procedure in a

correct way in order to obtain the overall response. A program is thus needed to
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reduce the human effort for this task in a numerically efficient manner. Therefore we

have developed a semi automatic program that is based on the single discontinuity

formula, the cascading algorithm and the cascading and doubling algorithm.

The speciality of the program is that it handles the periodic region of the guided-

wave grating structure in a numerically efficient manner. The program utilizes

the doubling and cascading procedure to get its spectral response. If the program

sees an aperiodic or arbitrary region in the guided-wave grating structure, then the

transmission and reflection matrices of that individual region are calculated using

the single discontinuity expressions (equations.4.2) and then cascading algorithm is

applied to get the end results. This procedure is explained in detailed with reference

to fig.4.12. The development of the program took more than three months because

of the complexity of programming.

Fig.4.12 represents a guided wave grating structure with periodic and arbitrary

discontinuities. The detailed specifications of the structure is shown in the figure.

The structure is divided into seven distinct regions with region 1 and 7 to be the

beginning and the terminating region, respectively. Regions 2 and 3 constitutes the

first periodic part of the structure with five periods and regions 4 and 5 constitutes

the other independent periodic part of the structure with four periods. Region 6 is

an arbitrary region.

The waveguide structure is defined in the form of a vector with the term ’[-1]’

separating the arbitrary and periodic regions (or parts) of the waveguide structure.

The vector is terminated by the last region of the structure without the term ’[-1]’.
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Figure 4.12: Detailed Specifications of the Waveguide Grating Structure.
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Therefore, this represents the end of the waveguide structure and no further regions

are available. An example of the vector defining the waveguide structure of fig.4.12

is given

st=[ 1 [-1]

2 0.05 3 0.05 5 [-1]

4 0.02 5 0.02 4 [-1]

6 0.3 [-1]

7 ];

The first line of the vector contains only one term that corresponds to the region

1 of the waveguide, which indicates the starting of the waveguide structure. This

is an arbitrary region. The second line constitutes five terms which represents a

periodic part in the waveguide structure. It can be noted that the terms of the first

line and the second lines are separated by ’[-1]’ which indicates that these two line

represents two different regions of the waveguide (first line represents the arbitrary

part and the second line represents the periodic part of the waveguide, respectively).

The first and second term of the second line represents the region number and width

of the region, respectively. The third and fourth term of the second line represents

the other region number and width, respectively. Both these regions constitutes the

period of the waveguide and the fifth term of the second line represents the number

of periods in that periodic part of the waveguide structure, which in our case is five.

The third line of the vector constitutes the other independent periodic part of the

grating structure. Therefore these two lines are again separated by ’[-1]’ indicating
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that these represents different regions or part of the waveguide structure. The

fourth line of the vector constitutes of only two terms which represents an arbitrary

region in the waveguide structure. The first and the second term represents the

region number and the width of the region respectively. Finally the last line of the

vector (line number five) contains only one term with out ’[-1]’ which indicates the

termination of the vector i.e. the end of the waveguide structure.

The developed program first calculates the reflection and transmission matrices

of the first region [or the first arbitrary part of the waveguide (i.e. simulates the

first line of the vector ’st’)] using equation.4.2. The program then scans the number

of terms of the second line of the vector (or the number of terms between two ’[-1]’

indicators). If it happens to be five, then the program identifies the part of the

waveguide structure as the periodic part and applies the doubling and cascading

procedure to obtain the reflection and transmission matrices of the periodic part.

Then the program calculates the overall reflection and transmission matrices of the

combined first arbitrary part and the periodic part by using the cascading algorithm.

When the program sees only two terms in any line of the vector (fourth line in our

case) it identifies as an arbitrary part and applies equation.4.2 to get the reflection

and transmission matrices of that part. In a similar fashion the program calculates

the spectral response of the waveguide structure as it moves from left to the right of

the waveguide structure and every time it sees a periodic or aperiodic part on its way,

it calculates the reflection and transmission matrices of that part independently and

then combines with the available reflection and transmission matrices (that it has
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calculated till now) using cascading algorithm to get the overall result. When the

program sees only one term in the vector, it identifies it as the last region, calculates

the reflection and transmission matrices of the last arbitrary region, combines with

the available results and gives the end result.

Defining the refractive index matrix in a correct way is also important for the

program to give correct results. The refractive indices of each region is written in a

form of row as given below

n = [ 1 1 1 1 1 3.6 3.6 3.6 3.4;

1 1 1 3.6 3.6 3.6 3.6 3.6 3.4;

1 1 1 1 3.6 3.6 3.6 3.6 3.4;

1 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.4;

1 1 3.6 3.6 3.6 3.6 3.6 3.6 3.4;

1 1 1 1 1 1 3.6 3.6 3.4;

1 1 1 1 1 1 1 3.6 3.4 ]

The first row corresponds to region one scanned vertically from the superstrate to

the substrate of the waveguide structure. The second row corresponds to the the

second region. In a similar way the last row of the matrix corresponds to the last

region of the waveguide structure (region seven). Therefore the row indicates the

change in the refractive index along the x-direction and the column represents the

change in the refractive index along the z-direction.

The other predefined parameters that are required by the program are as follows

M1 : Used to assign the number of mesh point in the waveguide structure.
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w1 : Used to assign the width of the waveguide structure.

lambda1 : Used to assign the working wavelength. If a single wavelength is given

then the program returns the transmitted and reflected field as the output,

else the modal reflectivity and transmissivity are given as the output.

TE : Used to define the field polarization. TE=1 for TE modes and TE=0 for TM

modes.

n1 : Used to assign the refractive index contrast matrix of the waveguide structure

discussed above.

st : Used to define the Waveguide structure discussed above.

npml sub, npml sup : Used to assign the number of mesh points in the substrate

and superstrate PML region, respectively.

eta sub, eta sup : Used to assign the PML parameter η of the substrate and

superstrate PML region, respectively.

order : Used to defines the order of the approximation for approximating the trans-

verse second derivative operator. If order = 3, then the 3-point approximation

is used. For order = 5 or 7, the program employs the 5-point or the 7-point

approximation technique.

pml profile : Holds the PML profile string that has to be used in the program.

The program can accept any of the profiles given below
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tan : respresents the tangent profile [i.e. f(xi) = η
Mp

Tan(xi)].

sec : respresents the secant profile [i.e. f(xi) = η
Mp

Sec(xi)].

sin : respresents the sine profile [i.e. f(xi) = η
Mp

Sin(xi)].

exp : respresents the exponential profile [i.e. f(xi) = η
Mp

exi ].

sqr : respresents the square profile [i.e. f(xi) = η
Mp

(xi)
2].

lin : respresents the linear profile [i.e. f(xi) = η
Mp

(xi)].

unf : respresents the uniform profile [i.e. f(xi) = η
Mp

].

The terms η, xi and Mp are defined in chapter 3. There are some limitation to

our automated program. For instance, it does not account for periodic parts of

the waveguide structure that has a periodicity of more than two regions, it cannot

recognize the format of input other than the specified one.

4.7.1 Example

All the parameters mentioned above are assigned appropriately according to the

specifications of the waveguide structure shown in figure 4.12. These parameters are

written in a matlab file. The contents of the file are given below

lambda = 0.7 : 0.02 : 3;

TE = 1;

w = [ 1 0.2 0.1 0.05 0.2 0.3 0.15 0.15 3 ];

M = [ 10 7 4 3 7 10 6 6 20];
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n = [ 1 1 1 1 1 3.6 3.6 3.6 3.4;

1 1 1 3.6 3.6 3.6 3.6 3.6 3.4;

1 1 1 1 3.6 3.6 3.6 3.6 3.4;

1 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.4;

1 1 3.6 3.6 3.6 3.6 3.6 3.6 3.4;

1 1 1 1 1 1 3.6 3.6 3.4;

1 1 1 1 1 1 1 3.6 3.4 ];

st = [ 1 [-1]

2 0.05 3 0.05 5 [-1]

4 0.02 5 0.02 4 [-1]

6 0.3 [-1]

7 ];

npml sup = 4;

npml sub = 8;

eta sub = 0.35;

eta sup = 0.5;

pml profile = ’tan’;

order = 5;

Range of the wavelengths used for obtaining the modal reflectivity is assigned

to the variable ’lambda’. TE guided field is selected for analysis, therefore ’TE’

is assigned 1. The width distribution or width of each layer in the x-direction
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is assigned to ’w’ in the form of a vector. The first and last term of the vector

represents the width of the superstrate and substrate, respectively. ’M’ holds the

number of mesh points used for the analysis, in the form of a vector (a total of 73

points in the waveguide). The refractive index matrix is assigned to the variable

’n’ and the vector defining the complete waveguide structure in the z-direction, is

assigned to ’st’. The number of points used in the superstrate PML region is 4

(assigned to ’npml sup’) with η value of 0.35 (assigned to ’eta sup’). Substrate

PML region with 8 mesh points and η value of 0.5 is used. The profile selected for the

PML is the tangent profile (’profile’=’tan’) with 5-point approximation (’order’=

5). The file is named ’example’. The file is then called by the automated program

(named ’mainap’) in the following format, in the command window of Matlab.

mainap(’example’)

The effective implementation of the automated program is checked by the ver-

ification tool (the layer by layer method). The results from both, the automated

program and the layer by layer method, are shown in fig.4.13. It can be seen that

the automated program results overlaps with the layer by layer method results, thus

establishing the effectiveness of our implementation. The layer by layer method

took 5 seconds per wavelength and the automated program also took 5 seconds

per wavelength. However, the automated program becomes much more efficient

than the layer by layer method when the number of periods in the periodic part of

the structure is relatively large. This is demonstrated in fig.4.14, where the same

complex structure (of fig.4.12) is simulated with different number of periods in the
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periodic part of the structure. The number of periods in both the periodic regions

of the structure is assumed to be same. The TE0 modal reflectivity is calculated

at λ = 1.0µm with 72 mesh points within the waveguide. The time required per

wavelength is plotted on the vertical axis with the total number of periods shown

on the horizontal axis (P4 machine with 256MB RAM running under Windows XP

Operating System, has been used). It is seen that, with increase in the number of

periods in the periodic part of the waveguide, the time required by the automated

program is much less than the time required by the layer by layer method. The

time taken for the automated program to simulate 150 periods in the structure is

only 7.18 seconds per wavelength whereas the layer by layer method has done the

same problem in 430.76 seconds. This demonstrates the efficiency of our automated

program.



Chapter 5

Analysis of Guided Wave Grating

Structure

5.1 Introduction

The waveguide gratings are of considerable importance in Integrated Optics. They

are used as wavelength filters, couplers etc. Active research is being done for the

analysis and application of these devices. The concept and evolution of photonic

bandgap and photonic crystals and their realization and analysis can be considered

as extensions to grating structures. Gratings can be broadly classified into shallow

and deep gratings. Shallow gratings are the gratings in which the depth of the

grooves is assumed to be less than 10% of the width of the core . Gratings with

more than 10% of the core width are classified as deep waveguide gratings. The

present thesis focusses on deep waveguide gratings.

69
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In this chapter, a guided wave grating structure is introduced and analyzed in

detail. The fundamental mode spectral response of the structure is analyzed using

the Automated Method of Lines program developed earlier using the five point

approximation. A PML layer is used on both sides of the computational window

utilizing a graded loss profile. The graded PML loss profile results in high PML

efficiency, which results in reduced reflectivity from the PML with relatively small

number of points in the PML layer.

5.2 The Deep Grating Structure

The structure shown in fig.5.1 will be analyzed. This waveguide grating is known

to exhibit wavelength selective filtering due to the multiple reflections from each

discontinuity along the waveguide grating. The core thickness of the structure is

chosen so that only the fundamental TE mode is supported. The depth of the

waveguide gratings is chosen to be infinite. Numerically, this is implemented by

allowing the groove depth h to extend to the bottom of the computational window

(i.e. h = 8.3µm or relatively infinity). In practical devices the bottom wall of the

groove penetrates deep into the substrate. Later in this thesis, the effect of the

groove depth on the spectral response of the grating structure will also be analyzed

by considering the groove depth to be finite. A total of 75 mesh points is used in

the computational window excluding the PML. A graded tangent loss profile for the

PML with 6 points on the top (superstrate PML layer) with η = 1, and 10 points at
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Figure 5.1: Guided Wave Grating Structure with half grating period, d1 = d2 =
0.175854778µm, h, the groove depth, is variable, taking values from 0 to 8.3 µm,
and N is the number of Gratings.

the bottom (substrate PML layer) with η = 0.35 is used. The structure is designed

to be single mode at the resonant wavelength of λc = 1.55µm. This wavelength

approximately satisfies the Bragg’s formula

n1effd1 + n2effd2 
 λc/2 (5.1)

where n1eff and n2eff are the effective indices of the TE0 mode of the waveguide

and the air (hole) regions, respectively. d1 and d2 are the widths of waveguide

and air regions, respectively. In the present case, we have chosen d1 = d2 = T/2

for simplicity, later we will show the effect of changing d1 and d2 on the spectral

response of the grating structure. Substituting all the required values in the above

equation, one can obtain the half grating period T/2 (n2eff is taken as 1 in this
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case).

The Bragg’s formula is not accurate in this case because it is applicable to only

grating structures with shallow grooves. Therefore, the center wavelength of the

structure is expected to differ from the designed center wavelength.

The width of the substrate is selected large enough, based on the highest wave-

length to be scanned, so that the guided field strength at the inner walls of the

PML is very small (on the order of 10−5) compared to its value at the core-substrate

interface. This is done in order to avoid any interaction between the guided mode

and the PML layer. In a similar fashion, the width of the superstrate is also taken

to be sufficiently large.

5.2.1 Effect of the Number of Grating Periods

The fundamental TE mode is excited on the left of the structure shown in fig.5.1

and the spectral response is calculated for different number of periods N . The

spectral response of the deep grating structure for N= 2, 8 and 30 grating periods

are shown in figs.5.2, 5.3 and 5.4, respectively. Three dimensional views of the

reflectivity spectrum, transmissivity spectrum and fraction of radiated power, of

the same structure for different number of periods are respectively shown in figs.5.5,

5.6 and 5.7.

By comparing figs.5.2, 5.3 and 5.4, it is observed that there is a large change

in the shape of the main lobe for the first few periods. The main lobe becomes
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Figure 5.2: Spectral Response of the Deep Grating Structure with 2 grating periods.
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Figure 5.3: Spectral Response of the Deep Grating Structure with 8 grating periods.
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Figure 5.4: Spectral Response of the Deep Grating Structure with 30 grating periods.

Figure 5.5: A Three Dimensional View of the Fundamental TE Mode Reflectivity
Spectrum of a Deep Grating Structure. The number of grating periods are dis-
placed successively by ’2’ on the z-axis (0 to 8 corresponds to N=2,3,5,8 and 30,
respectively).



75

Figure 5.6: A Three Dimensional View of the Fundamental TE Mode Transmis-
sivity Spectrum of a Deep Grating Structure. The number of grating periods are
displaced successively by ’2’ on the z-axis (0 to 8 corresponds to N=2,3,5,8 and 30,
respectively).

Figure 5.7: A Three Dimensional View of the Fundamental TE Mode Radiation
Spectrum of a Deep Grating Structure. The number of grating periods are dis-
placed successively by ’2’ on the z-axis (0 to 8 corresponds to N=2,3,5,8 and 30,
respectively).
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steady and the peak reflectivity increases (and peak transmissivity decreases) when

the number of periods increases. In addition, the width of the main lobe tends to

decrease as N increases (nearly a flat response as N increases). Figs.5.5, 5.6 can be

used to better visualize the effect of the increasing N . As N increases, the width of

the main lobe becomes narrower and when exceeds 8 periods, it remains the same.

Any increase in the number of periods beyond this value has a small effect on the

main lobe. However, as N increases, the side lobes become more dense and the

radiated power (out side the main lobe) increases (see fig.5.7).

Figs.5.8 and 5.9 respectively show the reflectivity and transmissivity spectrum

variation with N at five different wavelengths selected to be within the main lobe.

These figures also provide the same conclusion that there is no transmission beyond

approximately 8 periods. The band of frequencies where there is no transmission

(transmissivity=0) is called a bandgap and the structures exhibiting such property

are called bandgap structures. The bandgap depends on the index contrast, depth

of the grating and the width of the grating. In the later analysis of the deep grating

structure, the number of grating periods will be fixed to 8 periods. This choice is

made because the bandgap remains constant afterwards (increasing N beyond 8).

5.2.2 Effect of the Filling Factor

The choice of d1 and d2 effects the band gap to a very large extent in a deep grating

structure. In this section the effect of changing d1 and d2 for the same structure (i.e.
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Figure 5.8: Fundamental Mode Reflectivity Verses the Number of Periods at five
different wavelengths.
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fig.5.1) is analyzed. A new parameter known as the filing factor f is introduced.

This parameter is an important parameter for such a waveguide and characterizes

its behavior (i.e. the formation of bandgap). It is defined as

f =
Width of Air Region

Grating Period
=

d2

d1 + d2

=
d2

T
(5.2)

where d1 and d2 are defined at the beginning of this chapter. In the previous

analysis of the effect of the number of grating periods, we assumed d1 = d2, which

corresponds to a filling factor of f =0.5%. In this section the previously studied deep

grating structure with 8 periods is used in the analysis.

Refereing to figs.5.3, 5.10 and 5.11, there is a large change in the width of the

main lobe with the change in the filling factor. Figs.5.10, 5.3 and 5.11 correspond to

filling factors of f = 0.25, 0.5 and 0.65, respectively. The reflectivity curve become

more asymmetric when f is increased. The reflection from each period increases

with f due to the increase in the air gap width, and hence the peak reflectivity

increases causing the transmissivity to decrease. A better visualization of the effect

of the filling factor on the spectral response can be seen from figs.5.12, 5.13 and

5.14. When f increases, the main lobe shifts towards the lower wavelengths and the

peak reflectivity increases. Thus, the center wavelength also shifts towards the lower

wavelengths. Both inside and outside the main lobe, towards the lower wavelength,

the fraction of radiated power is observed to be very high when compared to the

fraction of the radiated power at the higher wavelengths (see fig.5.14). The widths

of the main lobe (bandgap) and center wavelength, for different filling factors are
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Figure 5.10: Spectral Response of a Deep Waveguide Grating with f =0.25.
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Figure 5.11: Spectral Response of a Deep Waveguide Grating with f =0.65.
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Figure 5.12: Fundamental TE Mode Reflectivity of the a Deep Waveguide Grating
for different Filling Factors.
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Figure 5.13: Fundamental TE Mode Transmissivity of the a Deep Waveguide Grat-
ing for different Filling Factors.
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Figure 5.14: Radiation Loss of the a Deep Waveguide Grating for different Filling
Factors.

tabulated in table 5.1 below

Filling Factor Spectral Width Center Wavelength Fractional Spectral Width

f �λ(µm) λc(µm) �λ
λc

0.15 0.48 2.26 0.2124
0.25 0.65 2.14 0.3037
0.50 0.97 1.76 0.5511
0.65 1.05 1.48 0.7094
0.75 1.06 1.30 0.8154

Table 5.1: Spectral Width of the Deep Grating Structure for different Filling Factors

From table 5.1 it is clear that when f increases, both the band gap width and

the fractional spectral width �λ
λc

increases.
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5.2.3 Effect of the Groove Depth

In this section, we will study the effect of the groove depth ’h’, of the guided wave

structure (fig.5.1) on the spectral response of the structure. The groove depth h

takes values ranging from 0µm to ∞. All simulations are done for the fundamental

TE mode excited on the left of the structure. The spectral response for groove depths

of h = 2.77w (277%), 8.3w (830%), 13.83w (1383%) and 19.36w (1936%), calculated

based on waveguide core width, are plotted in figs.5.15 to 5.18, respectively. As the

grating depth is increased, the main lobe becomes wider and the peak reflectivity

increases. This stems from the fact that, as the depth increases, the field encounters

an increasing effective index discontinuity (i.e. n1eff/n2eff value increases) and

hence high reflection occur. The main lobe becomes wider as h increases. A good

view of the development of the band gap can be obtained from figs.5.19 and 5.20.

Figs.5.21 and 5.22 show the modal reflectivity and transmissivity as a function

of the grating depth at six different wavelengths. The wavelengths are selected from

within the main lobe (these wavelengths covers the complete main lobe). It is seen

that, lower wavelengths acquire maximum reflectivity at 14w (1400%) groove depth

where as the higher wavelengths acquire peak reflectivity of one, when the groove

depth is infinity. Similar behavior is observed in the transmissivity figure where the

lower wavelengths reaches zero transmissivity at a groove depth of 1.2w (120%) and

higher wavelengths acquire zero transmissivity at infinite groove depth.

The effect of the groove depth on the radiation loss for h = 2.77w (277%), 8.3w
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Figure 5.15: Spectral Response of the Grating Structure with a Groove Depth of
2.77w.
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Figure 5.16: Spectral Response of the Grating Structure with a Groove Depth of
8.30w.
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Figure 5.17: Spectral Response of the Grating Structure with a Groove Depth of
13.83w.
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Figure 5.18: Spectral Response of the Grating Structure with a Groove Depth of
19.36w.
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Figure 5.19: Fundamental TE Mode Reflectivity of of the Grating Structure at
different Groove Depths.
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Figure 5.20: Fundamental TE Mode Transmissivity of of the Grating Structure at
different Groove Depths.
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Figure 5.21: Fundamental TE Mode Reflectivity of the Waveguide Gratings at six
different wavelengths.

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
od

al
 T

ra
ns

m
is

si
vi

ty

Grating Depth in [µm]

1.40 um
1.55 um
1.60 um
1.80 um
2.00 um
2.20 um

TE
0
 Mode 

Periods = 8 

Figure 5.22: Fundamental TE Mode Transmissivity of the Waveguide Gratings at
six different wavelengths.
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Figure 5.23: The Radiation loss of the Grating Structure at different Groove Depths.

(830%), 13.83w (1383%) and 19.36w (1936%), is illustrated in fig.5.23. It can be

observed that the radiation loss decreases within the bandgap as h is increased. A

good understanding and visualization of the above mentioned fact can be obtained

from figs.5.24 to 5.25.

5.2.4 TM Guided Mode

The analysis of the deep grating structure discussed in this chapter was based on the

fundamental TE mode case. The same structure is now analyzed when excited by

the fundamental TM modal field on the left of the structure. The parameters chosen
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Figure 5.24: A Three Dimensional view of the Radiation loss of the Grating Struc-
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Figure 5.25: Fundamental TE Mode Radiation Loss of the Waveguide Gratings at
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Figure 5.26: Fundamental Mode Reflectivity of the Infinitely Deep Grating Struc-
ture.

in this case are the same, as used previously (i.e. with 8 grating periods, groove

depth h = ∞ and f = 0.5). The modal reflectivity, transmissivity and fraction of

radiated power are shown in figs.5.26, 5.27 and 5.28, respectively. Comparison with

the TE case is done in the same figures. The reflectivity spectrum is more symmetric

in the TM case. It appears that the structure’s behavior is similar for both TE and

TM modes. An increase in the radiated power is observed in the TM case, at higher

wavelengths but at lower wavelengths the radiated power is much less than the TE

case (i.e. the radiated power is less than TE within the bandgap). In the later work

to follow, the analysis of guided wave grating structures will be limited only to TE
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Figure 5.27: Fundamental Mode Transmissivity of the Infinitely Deep Grating Struc-
ture.
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Figure 5.28: Fundamental Mode Radiation Loss of the Infinitely Deep Grating Struc-
ture.
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modes.

5.3 Discussion

A guided-wave deep grating structure is studied in this chapter and the effect of the

number of grating periods, the filling factor and the groove depth, on the spectral

response of the structure was analyzed. It is seen that, with eight grating period, a

bandgap between the wavelength range of 1.3 µm and 2.2 µm is formed, in which

there is no transmission of electromagnetic wave. It has been shown that, an increase

in the filling factor shifts the bandgap towards lower wavelengths and that the main

lobe becomes wider. It is also seen that, with an infinite groove depth, the bandgap

is formed with minimal radiation loss whereas for a finite groove depth, leakage

within the bandgap occurs. The results of the TM guided mode are similar to that

of the TE guided mode, for the deep grating structure that has been considered in

this chapter.



Chapter 6

Analysis of Symmetrical Coupled

Grating Structure

6.1 Introduction

In the previous chapter, a finite length periodic deep grating structure has been

studied with reasonable depth. In the present chapter, two finite-length periodic

deep grating structures are coupled together to form a microcavity (see fig.6.1).

Similar kind of structures have been reported in literature [58, 59, 60]. We will study

the spectral response of these coupled structures. As will be seen later, one feature

of extreme importance is the appearance of the narrow transmission band with in

the stop band of the structure. This narrow transmission band may be utilized in

the Wavelength division multiplexing (WDM) optical systems, as a channel drop

filter.

92



93

n1 = 3.6

n3 = 3.4

n2 = 1.0

Core

Substrate

Superstrate

PML Layer

PML Layer

d1 d2ds
d1

d2

hh

Figure 6.1: Symmetrical Coupled Grating Structure. d1 = 0.75T , d2 = 0.25T . T is
the period of grating equals 0.2495µm. h → ∞, ds is the length of the microcavity.
N = 16 and core width w = 0.3µm.

6.2 The Symmetrical Coupled Guided Wave

Grating Structure

Optical filters with very high selectivity are becoming key elements in wavelength

division multiplexing (WDM) optical systems. Such filters can be obtained by cou-

pling the deep grating structures studied in the previous chapter, by a uniform region

of length ds, forming an optical resonant microcavity (see fig.6.1). It will be shown

that, by controlling the length of the microcavity (also called as defect layer), it is

possible to obtain a transmission resonance in the bandgap.

The coupled structure consists of 16 periods with a microcavity half way through
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it, with infinitely deep gratings i.e. h → ∞ (finite depth behave as ∞ if h goes very

deep into the substrate), etched in it. A grating period T= 0.2495µm and a fill-

ing factor of f =0.25 are assumed. Therefore, the air gap width d2=0.0624µm and

the waveguide region, d1=0.1871µm. These parameters are calculated based on a

transmission resonance at the center wavelength 1.09965 µm. These values are ob-

tained using the Bragg’s formula given in equation.5.2. This equation overestimates

the center wavelength, therefore with this period T (which is calculated at lower

wavelength of 1.09965 µm), the device produces transmission resonance at a center

wavelength of approximately 1.5µm.

The length of the cavity is varied and and its effect is observed on the transmis-

sion resonance and radiation. Also the effect of the filling factor on the transmission

resonance is analyzed.

6.2.1 Effect of the length of the Microcavity ’ds’

The calculated spectral response for ds = 1.1T (T is the period of the structure)

is shown in fig.6.2. The figure shows a wide bandgap extending from 1.3 to 1.7µm

and a sharp transmission resonance peak near 1.443µm. The transmission peak is

situated towards the lower wavelengths thereby making the narrow bandgap to the

left and a wider bandgap to the right. At resonant wavelength, the structure has

a transmissivity of 55%. The fraction of radiated power (shown as a circle marker

line in fig.6.12) is very high (approximately 39%). Therefore, a large fraction of
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Figure 6.2: Spectral Response of the Symmetrical Coupled Grating Structure with
ds = 1.1T .
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Figure 6.3: Magnified View of the Spectral Response of the Symmetrical Coupled
Grating Structure with ds = 1.1T .
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the power is lost due to radiation from the structure. A magnified view of the

transmission resonance is shown in fig.6.3.

Next, the dimensions of the microcavity (ds) is altered and its effect on the

position of the transmission resonant wavelength and the peak transmission and ra-

diation, is analyzed. Considering fig.6.4 and its magnified view (fig.6.5), we see that

increasing the microcavity length, causes an increase in the transmission resonance

of the microcavity. The resonant wavelength shifts towards longer wavelength with

an increase in the percentage of transmission (80%) and a decrease in the radiation

loss by a factor of 2. Similar behavior is seen on lengthening the microcavity even

further (figs.6.6 to 6.11). As expected, the transmission resonance moves towards

the longer wavelengths accompanied with an increase in the modal transmissivity.

The fraction of the radiated power of the structure decreases considerably, thereby

making the structure more efficient (see fig.6.12).

Fig.6.6 (see fig.6.7 for magnified view) is of particular interest. The structure has

a transmission resonance at the center wavelength of 1.55µm with a considerable

bandgap on either side of the resonant wavelength. The structure is thus a good

candidate for use as filter in wavelength division multiplexing operating at λ =

1.55µm.

The spectral response with ds = 1.6µm shown in figs.6.10 and 6.11, reveals that

the structure in this case exhibits a dual transmission resonance in the bandgap. One

is situated at the lower wavelength and the other is situated at the higher wavelength

sides of the bandgap. The higher wavelength resonance has high transmission when
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Figure 6.4: Spectral Response of the Symmetrical Coupled Grating Structure with
ds = 1.2T .
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Figure 6.5: Magnified View of the Spectral Response of the Symmetrical Coupled
Grating Structure with ds = 1.2T .
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Figure 6.6: Spectral Response of the Symmetrical Coupled Grating Structure with
ds = 1.3T .
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Figure 6.7: Magnified View of the Spectral Response of the Symmetrical Coupled
Grating Structure with ds = 1.3T .
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Figure 6.8: Spectral Response of the Symmetrical Coupled Grating Structure with
ds = 1.4T .
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Figure 6.9: Magnified View of the Spectral Response of the Symmetrical Coupled
Grating Structure with ds = 1.4T .
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Figure 6.10: Spectral Response of the Symmetrical Coupled Grating Structure with
ds = 1.6T .
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compared to the lower wavelength resonance. The radiation is negligible in the

former case and as much as 40% of the power is radiated form the structure in the

latter case. The appearance of the pair of transmission resonance in this particular

case is obviously due to the increase in the length of the microcavity.

The observations obtained from the above figures are summarized in table 6.1

so that the reader better appreciates the behavior of the structure.

ds R (%) T (%) Ra (%) �λ(nm) λc(µm) �λ
λc

(10−3)

1.1T 6.4 55.0 38.6 0.53 1.4435 0.37
1.2T 1.0 79.5 19.5 0.61 1.4984 0.41
1.3T 0.6 85.2 14.2 0.73 1.5501 0.47
1.4T 0.4 87.6 12.0 1.4 1.5965 0.88
1.6T 0.1 99.3 0.6 5.0 1.6672 2.99

Table 6.1: Calculated Spectral Width of the Transmission Resonance, in case of
Symmetrical Coupled Grating Structure, for different lengths of the microcavity.
(R, T and Ra corresponds to the Peak Reflectivity, Peak Transmissivity and Peak
Radiation Loss, respectively).

The table shows that minimum fractional spectral width (�λ
λc

) is obtained when

ds = 1.1T . This quantity increases monotonically with microcavity length ds.

Fig.6.13 shows the tuning capability of the structure. Here the length of the

microcavity is varied in terms of the grating period T of the structure, and the

transmission resonant wavelength is calculated in each case. From the figure we

see that the resonant wavelength increases with ds. Tuning the structure at any of

the resonant wavelength is possible. Unfortunately, the radiation loss comes into

picture. If a lower resonant wavelength is desired, large radiation is experienced

resulting in reduced transmission.
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6.2.2 Effect of the the Filling Factor

The effect of the filling factor on the position of the band edges and transmission

resonant wavelength can be seen in figs.6.14, 6.6 and 6.15, keeping the length of the

microcavity constant at ds = 1.3T . All the other parameters are kept same as those

used above.

From the figs.6.16 and 6.17, which gives a good visualization of the effect of f,

we see that the filling factor has a very small effect on the position of the transmis-

sion resonance, causing small shift towards the lower wavelength. However, a large

increase in the width of the bandgap is seen, with f.

The fig.6.18, which is a magnified view of the transmissivity curve, reveals that

the spectral width decreases with f. Hence, the fractional spectral width (calculated

at half power)is decreased making the structure more wavelength selective. The

corresponding numerical values are tabulated in table 6.2 for reference.

f R (%) T (%) Ra (%) �λ(nm) λc(µm) �λ
λc

(10−3)

0.15 0.3 95.0 4.7 6.70 1.5725 4.2607
0.25 0.6 85.2 14.2 0.73 1.5501 0.4709
0.50 1.2 79.5 19.3 0.35 1.5358 0.2279

Table 6.2: Calculated Spectral Width of the Transmission Resonance, in case of
Symmetrical Coupled Grating Structure, at different Filling Factors. (R, T and Ra
corresponds to the Peak Reflectivity, Peak Transmissivity and Peak Radiation Loss,
respectively).

Fig.6.19 shows the radiated power dependence on the filling factor f. It is clearly

seen that the radiated power at the transmission resonance wavelength increases
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with f (see the inset of the fig.6.19).

6.3 Discussion

A symmetrically coupled deep grating structure is studied in this chapter. The effect

of the length of the microcavity and the filling factor, has been investigated for the

symmetrically coupled grating structure, using the automated program. A narrow

null is seen to develop in the reflection band thereby forming a narrow transmission

resonance within the bandgap. The position and width of the transmission resonance

is seen to vary with the length of the microcavity. The resonance wavelength is

seen to move towards the higher wavelengths with a decrease in radiation, upon

increasing the length of the microcavity. The filling factor has a very small effect on

the position of the transmission resonance. However, the fractional spectral width of

the transmission resonance is seen to decrease or a decreasing function of the filling

factor.



Chapter 7

Analysis of Asymmetrical Coupled

Grating Structure

7.1 Introduction

In the previous chapter, an optical filters with high wavelength selectivity was pre-

sented and analyzed in detail. This narrow band transmission filter is based on the

coupling between two identical finite-length periodic structures. In this chapter, we

study the coupling between dissimilar finite-length periodic structure. This is done

with an eye on the application in wavelength filtering.

108
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Figure 7.1: Asymmetrical Coupled Grating Structure. Structure A parameters:
dA1 = 0.75T1, dA2 = 0.25T1. T1 = 0.2495µm, Structure B parameters: dB1 = 0.75T2,
dB2 = 0.25T2. T2 is variable. h → ∞, N = 20 and width of the core w = 0.3µm, for
both the Structures.

7.2 The Asymmetrical Coupled Guided Wave

Grating Structure

An asymmetrically coupled structure is shown in fig.7.1. The structure consists of

two corrugated guided-wave structures of different periods cascaded together. The

left hand structure (structure A) has a grating period of T1 = dA1 +dA2 (will be kept

constant through out the analysis) with f =0.25. The right hand structure (structure

B) has a grating period of T2 = dB1 + dB2 (will be varied) with same filling factor

f =0.25. The groove depth (h → ∞) and the number of periods (N = 10) will

be fixed for both the structures. The Fundamental TE mode is excited on the left
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hand side of the structure. It will be shown later that, by controlling the period of

structure B, it is possible to create a very wide bandgap (in the order of 1 micron)

and also a wideband transmission resonance in the bandgap. The values of the

different parameters are shown in fig.7.1.

For this asymmetrically coupled structure, two analyses are done. First by di-

rectly coupling the two structures and second, by coupling the two structures with

non zero separation, forming a microcavity (as done in the previous chapter).

7.2.1 Effect of Direct Coupling

The two structures (structures A and B) are coupled directly and analyzed.

Effect of Coupling Structure A and Structure B

Figs.7.2, 7.3 and 7.5 shows the spectral response of the asymmetrical guided wave

grating structure at T2 = 0.3176, 0.3425 and 0.3993 µms, respectively. By examining

the first figure (fig.7.2), we see that the width of the stop band has increased to by

a large extent. The width of the stop band is around 0.9µm. This value is about

twice that obtained in the symmetrical case ( the bandgap width is about 0.46µm

in the symmetrical case).

By further increasing the period of the second structure (structure B). A wide

band transmission resonance is developed within the bandgap as seen in fig.7.3 (for a

magnified view refer to fig.7.4). A high transmissivity at resonance (approximately
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Figure 7.2: Spectral Response of the Asymmetrical Coupled Grating Structure with
T2 = 0.3176µm.
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Figure 7.3: Spectral Response of the Asymmetrical Coupled Grating Structure with
T2 = 0.3425µm.
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Figure 7.4: Magnified View of the Transmission Region of the Asymmetrical Coupled
Grating Structure with T2 = 0.3425µm.
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89%) is obtained. From the magnified view it can be seen that the transmission

band is relatively wide (approximately 34.9nm) when compared to the symmetrical

case, where the transmission resonance width obtained is about 0.53nm to 5nm.

The center wavelength is situated at 1.750µm with fractional spectral width of

approximately 19.9× 10−3 which is much large than the corresponding symmetrical

case. Thus, with the current set of parameters, the asymmetrically coupled structure

behaves as a wideband filter.

Fig.7.5 shows a very wideband transmission resonance in the stop band. Ripples

are observed in the transmission band with transmissivity varying approximately

from 30% to 95%. Figs.7.6 and 7.7 show the effect of T2 on the over all spectral

response of the structure. From fig.7.6(7.7), we can see how the transmission dip

(the corresponding transmission resonance) is developed when T2 is increased.

Effect of Coupling Structure B and Structure A

Because the combined structure under present consideration is asymmetric, its re-

sponse is expected to be different due to excitation from the left and the right hand

sides. We denote the excitation from the left hand side by AB and excitation from

the right hand side by BA. We are interested in comparing the spectral responses

in those two cases.

The asymmetrical coupled structure with T2 = 0.3426µm is used for the above

analysis. The coupling in done in the opposite way (structures BA). Calculated

results for both the possibilities are shown in figs. 7.8, 7.9 and 7.10. Ripples are ob-
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Figure 7.6: Fundamental TE Mode Reflectivity of the Asymmetrical Coupled Grat-
ing Structure for different values of T2.
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Figure 7.8: Comparison of Coupling Structures AB and BA. TE0 Modal Reflectivity.
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Figure 7.10: Comparison of Coupling Structures AB and BA. TE0 Mode Radiation
Loss.

served towards the lower wavelengths in the reflectivity curve of the combined struc-

ture (on the left of the resonant wavelength) where as there is almost no difference

in the transmissivity curve, in both the cases. The coupled structure experiences

more radiation when coupling structures B and A when compared to the results of

coupling structures A and B. This can be very well visualized from fig.7.10

7.2.2 Effect of the length of the Microcavity ’ds’

The two structures (A and B) are coupled by a uniform region of the same waveguide

material (forming a microcavity) of length ds. The effect of ds on the transmission
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resonance is studied in this case (microcavity length ds is varied in terms of the

period of structure A, i.e. T1).

Figs.7.11, 7.13 and 7.15 shows the calculated spectral response of the asymmetri-

cal structure corresponding to ds = 1.3T1, 1.33T1 and 1.4T1, respectively, keeping the

period of the structure B,i.e. T2 = 0.3176µm is constant. A transmission resonance

appears in all these cases. Table 7.1 gives a summary to some of the important

results corresponding to theses figures.

ds R (%) T (%) Ra (%) �λ(nm) λc(µm) �λ
λc

(10−3)

1.3T1 25 40 35 3.80 1.6630 2.2850
1.33T1 5 46 50 3.90 1.6702 2.3350
1.4T1 28 27 45 4.45 1.6865 2.6386

Table 7.1: Calculated Spectral Width of the Transmission Resonance, in case of
Asymmetrical Coupled Grating Structure, for different length of microcavity ds. The
period of Structure B is selected to be T2 = 0.3176µm.(R, T and Ra corresponds to
the Peak Reflectivity, Peak Transmissivity and Peak Radiation Loss, respectively).

From the table 7.1, we see that the maximum transmissivity that can be achieved

in this case is only 40% (for ds = 1.33T1). Any change in ds (increase or decrease)

results in reduced transmission. The radiation loss is very high for this structure

(50% for ds = 1.33T1). Therefore ds = 1.33T1 is the best length of the microcavity

to obtain optimal results. Better visualization of the spectral width can be seen

in the magnified figures (shown in figs.7.12, 7.14 and 7.16). When we increase the

period T2 of structure B, there is small shift in the position of the transmission

resonant wavelength towards the higher wavelengths. The results summarized in

table 7.1 supports the conclusion. The amount of transmission is seen to vary with
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Figure 7.11: Spectral Response of the Asymmetrically Coupled Grating Structure
for ds = 1.3T1.
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Figure 7.12: Magnified view of the Spectral width of the Asymmetrically Coupled
Grating Structure for ds = 1.3T1.
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Figure 7.13: Spectral Response of the Asymmetrically Coupled Grating Structure
for ds = 1.33T1.
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Figure 7.14: Magnified view of the Spectral width of the Asymmetrically Coupled
Grating Structure for ds = 1.33T1.
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Figure 7.15: Spectral Response of the Asymmetrically Coupled Grating Structure
for ds = 1.4T1.
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Figure 7.16: Magnified view of the Spectral Response of the Asymmetrically Coupled
Grating Structure for ds = 1.4T1.
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Figure 7.17: The Fundamental TE Mode Radiation Loss of the Asymmetrical Cou-
pled Grating Structure at different ds.

the length of the microcavity. The maximum transmission that can be achieved

for the asymmetrical coupled structure is 46%. Fig.7.17 represents the fraction of

radiated power. It is seen that the amount of radiated power is high (40 to 50%).

Therefore, around half of the power is lost in radiation.

The other set of figures (figs.7.18 and 7.19), represents the spectral response of

the asymmetrically coupled structure with T2 = 0.3312µm and ds = 1.4T1, and

its magnified view. The results shows a formation of transmission resonance. The

curve resembles the one without the microcavity, except that of the formation of the

transmission resonance (see the curve with dots in fig.7.6 and 7.7). The fractional
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Figure 7.18: Spectral Response of the Asymmetrically Coupled Grating Structure
for ds = 1.4T1 and T2 = 0.3312µm.
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Figure 7.19: Magnified view of the Spectral Response of the Asymmetrically Coupled
Grating Structure for ds = 1.4T1 and T2 = 0.3312µm.
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spectral width is seen to be wider than the previous results (figs.7.13, 7.11 and 7.15)

obtained, when T2 = 0.3176µm. The amount of transmission is also high compared

to the previous results with less radiation. The results are summarized in table 7.2

for quick reference.

ds R (%) T (%) Ra (%) �λ(nm) λc(µm) �λ
λc

(10−3)

1.4T1 2 75 23 12 1.7110 7.0134

Table 7.2: Calculated Spectral Width of the Transmission Resonance, in case of
an Asymmetrical Coupled Grating Structure, at different ds. Structure B period is
selected to be T2 = 0.3312µm.(R, T and Ra corresponds to the Peak Reflectivity,
Peak Transmissivity and Peak Radiation Loss, respectively).

From the table it can be inferred that the structure gives relatively superior per-

formance with T2 = 0.3312µm and ds = 1.4T1, when compared to the performance

with T2 = 0.3176µm and ds = 1.3T1, 1.33T1 and 1.4T1.

7.3 Discussion

An asymmetrically, directly coupled waveguide deep grating structure has been an-

alyzed in this chapter. It is seen that beyond a certain value of the grating period

of structure B, a wide band transmission region is seen to develop, which becomes

wider with further increase in the grating period. The spectral response of the asym-

metrically coupled structure is studied due to left-side and right-side excitations. It

has been observed that there is an increase in the radiation towards the lower wave-

length for the latter case whereas the transmissivity curve remains the same for both
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forms of excitations. The presence of a microcavity in the case of the asymmetrically

coupled structure is also studied. As expected, a transmission resonance has been

seen to occur within the bandgap. The resonance wavelength varies with the length

of the microcavity. The radiation is seen to be high in the asymmetrically coupled

case with lower peak transmissivity at the resonance wavelength, when compared to

a symmetrically coupled structure. However, with an increase in the grating period

of structure B, better higher transmission is observed, but with an increase in the

fractional spectral width.



Chapter 8

Analysis of 2D Bandgap

Structures

8.1 Introduction

Low-loss bends in the integrated optical circuits are essential to connect various parts

of the circuits in order to realize more complex circuit arrangements. Conventional

bends are done usually over a curved path with relatively large radius of curvature

in order to reduce radiation loss. In some cases however, it is possible to realize

90o turns. These sharp turns help in the relaization of compact integrated optical

circuits.

In this chapter, we will study the effect of the formation of a periodic hole

pattern in the solid material. The unit period of such structures is commonly known

as photonic crystals and the corresponding pattern is known as photonic bandgap

125
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structures [61, 62]. These periodic hole pattern can give rise to a transmission

bandgap, which can be used to produce interesting effects, as will be seen in this

chapter. We will use these bandgap structures to form a U-turn waveguide, which

consists of two 90o turns, and apply the previously developed program to analyze it.

8.2 Analysis of the Air Hole Pattern

A two dimensional composite structure consisting of a square air hole pattern in the

solid material, which under appropriate condition can form a 2D bandgap structure,

is shown in fig.8.1. The structure and the field are assumed to be uniform in the

x-direction and hence this corresponds to a 2D structure. The structure consists of

a waveguide at the input and the output ends of the air hole pattern. The shaded

regions of the waveguide corresponds to air whereas the white region corresponds

to the solid material which is assumed to be GaAs having a refractive index n =

3.6. The length of the pattern comprises of 10 air hole rows (in the direction of

propagation of the wave i.e. 10 longitudinal periods Lp) and width of 13 air hole

columns (in the transverse direction i.e. 13 transverse periods Tp)(shown in the same

figure i.e. fig.8.1). A unit cell or the period (or a photonic crystal) of the periodic air

hole pattern (or photonic bandgap structure) is shown in fig.8.2. It is known that

with dp = 0.364µm and da = 0.6dp = 0.2184µm, the structure experiences a full

bandgap in the range of λ =1.49 to 1.62µm, centered at approximately 1.55µm, for

the TM waves [63]. For the TE waves, the bandgap is very narrow and therefore the
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Input Wave

   Output Wave

w

z

y

Lp

Tp

Figure 8.1: The 2D Bandgap Structure (or the Air Hole Pattern) with Input and
Output waveguide. The shaded region is air with n = 1, the white background
corresponds to GaAs with n = 3.6 and the waveguide width w = 0.25µm.

TE response of the structure will not investigated in this thesis. It can be observed

that the waveguide width w = 0.25µm is approximately same as the width of the

air hole. in the figure, the width of the waveguide is drawn wider for clarity. In

order to verify the formation of bandgap, the structure is simulated with 1, 2, 4 and

10 longitudinal periods keeping the number of transverse periods constant at 10,

using the developed automated program. The results are shown in figs.8.3 to 8.6,

respectively. With 1 and 2 longitudinal periods, the bandgap is not fully formed

because small number of longitudinal periods, which allows wave transmission in
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da

dp

0.2dp

Figure 8.2: A unit cell or period of the Air Hole Pattern. dp = 0.364µm and
da = 0.6dp = 0.2184µm. The shaded region is air whereas the white background
corresponds to GaAs with n = 3.6.

that wavelength range. However, the formation of a complete bandgap can be

observed in fig. 8.6, when the number of longitudinal periods is sufficiently large.

In this case, we observe negligible or no power transmission within that range of

wavelengths. The two vertical lines in the graph represents the bandgap region with

the center wavelength roughly at λ = 1.55µm.

Fig.8.7 shows the effect of the number of longitudinal periods separating the

input and output waveguides, on the TM0 transmissivity. It can be observed that

as the number of longitudinal periods increases, the transmissivity drops within the

bandgap. From the results it can be concluded that that transmissivity becomes

negligible when the number of periods exceeds roughly eight.

8.3 Defects in the Air Hole Pattern

Defects introduced in the air hole pattern can alter the spectral response signifi-

cantly. A defect corresponds to the absence of an air hole or a group of air holes in
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Figure 8.3: Fundamental TM Mode Spectral Response in the case of 1Lp separation
between the Input and the Output Waveguides.
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Figure 8.4: Fundamental TM Mode Spectral Response in the case of 2Lp separation
between the Input and the Output Waveguides.
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Figure 8.5: Fundamental TM Mode Spectral Response in the case of 4Lp separation
between the Input and the Output Waveguides.
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Figure 8.6: Fundamental TM Mode Spectral Response in the case of 10Lp separation
between the Input and the Output Waveguides.
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Figure 8.7: Fundamental TM Mode Transmissivity corresponding to different num-
ber of periods Lp separating the Input and the Output Waveguides.

the periodic hole pattern. There are various types of defects that can be examined

such as a straight line defect and a point defect. We will examine the effect of both

types of defects.

8.3.1 The Straight Line Defect

Fig.8.8 shows a straight line defect at the center of the air hole pattern. This

defect is constructed by removing all the air holes from the central column. The

spectral response of this structure is shown in fig.8.9. There is large increase in

the transmissivity suggesting that the line defect is acting as a waveguide which
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Figure 8.8: Single Line Defect at the Center of the Air Hole Pattern.
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Figure 8.9: Fundamental TM Mode Spectral Response of the Air Hole Pattern with
a Straight Line Defect at the Center.
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is transmitting the wave from the input to the output ends. Oscillation are seen

in the transmissivity and reflectivity curves. The oscillatory behavior reveals that

the air hole pattern between the input and output waveguide is acting as a cavity.

This cavity effect is due to the reflections due to mismatch between the conventional

waveguide and the waveguide formed by the straight line defect (at both the input

and output ends).

Figs.8.10 and 8.11 corresponds to the same line defect, but with different number

of longitudinal and transverse periods, respectively. Fig.8.10 shows the results of

the simulation using different number of longitudinal periods, keeping the number of

transverse periods constant. It can be inferred from the figure that the transmissivity

remains high with oscillatory behavior, even when the number of longitudinal period

is very high (2000). It can also be observed that the oscillations in the curve increases

as the cavity length increases. Fig.8.11 corresponds to the results of the single line

defect for various number of transverse periods, keeping the longitudinal periods

same. It can be seen that, with 2 and 4 transverse periods, the modal transmissivity

is reduced. This suggests that the waveguide formed from the line defect is highly

lossy due to leakage in the transverse direction. But with five and above transverse

periods, the line defect produces a substantially lossless guidance.
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Figure 8.10: Fundamental TM Mode Transmissivity of the Air Hole Pattern with a
Straight Line Defect at the Center. Effect of Limiting the number of Longitudinal
Periods.
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Figure 8.11: Fundamental TM Mode Transmissivity of the Air Hole Pattern with
a Straight Line Defect at the Center. Effect of Limiting the number of Transverse
Periods.
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8.3.2 Effect of the Complete Absence of Air Hole Pattern

In order to have a good understanding of the effect of the lossless waveguide forma-

tion by the single line defect between the input and output waveguides, the structure

is simulated again by removing all the air holes from the air hole pattern. The results

of the resulting transmissivity and radiation loss at different longitudinal periods are

shown in figs.8.12 and 8.13, respectively. It can be seen that the transmissivity is

very low and becomes negligible as the separation (length) between the input and

the output waveguides is increased. The transmissivity becomes zero when the sep-

aration becomes very large (2000 longitudinal periods). Thus, it can be concluded

that the air hole pattern in this case acts as an unbound medium and hence, the

input beam expands very rapidly resulting in very low transmissivity and high ra-

diation loss. The energy of the input beam is almost completely radiated when

the separation between the input and the output waveguide is large, as depicted

in fig.8.13. In this case, the remaining power is reflected and coupled to the input

waveguide. Again due to the cavity effect, oscillatory behavior is observed which

increases in spatial frequency with the increase in the cavity length.

8.3.3 A Single Point Defect

A single point defect is introduced within the straight line defect, as shown in fig.8.14.

The resulting structure is simulated in order to calculate the modal transmissivity

as shown in fig.8.15. A narrow reflection resonance or transmission null is seen close
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Figure 8.12: Fundamental TM Mode Transmissivity of the Structure in the Absence
of the Air Hole Pattern.
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Figure 8.13: Fundamental TM Mode Radiation Loss of the Structure in the Absence
of the Air Hole Pattern.
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Figure 8.14: A Single point Defect introduced at the Center of the Straight Line
Defect.
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Figure 8.15: Fundamental TM Mode Transmissivity due to a Single Point Defect at
the Center of the Line Defect.
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Figure 8.16: Fundamental TM Mode Transmissivity due to a Single Point Defect at
the Center, for Different Longitudinal Periods.

to the center wavelength 1.55µm within the bandgap. Fig.8.16 shows the response

of the structure simulated using different number of longitudinal periods. It can be

observed that the position and width of the transmission null is almost independent

of the length of the cavity, provided, the point defect remains at the middle of the

straight line defect.

8.4 The Semi Infinite Air Hole Pattern

Fig.8.17 shows an example of the structure, where the output slab waveguide does

not exist and instead, the input waveguide is coupled to a semi-infinite air hole
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Figure 8.17: The Air Hole Pattern with Input waveguide and Semi-Infinite Termi-
nation.

pattern in the z-direction. The semi-infinite air hole patterns or the semi-infinite

termination (SIT) is shown with the light gray shading. This part of the structure is

made lossy while the other part (unshaded part) is lossless. The SIT is implemented

numerically by assuming very small material loss in the SIT, so that the wave does

not experience a discontinuity when it crosses the lossless side and enters into the

lossy side. The number of longitudinal periods in the SIT is made very large, so

that the field becomes negligible at the output end, thus simulating a semi-infinite

termination. For this purpose, we used 216 = 65536 lossy longitudinal periods with

in the SIT. A suitably small uniform loss is introduced into the corresponding air and
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Figure 8.18: Fundamental TM Mode Reflectivity of the Structure (fig.8.17) with a
Semi-Infinite Termination.

GaAs materials, resulting in n2
air = 1.002 + j5× 10−4 and n2

GaAs = 3.602 + j5× 10−4

within the SIT. The tuning of the SIT (namely, the selection of the appropriate

number of longitudinal periods and the loss) will not be discussed in this thesis, the

reader is referred to [63] for details. The material outside the SIT remains lossless.

The modal reflectivity of the structure (fig.8.17) is shown in fig.8.18. It can be

noted that there is no oscillatory behavior outside the bandgap now because of the

absence a mismatch at the output section (the absence of the cavity).

A straight line defect with SIT at the output side is shown in fig.8.19. The finite

length straight line is terminated by the semi-infinite termination without a line



141

Figure 8.19: The Air Hole Pattern with Straight Line Defect and Semi-Infinite
Termination.
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Figure 8.20: Fundamental TM Mode Reflectivity of the Structure (fig.8.19) with a
Semi-Infinite Termination, for various Cavity Lengths.
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Figure 8.21: A Straight Line Defect and a Straight Line Defect within the Semi-
Infinite Termination.

defect. The length of the straight line (i.e. the number of longitudinal periods) is

varied and the modal reflectivity is calculated and shown in fig.8.20. The reflectivity

curve remains relatively high within the bandgap when the line defect is very short

(1Lp). There is no oscillations in the curve because of very short cavity length.

However, when the length of the straight line is increased, the oscillatory behavior

is clearly observed.

Fig.8.21 corresponds to a straight line defect, using SIT with a matching straight

line defect. The arrangement simulates as semi-infinite straight line defect. Here

the wave also does not experience any discontinuity upon transition from the loss-
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Figure 8.22: Fundamental TM Mode Reflectivity due to a Semi-Infinite Termination
Line Defect.

less to the lossy region. The wave thus experiences only a single mismatch at the

input waveguide/line defect interface. The results are summarized in fig.8.22. The

reflectivity is very small and is only due to the reflections at the input waveguide

and the line defect interface. The reflectivity curve remains unchanged (and without

any oscillations) when the length of the line defect in the lossless region is varied,

confirming zero reflection at the lossless/lossy interface and thus confirming the

applicability of the current method of SIT implementation .
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Waveguide 1

(Input Waveguide)

 Waveguide 2

(Output Waveguide)

Figure 8.23: The Line Defect that forms a U-turn.

8.5 Response of a U-Turn Defect Waveguide

Fig.8.23 shows a line defect that forms a U-turn. The two slab waveguides at the

input plane are sufficiently separated by the air region. The input power is injected

into the waveguide on the left hand side (waveguide-1). The field is guided by the

straight line defect before it encounters a sharp 90-degree turn. Part of the field will

in general be reflected at this turn and the remaining part will be transmitted. In a

similar fashion part of the field is transmitted through the second sharp 90-degree

turn. In this manner, it is possible for the field to make a U-turn and exits out of the
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Figure 8.24: Incident and the Reflected Magnetic Field at the Input Plane. The
right hand part of the Reflected Field represents the Field that exits out of the
Output Waveguide. The vertical lines indicate the input and the output waveguide
boundaries.

slab waveguide on the right-hand side of the input plane (waveguide-2). Therefore,

waveguide-1 is the input waveguide and waveguide-2 is the output waveguide.

Fig.8.24 represents the magnetic field amplitude at the input plane at λ =

1.518µm. The input magnetic field pattern is also shown in the figure, whose center

occurs just below y = −1µm which corresponds to the center of the input waveguide

(waveguide-1). The reflected field is also shown in the same figure. As seen in the

figure, most of the reflected field exits out of the output slab waveguide (the right-

hand side of the waveguide i.e. waveguide-2) and some of the reflected field exits out
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of the input waveguide (the left-hand side of the waveguide i.e. waveguide-1). For

clarity vertical lines are shown in the figure which corresponds to the waveguide-1

(input waveguide) and waveguide-2 (output waveguide). In other terms the output

field, available on the right hand side (centered near y = 1.15µm) is the transmitted

field or the output field from the U-turn. The U-turn waveguide is 10 longitudinal

periods long and 5 transverse periods wide (5 transverse periods between each line

defect).

Fig.8.25 shows the reflected field at different wavelengths. The transmission is

maximum at λ = 1.518µm which corresponds to the resonance wavelength. The

transmitted field at this wavelength is relatively large, suggesting near matched

conditions of reflectionless transmission through the two 90 degrees sharp turns.

The transmitted field below and above λ = 1.518µm is less than the maximum

possible.

The return power in waveguide-2 (output waveguide) or in other words the out-

put power of waveguide-2 or fraction of the power transmitted, as a function of

wavelength is shown in fig.8.26. It can be seen that two transmission resonance are

observed which are close to the bandgap edges. The transmitted power at the center

wavelength of the bandgap (λ = 1.55µm) is seen to be almost zero. Thus, the U-turn

waveguide transmits the electromagnetic field with minimum loss for only certain

wavelengths, to the output end, thereby making this configuration potentially useful

in optical communication systems, serving as a wavelength filter.

The CPU (P4 machine with 256MB RAM running under Windows XP Operating
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Figure 8.25: Reflected Field Patterns below, at, and above the Resonance Wave-
length. The right hand side of the Reflected Field constitutes the Transmitted Field.
The vertical lines indicate the input and the output waveguide boundaries.
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System) runtime to obtain the curves of the fraction of the transmitted power,

is shown in the legend of the same figure. The program took 1300 seconds per

wavelength, to simulate the structure, with 529 mesh points within the waveguide

(excluding the PML points) where as, for 702 mesh points (excluding the PML

points), the CPU took 3300 seconds per wavelength.

8.6 Discussion

Our simulation has confirmed the formation of 2D bandgap in the periodic hole

pattern. The effect of the number of longitudinal periods on the bandgap has been

examined. The straight line defect, the point defect, the complete absence of air-

hole pattern, has been considered in the chapter. It is seen that with a straight

line defect, the structures acts as a lossless waveguide within the bandgap. A sharp

transmission null is seen, when a point defect occurs at the center of the line defect.

In the third case, i.e. in the complete absence of air-hole pattern, the transmission

decreases and becomes negligible with the increase in the distance between the input

and the output waveguide, which is due to the loss of guidance.

The concept of semi-infinite termination is introduced and demonstrated. A

U-turn defect has also been considered. This type of defect results in a U-turn

waveguide with two 90 degrees turns. The calculated results of the of the U-turn

waveguide, reveals two transmission resonances within the bandgap with relatively

high power transmission.



Chapter 9

Summary, Conclusion and Future

Work

The numerical technique for the analysis of guided-wave structures used in this

thesis is the Method of Lines (MOL). Enhancements to the MOL has been carried

out in this thesis by use of improved higher order approximation of the transverse

second derivative operator and absorbing boundary conditions. An efficient, general

and user friendly program has been developed. This program has been used for the

analysis of the symmetrical and asymmetrical 1D deep grating structures as well

as 2D deep grating structures. In the subsequent sections, a brief summary of the

work that has been carried out in the thesis, is presented followed by conclusions

and some future extensions to the work.
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9.1 Summary

• The improved higher order approximation of the transverse second derivative

operator has been incorporated in the MOL. The three-point, five-point and

seven-point approximations were implemented and evaluated for a waveguide

structure with a high index contrast.

• The absorbing boundary condition (Perfectly Matched Layer) has been suc-

cessfully incorporated into the MOL with improved performance. The PML

with a non-uniform loss profile has been simulated and tested. The PML has

been used extensively throughout the thesis for absorbing the radiative field.

• Longitudinal waveguide discontinuities has been studied using the improved

MOL. The single and multiple discontinuities results have been compared with

published results. The layer by layer method and the cascading and doubling

algorithms were used to analyze multiple longitudinal discontinuities.

• A numerically efficient program using the enhanced MOL, is developed based

on the cascading and doubling algorithm. The program can calculate the spec-

tral response of optical waveguides with arbitrary longitudinal discontinuities

in an efficient manner. It is made user friendly so that the user does not require

an in depth knowledge of the program. The results of the automated program

were checked with the layer by layer method, which served as a verification

tool in this thesis.
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• Various interesting deep grating structures were considered in this thesis. The

spectral response of the symmetrically and asymmetrically coupled guided-

wave 1D deep grating structures were obtained and analyzed. The spectral

response of 2D deep grating structures were also obtained. The effect of the

straight line defect and the point defect were considered. The spectral response

of a U-turn waveguide formed within the 2D periodic hole pattern has been

calculated.

9.2 Conclusions

• The improved higher order approximation of the transverse second derivative

operator gives good accuracy of the effective index with relatively small number

of mesh points. The approach used in the approximation allows the refractive

index and the mesh size to vary in an arbitrary manner from one layer to the

other, resulting in a flexible and numerically efficient routine. The program

treats all the mesh points in a unified manner irrespective of the location of

the mesh point. The results of the calculated and exact values are compared

by simulating a high index contrast waveguide, which revels the high accuracy

of the approach.

• An improved PML utilizing a non-uniform loss profile is shown to give rel-

atively superior performance when compared to the PML with uniform loss

profile, using a smaller number of mesh points in the PML layer. The effective
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implementation of the improved PML has been demonstrated by launching

gaussian beam in glass and comparing the calculated results with analytically

available ones. The results almost coincide with each other.

• The layer by layer and the cascading and doubling algorithms were used to

calculate the spectral response of the optical waveguide with longitudinal dis-

continuities. The results of both methods were compared with the published

results. The results show excellent agreement with published results. The

two algorithms give identical results. This fact has been demonstrated by

simulating periodic optical waveguides using both methods.

• The automated program is developed successfully and its results were com-

pared with the verification tool. Excellent agreement is seen between the two

approaches, establishing the accuracy of our programming. The program is

made user friendly with a high degree of freedom in selecting the order of ap-

proximation, the loss profile of the PML layer, the number of mesh points in

the PML layer, etc.

• A guided-wave deep grating structure is studied and the effect of the number of

grating periods, the filling factor and the groove depth, on the spectral response

of the structure were analyzed. It is seen that, with eight grating period, a

bandgap in the wavelength range of 1.3 µm to 2.2 µm is produced, in which

there is no transmission of electromagnetic wave. It has been shown that, an

increase in the filling factor shifts the bandgap towards lower wavelengths and
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that the main lobe becomes wider. It is concluded that, with an infinite groove

depth, the bandgap is formed with minimal radiation loss whereas for a finite

groove depth, leakage within the bandgap occurs.

• The effect of the length of the microcavity and the filling factor is investigated

for the symmetrically coupled deep grating structure. As a result, a narrow

transmission resonance is seen to occur within the bandgap. The position and

width of the transmission resonance varies with the length of the microcavity.

The filling factor has a very small effect on the position of the transmission

resonance.

• In the case of asymmetrically coupled deep grating structure, the bandgap

become wider, as the grating period of structure B increases. It has been

shown that beyond a certain value of the grating period of structure B, a wide

band transmission window is seen to develop, which become wider with further

increase in the grating period. The spectral response of the asymmetrically

coupled structure is studied due to left-sided and right-sided excitations. It

has been observed that there is an increase in the radiation for the latter case

whereas the transmissivity curve remain the same for both type of excitations.

Similar behavior is observed for an asymmetrical structure, when coupled by

a microcavity, as in the symmetrically coupled structure case. A transmission

resonance occurs within the bandgap and the resonance wavelength varies

with the length of the microcavity. The radiation is seen to be high in the
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asymmetrically coupled case when compared to the symmetrically coupled

structure.

• In general, the symmetrically coupled structure results in a higher transmis-

sivity at resonance than the asymmetrically coupled structure.

• Simulation of the 2D bandgap structures confirms the formation of a bandgap

for TM polarized waves. The semi infinite termination (SIT) has been intro-

duced at the output end of the 2D bandgap structure in order to simulate a

semi-infinite periodic structure. The effectiveness of the SIT has been demon-

strated.

• A U-turn waveguide formed by defects in the air hole pattern has been simu-

lated. It is seen that this waveguide allows electromagnetic waves of a certain

wavelength range to pass through it and become available at the output with

minimum reflections at the two sharp 90 degree turns forming the U-turn

waveguide. Two transmission resonances were seen within the bandgap with

about 80% relative power transmission.

9.3 Future Prospects

The following are some possible future research activities:

• The periodic guided-wave deep grating structures were analyzed in this thesis

work. One can look into the behavior of an aperiodic guided wave deep grat-
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ing structures and subsequently to symmetrically coupled and asymmetrically

coupled structures constructed from them.

• Extension of this work to three dimensional guided-wave grating structures

is also of importance, since simulation based on a 3D waveguide model is

more realistic than that based on the 2D model. However, extension of the

MOL to the 3D space is known to result in prohibitive computational time

and memory requirements. Calculation of the eigenvalues and eigenvectors

are computationally very demanding in the 3D case and prohibitive in most

cases. An alternative approach in the implementation of the MOL need to be

developed. A recently reported approach based on Pade approximants appears

to be a good candidate for this task.

• The grating structures which were analyzed in this thesis utilizes a single

mirocavity separating the waveguide gratings. A structure with two or more

mocrocavities may prove to have interesting features and thus may be a subject

of investigation.



Appendix A

The Three-Point Central

Difference Approximation

To obtain an expression for the discretized second derivative of a certain function, we

express the function in terms of a power series. We can have a good approximation

of the given function in terms of a polynomial by neglecting all except the first few

terms of the resulting series. One of the most convenient power series is the Taylor’s

Series which can be expressed as:

f(x) =
∞∑

n=0

f (n)(a)

n!
(x − a)n (A.1)

where f (n) is the nth derivative of f(x) with respect to x.

If Taylor’s series is expanded about x = 0, the resulting series is often called a

Maclaurin’s Series expansion. Expanding ψ(x) about x = 0 using equation A.1:

ψ(x) = ψ(0) +
ψ

′
(0)

1!
x +

ψ
′′
(0)

2!
x2 +

ψ
′′′
(0)

3!
x3 +

ψ
′′′′

(0)

4!
x4 + ... (A.2)
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Evaluating the above equation at x = ±∆x results in:

ψ1 = ψ(0) +
ψ

′
(0)

1!
∆x +

ψ
′′
(0)

2!
(∆x)2 +

ψ
′′′
(0)

3!
(∆x)3 +

ψ
′′′′

(0)

4!
(∆x)4 + ... (A.3)

ψ−1 = ψ(0) − ψ
′
(0)

1!
∆x +

ψ
′′
(0)

2!
(∆x)2 − ψ

′′′
(0)

3!
(∆x)3 +

ψ
′′′′

(0)

4!
(∆x)4 + ... (A.4)

Adding equations A.3 and A.4, we have:

ψ1 + ψ−1 = 2ψ(0) + ψ
′′
(0)(∆x)2 +

ψ
′′′′

(0)

12
(∆x)4 + ... (A.5)

this equation leads to:

ψ
′′
(0) =

ψ1 − 2ψ(0) + ψ−1

(∆x)2
− ψ

′′′′
(0)

12
(∆x)2 − ... (A.6)

which can be approximated as:

ψ
′′
(0) ≈ ψ1 − 2ψ(0) + ψ−1

(∆x)2
(A.7)

It is apparent from equation A.7 that the leading error resulting from the ap-

proximation is proportional to (∆x)2.



Appendix B

Improved Higher-Order

Approximations

B.1 The Three-Point Formulation

Referring to fig.3.2, the following is the final expression for the 3-point approximation

technique:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψi

ψ
(1)
i−

ψ
(2)
i−

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= C−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψi−1

ψi

ψi+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(B.1)
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Where:

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

q−i

1 0 0

q+
i+1Mi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(B.2)

M±1
i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

0 ρ±1
i 0

∓δi 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(B.3)

q±i =

[
1 ±hi

h2
i

2!

]
(B.4)

N±
i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ±hi
h2

i

2!

0 1 ±hi

0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(B.5)

where ρi = 1 for the TE waves and ρi =
n2

i+1

n2
i

for the TM waves, and δi =

k2
0(n

2
i+1 − n2

i ).

B.2 The Seven-Point Formulation

The 7-point transverse second derivative approximation can also be found in a sim-

ilar manner. The relevant matrices in this case are given below:
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψi

ψ
(1)
i−

ψ
(2)
i−

ψ
(3)
i−

ψ
(4)
i−

ψ
(5)
i−

ψ
(6)
i−

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= C−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψi−3

ψi−2

ψi−1

ψi

ψi+1

ψi+2

ψi+3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(B.6)

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q−i−2M
−1
i−2N

−
i−1M

−1
i−1N

−
i

q−i−1M
−1
i−1N

−
i

q−i

1 0 0 0 0 0 0

q+
i+1Mi

q+
i+2Mi+1N

+
i+1Mi

q+
i+3Mi+2N

+
i+2Mi+1N

+
i+1Mi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(B.7)

q±i =

[
1 ±hi

h2
i

2!

±h3
i

3!

h4
i

4!

h5
i

5!

h6
i

6!

]
(B.8)
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M±1
i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0

0 ρ±1
i 0 0 0 0 0

∓δi 0 1 0 0 0 0

0 ∓ρ±1
i δi 0 ρ±1

i 0 0 0

δ2
i 0 ∓2δi 0 1 0 0

0 ρ±1
i δ2

i 0 ∓2ρ±1
i δi 0 ρ±1

i 0

∓δ3
i 0 3δ2

i 0 ∓3δi 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(B.9)

N±
i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ±hi
h2

i

2!

±h3
i

3!

h4
i

4!

h5
i

5!

h6
i

6!

0 1 ±hi
h2

i

2!

±h3
i

3!

h4
i

4!

h5
i

5!

0 0 1 ±hi
h2

i

2!

±h3
i

3!

h4
i

4!

0 0 0 1 ±hi
h2

i

2!

±h3
i

3!

0 0 0 0 1 ±hi
h2

i

2!

0 0 0 0 0 1 ±hi

0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(B.10)

where ρi = 1 for the TE waves and ρi =
n2

i+1

n2
i

for the TM waves, and δi =

k2
0(n

2
i+1 − n2

i ).



Appendix C

Calculation of Modal Power and

Modal Coefficients in an Arbitrary

Field

Any general two-dimensional field ψ(x, z) can be represented as a linear combination

of a complete set of orthonormal modes, that is [21]:

ψ(x, z) = α0f0(x)ejβ0z + α1f1(x)ejβ1z + α2f2(x)ejβ2z + · · · + αmfm(x)ejβmz + · · ·

+αMfM(x)ejβMz +
∫

v
αvfv(x)ejβvzdv (C.1)

where αm = mth-mode expansion coefficient, βm = mth-mode propagation constant

and
∫
v αvfv(x)ejβvzdv represents an integration over the continuum of all radiation

modes. The integer M represents the highest possible order of the guided modes.

The modal transverse profiles {fm(x)} describe a set of orthonormal functions over
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the transverse coordinate. For a single-mode waveguide (M = 0):

ψ(x, z) = α0f0(x)ejβ0z +
∫

v
αvfv(x)ejβvzdv (C.2)

At the input end of the polarizer (z = 0) the field ψ becomes:

ψ(x, 0) = α0f0(x) +
∫

v
αvfv(x)dv (C.3)

By using the orthogonality relation between the modal fields, which is expressed

as [64]:

+∞∫
−∞

fm(x)

K
fn(x)dx =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 for m �= n

+∞∫
−∞

f2
m(x)
K

dx for m = n

(C.4)

where K is defined as:

K =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n2(x) for TM modes

1 for TE modes

(C.5)

and n(x) represents the refractive index distribution.

The modal coefficient αm is given by [21]:

αm =

+∞∫
−∞

ψ(x, 0)fm(x)
K

dx

+∞∫
−∞

f∗
m(x)fm(x)

K
dx

(C.6)

Hence the coefficient of the fundamental mode α0 is given by:

α0 =

+∞∫
−∞

ψ(x, 0)f0(x)
K

dx

+∞∫
−∞

f2
0 (x)

K
dx

(C.7)

The power flowing in the z direction per unit length of the y direction is given

by [38]:

Pz =
1

2

+∞∫
−∞

Re(E × H∗)zdx (C.8)



Appendix D

STF1 Program : Zero Finding

Routine, Eigenvalue Finding

Routine

%______________________________________________________________________

% Written By : Dr. H. A. Al-Jamid

% Associate Professor, Electrical Engineering Department,

% King Fahd University, Dhahran 31261, Saudi Arabia.

%______________________________________________________________________

% zero.m is a zero-finding program based on Muller’s method.

% to use it, define the function whos zero is to be found as an M-file

% ( i.e ftest.m) , then run zero.m with the initial guess.

% the ftest.m file may for example be:

%

% function y=ftest(x);

% y=x^2-2.001*x+1.001;

%

% zero(’ftest’,1.9);

%

% where ftest is the fuction name (must be the same as the M-file name)
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% 1.9 is the initial guess.

function b=zero(FunFcn,x2)

nm=30; %input(’number of iterations required = ’);

low=10^(-8);

h1=-1*10^(-6);

h2=.5*10^(-6);

x1=x2-h2;

x0=x1-h1;

f0=feval(FunFcn,x0);

f1=feval(FunFcn,x1);

f2=feval(FunFcn,x2);

fu=(f2-f1)/h2;

fd=(f1-f0)/h1;

%

%start loop

%

for m=1:nm;

f3=(fu-fd)/(h1+h2);

c=fu+h2*f3;

h1=h2;

pa=c-sqrt(c*c-4*f2*f3);

ma=c+sqrt(c*c-4*f2*f3);

paa=abs(pa);

maa=abs(ma);

if paa>maa

h2=-2*f2/pa;

else

h2=-2*f2/ma;

end%

x1=x2;

x2=x2+h2;

f1=f2;

f2=feval(FunFcn,x2);

fd=fu;%

fu=(f2-f1)/h2;

if abs(f2)<low

zr=x2;

end

low=min(low,abs(f2));

end
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format long e

[zr feval(FunFcn,zr)]

% STF1

%

% This program computes the eigenvalues of guided

% TE and TM modes of a slab waveguide with an arbitrary number of

% layers.

% nps=superstrate refractive index squared. The superstrate is assumed

% to occupy the region x<0.

% nbs=substrate refractive index squared.

% ns=array containing the refractive index squared distribution of the

% layers between the superstrate and the substrate. The first entry

% corresponds to a layer next to the superstarate.

% d is similar to ns, but it contains the width distribution of the

% layers.

% Let TE=1 or any other non-zero number if TE modes are desired

% otherwise let TE=0 for TM modes.

function f=stf1(ne);

global co;

global lo;

global d;

TE = 1;

lambda = 1;

nps = 1^2;

nbs = 3.4^2;

ns = 3.6^2;

d = [0.3];

% Start calculation.

nes=ne*ne;

k0=2*pi/lambda;

asp=k0*sqrt(nes-nps);

l1=k0*sqrt(ns(1)-nes);

rho=1;

if TE==0;rho=ns(1)/nps;end;

a=1;

b=rho*asp/l1;

co=[a b];

m=length(ns);
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for s=2:m;

l=k0*sqrt(ns(s-1)-nes);

lp=k0*sqrt(ns(s)-nes);

t=d(s-1);

lt=l*t;

rho=1;

if TE==0;rho=ns(s)/ns(s-1);end;

at=a*cos(lt)+b*sin(lt);

b=rho*(-a*sin(lt)+b*cos(lt))*l/lp;

a=at;

co=[co a b];

lo=[lo lp];

end;

l=k0*sqrt(ns(m)-nes);

asb=k0*sqrt(nes-nbs);

t=d(m);

lt=l*t;

rho=1;

if TE==0;rho=nbs/ns(m);end;

at=a*cos(lt)+b*sin(lt);

a=-rho*(-a*sin(lt)+b*cos(lt))*l/asb;

f=at-a;

% Compute the matrix co and lo used for plotting the eigenfields.

co=[1 0 co a 0];

lo=[asp lo asb];

% STFG

% This program is used to plot the eigenfield of modes. The output

% from STF1 is used for this purpose.

global co; global lo; global d;

np=1000;

% Define the x-coordinates.
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xl=-abs(log(.01)/lo(1,1));

xhd=abs(log(.01)/lo(length(lo)));

ld=length(d); sd=sum(d);

xd=[];

for i=1:ld; xd=[xd

sum(d(1:i))];

end;

x=[xl 0 xd xhd+sd];

lx=length(x); on=ones(np,1);

% Compute field and position in the superstrate.

xt=cumsum((x(1)/np)*on);

xt=flipud(xt);

xt=[xt 0];

gf=[xt exp(xt*lo(1))];

% Compute field within the intermediate layers.

for i=2:lx-2;

xt=cumsum(((x(i+1)-x(i))/np)*on);

xt=x(i)+xt;

gf=[gf xt co(i,1)*cos(lo(i)*(xt-x(i)))+co(i,2)*sin(lo(i)*(xt-x(i)))];

end;

% Compute field in the substrate.

xt=cumsum(((x(lx)-x(lx-1))/np)*on);

xt=xt+x(lx-1);

gf=[gf xt co(lx-1,1)*exp(-lo(lx-1)*(xt-sd))];

% Plot modal field vx x.

plot(gf(:,1),(abs(gf(:,2))/max(abs(gf(:,2)))))



Appendix E

Improved MOL 3-Point

Approximation

% ***** Written by: Mohammed Zahed Mustafa Khan *****

% *** This function calculates the Second Derivative Matrix C ***

% ***** by using the Method of Lines (MoL), 3-Point.*****

%

% Implements the correct B.Cs. at the Adjacent Points of Interface.

% using Non-uniform Mesh

%

% General Purpose for TE and TM mode.

%

% C = new_3ptapprox(TE,EQ,lambda,n1,h1,M1)

%

% TE Mode Selection,

% TE=1 for TE mode, TE=0 for TM mode.

%

% EQ=1 or 0 (does’nt effect the results).

%

% lambda: Wavelength (in micron, dont need to write with e-6).

%

% n1: Vector for Refractive Indices.
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%

% h1: Vector array containing Mesh Size distribution in each layer.

%

% M1: Vector array containing No. of Discretization points in each layer.

function C= new_3ptapprox(TE,EQ,lambda,n1,h1,M1)

%**** Generating n and w of each discretization line****%

clear i n=[];w=[]; M=[];

for i=1:length(n1)

n=[n n1(i)*ones(1,M1(i))];

w=[w h1(i)*ones(1,M1(i))];

M=[M ones(1,M1(i))];

end

%**************** Initializations***************************%

clear j i

h=w./M; % Mesh size

nlyr = length(n); % No. of Layers.

m = sum(M); % Total number of discretization points

bd = cumsum(M); % Cumulative Sum of M.

ko = 2*pi/lambda;

kos = ko*ko;

% *************** Matrix C ************************%

C=diag(-2*ones(m,1),0) + diag(ones(m-1,1),1) +

diag(ones(m-1,1),-1); Ctemp=C;

% *****Dividing the C with step size(h)*************%

clear k

C=Ctemp(1:M(1),:)/(h(1)^2);

for k=2:nlyr

C=[C; Ctemp([(bd(k-1)+1):bd(k)],:)/(h(k)^2)];

end

% *** Modification in the C Matrix. (Implementing I.C.) ***%

clear i
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for i=2:m-1

h0=h(i);

h_p1=h(i+1);

n0=n(i);

n_p1=n(i+1);

Qminus_0=Qminus_matrix(h0,3);

Qplus_p1=Qplus_matrix(h_p1,3);

Mplus_0=Mplus_matrix(h0,3,TE,kos,n0,n_p1);

A=[];

A(1,:)=Qminus_0;

A(2,:)=[1 0 0];

A(3,:)=Qplus_p1*Mplus_0;

B=inv(A);

% **** Changing the matrix C ****%

C(i,i-1) = B(3,1);

C(i,i+0) = B(3,2);

C(i,i+1) = B(3,3);

end

% ***** End of Function Program *******%



Appendix F

Improved MOL 5-Point

Approximation

% ***** Written by: Mohammed Zahed Mustafa Khan *****

% *** This function calculates the Second Derivative Matrix C ***

% ***** by using the Method of Lines (MoL), 5-Point.*****

%

% Implements the correct B.Cs. at the Adjacent Points of Interface.

% using Non-uniform Mesh

%

% General Purpose for TE and TM mode.

%

% C = new_5ptapprox(TE,EQ,lambda,n1,h1,M1)

%

% TE Mode Selection,

% TE=1 for TE mode, TE=0 for TM mode.

%

% EQ=1 or 0 (does’nt effect the results).

%

% lambda: Wavelength (in micron, dont need to write with e-6).

%

% n1: Vector for Refractive Indices.
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%

% h1: Vector array containing Mesh Size distribution in each layer.

%

% M1: Vector array containing No. of Discretization points in each layer.

function C= new_5ptapprox(TE,EQ,lambda,n1,h1,M1)

%**** Generating n and w of each discretization line****%

clear i n=[];w=[];M=[];

for i=1:length(n1)

n=[n n1(i)*ones(1,M1(i))];

w=[w h1(i)*ones(1,M1(i))];

M=[M ones(1,M1(i))];

end

%**************** Initializations***************************%

clear j i

h=w./M; % Mesh size

nlyr = length(n); % No. of Layers.

m = sum(M); % Total number of discretization points

bd = cumsum(M); % Cumulative Sum of M.

ko = 2*pi/lambda;

kos = ko*ko;

% *************** Matrix C ************************%

C=diag(-1*ones(m-2,1),-2)+diag(16*ones(m-1,1),-1)+diag(-30*ones(m,1),0)...

+ diag(16*ones(m-1,1),1) +diag(-1*ones(m-2,1),2) ;

Ctemp=C;

%********* Dividing the C with step size(h)*********%

C=Ctemp(1:M(1),:)/(12*h(1)^2);

for k=2:nlyr

C=[C; Ctemp((bd(k-1)+1):bd(k),:)/(12*h(k)^2)];

end
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% **** Modification in the C Matrix. (Implementing I.C.) ****%

for i=2:m-2

h_m1=h(i-1);

h0=h(i);

h_p1=h(i+1);

h_p2=h(i+2);

n_m1=n(i-1);

n0=n(i);

n_p1=n(i+1);

n_p2=n(i+2);

Qminus_m1=Qminus_matrix(h_m1,5);

Nminus_0=Nminus_matrix(h0,5);

Mminus_m1=Mminus_matrix(h_m1,5,TE,kos,n_m1,n0);

Qminus_0=Qminus_matrix(h0,5);

Qplus_p1=Qplus_matrix(h_p1,5);

Mplus_0=Mplus_matrix(h0,5,TE,kos,n0,n_p1);

Qplus_p2=Qplus_matrix(h_p2,5);

Mplus_p1=Mplus_matrix(h_p1,5,TE,kos,n_p1,n_p2);

Nplus_p1=Nplus_matrix(h_p1,5);

Mplus_0=Mplus_matrix(h0,5,TE,kos,n0,n_p1);

A=[];

A(1,:)=Qminus_m1*Mminus_m1*Nminus_0;

A(2,:)=Qminus_0;

A(3,:)=[1 0 0 0 0];

A(4,:)=Qplus_p1*Mplus_0;

A(5,:)=Qplus_p2*Mplus_p1*Nplus_p1*Mplus_0;

B=inv(A);

%****Changing the matrix C ****%

if i==2

C(i,i-1) = B(3,2);

C(i,i+0) = B(3,3);

C(i,i+1) = B(3,4);
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C(i,i+2) = B(3,5);

else

C(i,i-2) = B(3,1);

C(i,i-1) = B(3,2);

C(i,i+0) = B(3,3);

C(i,i+1) = B(3,4);

C(i,i+2) = B(3,5);

end

end

% ***** End of Function Program *****%



Appendix G

Improved MOL 7-Point

Approximation

% ***** Written by: Mohammed Zahed Mustafa Khan *****

% *** This function calculates the Second Derivative Matrix C ***

% ***** by using the Method of Lines (MoL), 7-Point.*****

%

% Implements the correct B.Cs. at the Adjacent Points of Interface.

% using Non-uniform Mesh

%

% General Purpose for TE and TM mode.

%

% C = new_7ptapprox(TE,EQ,lambda,n1,h1,M1)

%

% TE Mode Selection,

% TE=1 for TE mode, TE=0 for TM mode.

%

% EQ=1 or 0 (does’nt effect the results).

%

% lambda: Wavelength (in micron, dont need to write with e-6).

%
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% n1: Vector for Refractive Indices.

%

% h1: Vector array containing Mesh Size distribution in each layer.

%

% M1: Vector array containing No. of Discretization points in each layer.

function C= new_7ptapprox(TE,EQ,lambda,n1,h1,M1)

%**** Generating n and w of each discretization line ****%

clear i n=[];w=[];M=[];

for i=1:length(n1)

n=[n n1(i)*ones(1,M1(i))];

w=[w h1(i)*ones(1,M1(i))];

M=[M ones(1,M1(i))];

end

%**************** Initializations***************************%

clear j i

h=w./M; % Mesh size

nlyr = length(n); % No. of Layers.

m = sum(M); % Total number of discretization points

bd = cumsum(M); % Cumulative Sum of M1.

ko = 2*pi/lambda;

kos = ko*ko;

% *************** Matrix C ************************%

e = ones(m,1);

div = 180;

C = spdiags([2/div*e -27/div*e 270/div*e

-490/div*e,... 270/div*e -27/div*e 2/div*e], -3:3, m,m);

Ctemp=C;

% **********Dividing the C with step size(h)**********%

C=Ctemp(1:M(1),:)/(h(1)^2);

for k=2:nlyr
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C=[C; Ctemp((bd(k-1)+1):bd(k),:)/(h(k)^2)];

end

% **** Modification in the C Matrix. (Implementing I.C.) ****%

for i=3:m-3

h_m2=h(i-2);

h_m1=h(i-1);

h0=h(i);

h_p1=h(i+1);

h_p2=h(i+2);

h_p3=h(i+3);

n_m2=n(i-2);

n_m1=n(i-1);

n0=n(i);

n_p1=n(i+1);

n_p2=n(i+2);

n_p3=n(i+3);

Qminus_m2=Qminus_matrix(h_m2,7);

Mminus_m2=Mminus_matrix(h_m2,7,TE,kos,n_m2,n_m1);

Nminus_m1=Nminus_matrix(h_m1,7);

Mminus_m1=Mminus_matrix(h_m1,7,TE,kos,n_m1,n0);

Nminus_0=Nminus_matrix(h0,7);

Qminus_m1=Qminus_matrix(h_m1,7);

Nminus_0=Nminus_matrix(h0,7);

Mminus_m1=Mminus_matrix(h_m1,7,TE,kos,n_m1,n0);

Qminus_0=Qminus_matrix(h0,7);

Qplus_p1=Qplus_matrix(h_p1,7);

Mplus_0=Mplus_matrix(h0,7,TE,kos,n0,n_p1);

Qplus_p2=Qplus_matrix(h_p2,7);

Mplus_p1=Mplus_matrix(h_p1,7,TE,kos,n_p1,n_p2);

Nplus_p1=Nplus_matrix(h_p1,7);

Mplus_0=Mplus_matrix(h0,7,TE,kos,n0,n_p1);

Qplus_p3=Qplus_matrix(h_p3,7);

Mplus_p2=Mplus_matrix(h_p2,7,TE,kos,n_p2,n_p3);

Nplus_p2=Nplus_matrix(h_p2,7);
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Mplus_p1=Mplus_matrix(h_p1,7,TE,kos,n_p1,n_p2);

Nplus_p1=Nplus_matrix(h_p1,7);

Mplus_0=Mplus_matrix(h0,7,TE,kos,n0,n_p1);

A=[];

A(1,:)=Qminus_m2*Mminus_m2*Nminus_m1*Mminus_m1*Nminus_0;

A(2,:)=Qminus_m1*Mminus_m1*Nminus_0;

A(3,:)=Qminus_0;

A(4,:)=[1 0 0 0 0 0 0];

A(5,:)=Qplus_p1*Mplus_0;

A(6,:)=Qplus_p2*Mplus_p1*Nplus_p1*Mplus_0;

A(7,:)=Qplus_p3*Mplus_p2*Nplus_p2*Mplus_p1*Nplus_p1*Mplus_0;

B=inv(A);

% ***** Changing the matrix C *****%

if i==3

C(i,i-2) = B(3,2);

C(i,i-1) = B(3,3);

C(i,i+0) = B(3,4);

C(i,i+1) = B(3,5);

C(i,i+2) = B(3,6);

C(i,i+3) = B(3,7);

else

C(i,i-3) = B(3,1);

C(i,i-2) = B(3,2);

C(i,i-1) = B(3,3);

C(i,i+0) = B(3,4);

C(i,i+1) = B(3,5);

C(i,i+2) = B(3,6);

C(i,i+3) = B(3,7);

end

end

% ***** End of Function Program *****%



Appendix H

The Automated Program

% ***** Written by: Mohammed Zahed Mustafa Khan *****

% ***** The Automated Program *****

%

% ***** This Program calculates the Reflectivity, Transmissivity*

% ******and Radiation of the Structure using Method of Lines *****

% ***** using Overlap Integral to calculate Modal Power *****

%****** ’fun’ represents the input file **************%

function [] =mainap(fun)

run (fun)

clc;

% Defining the global variables.

global TE EQ lambda ko U V S IS US N IN neff fs ...

pml_profile npml_sub npml_sup eta_sub eta_sup order;

% Getting the structure vector in the form of matrix

warning off;
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b=zeros(length(st),5);

r = 1; i = 0;

for k =1:length(st)

for j = 1:5

if i==length(st)

break

else

i = i+1;

if st(i) >=0

b(r,j)= st(i);

else

r = r+1;

break

end

end

end

end

% ’ws’ is the matrix that defines the whole structure.

ws = b(1:r,:); clear b r i j

EQ=0; %Always.

% Defining the reflection and transmission matrices.

reff=[];tran=[];rad=[];

% If the variable ’order’ is not defined in the input file, then

% 5-point approximation is used as default.

if length(order)==0

order=5;

end

% Starting of the loop for the calculation of the

% reflectivity(R or reff),Transmissivity(T or tra) and

% radiation(Ra or rad) of the given structure.

for cc=1:length(lambda1)
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% To find the time taken per wavelength.

ti=cputime;

% Selecting the first wavelength.

lambda=lambda1(cc);

ko=2*pi/lambda;

kos=ko^2;

clear n w M h

% Introducing the PML regions in the index profile

% If PML is not defined in the input file then tangent loss

% profile is used as default.

% Loop for updating the eta value according to the wavelength

% used.

if cc==1

[n,w,M,h]= new_int_pml(n1,w1,M1,lambda1(cc),0);

else

[n,w,M,h]= new_int_pml(n1,w1,M1,lambda1(cc),lambda1(cc-1));

end

% Generating the N Matrix for each region.

clear i;

for i=1:length(n(:,1))

N(:,:,i)=n_matrix_new(n(i,:),M);

end

% Generating the mesh1 matrix of the 1st region

% It is used in calculating the modal power

mesh1=n_matrix_new(sqrt(h),M);

mesh1=transpose(diag(mesh1));

% Finding the U,V,S,IS,IN and US matrices of each region

% ’U’ and ’V’ are the eigen values and eigen vector matrices.

% ’S’ and ’IS’ are the sqrt(Q)=U*sqrt(V)*inv(U) and inverse of

% ’S’, respectively.’IN’ is the inverse of matrix ’N’.

% ’US’ matrix is ’S’ for TE and IN*S for TM modes.

% ’fs’ is the vector that contains the fumdamental mode

% field values.
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% ’neff’ is the variable that is assigned to the

% effective refractive index of each region.

clear i;

for i=1:length(n(:,1))

[U(:,:,i),V(:,:,i),S(:,:,i),IS(:,:,i),US(:,:,i),...

IN(:,:,i),neff(i),fs(:,i)]= uv_gen_new(n(i,:),N(:,:,i),h,M);

end;

% Finding the R anf T of the first distinct region, i.e. region-1

% or the semi-infinite strating region, of the structure.

% The single disconitnuity expressions are used.

[R1,T2,R2,T1]=dis_single(US(:,:,ws(1,1)),US(:,:,ws(2,1)));

% Finding the R anf T of the the rest of the structure

% i.e. resr of the regions.

% If the matrix ’ws’ contains only three non zero

% elements then it assumes it to be an arbitrary region

% and used single discontinuity expressions to get R and T,

% else it assumes it to be a periodic region and used doubling

% and cascading algorithm to calculate the R and T of that region.

% The loop calculates the R an T of the current part of the

% structures and combines it with the previous available R and T

% using the cascading algorithm.

for i=2:length(ws(:,1))-1

if ws(i,5)==0

[R1,T2,R2,T1]=arb(R1,T2,R2,T1,ws(i,:),ws(i+1,:));

else

[R1,T2,R2,T1]=periodic(R1,T2,R2,T1,ws(i,:),ws(i+1,:));

end

end

% Finding the transmitted and reflected field.

A=T2*fs(:,1);

B=R1*fs(:,1);

% If lambda is a single value then the transmitted and reflected

% will be plotted.

if length(lambda1)==1
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x0=x_axis(n(1,:),M,h);

xN=x_axis(n(end,:),M,h);

plot(real(xN),abs(A));

xlabel(’x_axis in \mum’);

ylabel(’Field Amplitude’);

title(’Transmitted Field’);

plot(real(x0),abs(B));

xlabel(’x_axis in \mum’);

ylabel(’Field Amplitude’);

title(’Reflected Field’);

else

% If lambda is a not single then the transmissivity, reflectivity

% and Radiation loss will be calculated using overlap

% integral and then plotted against the range of lambda

% Calculating the mode power

if TE==1

modepower=fs(:,1)’*(fs(:,1).*mesh1.’);

alphaa=(B’*(fs(:,1).*mesh1.’))/modepower;

betaa=(A’*(fs(:,1).*mesh1.’))/modepower;

else

modepower=fs(:,1)’*(IN(:,:,1)*(fs(:,1).*mesh1.’));

alphaa=(B’*IN(:,:,1)*(fs(:,1).*mesh1.’))/modepower;

betaa=(A’*IN(:,:,1)*(fs(:,1).*mesh1.’))/modepower;

end

% Calculating the R, Ra and T

reff=[reff (abs(alphaa)^2)];

tran=[tran (abs(betaa)^2)];

rad=[rad (1-(abs(alphaa)^2)-(abs(betaa)^2))];

clc

tim=cputime-ti;

% Displays the time taken per wavelength and the iteration number.

disp(cc);disp(tim);

end

end
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% If lambda is not a single value then plot the

% R,T and Ra with respect to wavelength.

if length(lambda1)~=1

figure;

plot(lambda1,reff);

xlabel(’Wavelength in [\mum]’);

ylabel(’Fundamental TE Mode Reflectivity’);

title(’Fundamental TE Mode Reflectivity of ...

Infinite Deep Waveguide Gratings’);

grid on;

figure;

plot(lambda1,tran);

xlabel(’Wavelength in [\mum]’);

ylabel(’Fundamental TE Mode Transmissivity’);

title(’ Fundamental TE Mode Transmissivity of ...

Infnitely Deep Waveguide grating’);

grid on;

figure;

plot(lambda1,rad);

xlabel(’Wavelength in [\mum]’);

ylabel(’Fundamental TE Mode Radiation’);

title(’Fundamental TE Mode Radiation of ...

Infnitely Deep Waveguide grating’);

grid on;

end

%****************End of the automated program ******************%



Appendix I

Functions of the Automated

Program and the Approximations

%****************** Start of function ’arb’ ********************%

% This is a function that adds an arbitrary discontinuity

% to the given R and Ts

function [R1,T2,R2,T1]= arb(Ra1,Ta2,Ra2,Ta1,w1,w2)

global US

[Rb1,Tb2,Rb2,Tb1]= dis_single(US(:,:,w1(1)),US(:,:,w2(1)));

[R1,T2,R2,T1] = cas_gen_new(Ra1,Ta2, Ra2,Ta1,Rb1,Tb2,

Rb2,Tb1,w1(1),w1(2));

% end of program

%****************** End of Function ’arb’ **********************%

%****************** Start of function ’bin_new’ ****************%

186
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%This is a function that generates the weight of the binary

%ones present in the discontinuities

function [wt]= bin_new(ndis)

clear s b m n tmp v;

b=dec2bin(ndis);

b=b -’0’;

[m,n] = size(b);

twos = pow2(n-1:-1:0);

tmp=b .* (twos(ones(m,1),:));

tmp(1)=0;

tmp=log2(tmp);

v=find(tmp>0);

tmp=tmp(v);

wt=tmp;

clear s b m n ;

%****************** End of Function ’bin_new’ *******************%

%****************** Start of function ’cas_gen_new’ *************%

% This is a function that cascades two discontinuities

% and gives all the four output parameters ie R1, T2, R2, T1.

% The inputs to this function is individual r1,t2 and r2,t1 of

% both the discontinuities (i.e. 8 parameters), the Matrix

% U = S for TE and N^-1S for TM, of the uniform region

% connecting both the discontinuities; and the distance ’d’

% of that uniform region.

function [R1,T2,R2,T1]= cas_gen_new(RA1,TA2, RA2,TA1,RB1,TB2,

RB2,TB1,r,d)

global S U V

I=eye(length(S(:,:,r)));

ESD=U(:,:,r)*diag(exp(j*(diag(V(:,:,r)).^(0.5))*d))*inv(U(:,:,r));

TMP=inv(I-ESD*RA2*ESD*RB1)*ESD*TA2;

R1=RA1+TA1*ESD*RB1*TMP; T2=TB2*TMP;
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clear TMP;

TMP=inv(I-ESD*RB1*ESD*RA2)*ESD*TB1;

R2=RB2+TB2*ESD*RA2*TMP;

T1=TA1*TMP;

%****************** End of Function ’cas_gen_new’ ****************%

%****************** Start of function ’cas_join_0d’ **************%

% Function that joins two independent arbitrary discontinuities

% using the cascading algorithm. The distance between the

% discontinuities is assumed to be zero

function [R1,T2,R2,T1]= cas_joining_0d(RA1,TA2, RA2,TA1,RB1,TB2,

RB2,TB1)

global S U V M

I=eye(length(U(:,:,1)));

TMP=inv(I-RA2*RB1)*TA2;

R1=RA1+TA1*RB1*TMP;

T2=TB2*TMP;

clear TMP;

TMP=inv(I-RB1*RA2)*TB1;

R2=RB2+TB2*RA2*TMP;

T1=TA1*TMP;

%****************** End of Function ’cas_join_0d’ ***************%

%****************** Start of function ’cas_periodic_new1’ *******%

% This is a function that gives the reflection and

% transmission matrices for a periodic pure symmetric

% structures.

function [R1,T2,R2,T1]= cas_periodic_new1(r1,r2,ndis,d0,d1);

global w M h TE EQ lambda ko U V S IS US N IN neff fs ;

% the inputs are, the wavelength lambda, the refractive
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% indices of the waveguide, width of the waveguide regions

% w1,w2, the period of bot the regions d1,d2.

% Adding the other discontinuities

[wt]= bin_new(ndis);

% Finding the required parameters

I=eye(length(U(:,:,r1)));

ESD0=U(:,:,r1)*diag(exp(j*(diag(V(:,:,r1)).^(0.5))*d0))...

*inv(U(:,:,r1));

ESD1=U(:,:,r2)*diag(exp(j*(diag(V(:,:,r2)).^(0.5))*d1))...

*inv(U(:,:,r2));

% Finding the reflection and transmission matrices

% for single interface __

% |__

[Ra1,Ta2,Ra2,Ta1]= dis_single(US(:,:,r1),US(:,:,r2));

clear Ra2 Ta1 Ta2;

%for double discontinuity __ __

% |__|

R=Ra1+(I-Ra1)*ESD1*(-Ra1)*inv(I-(ESD1*Ra1)^2)*ESD1*(I+Ra1);

T=(I-Ra1)*inv(I-(ESD1*Ra1)^2)*ESD1*(I+Ra1); Rd=R;Td=T;

% Saving R and T of one period, if the number of

% discontinuities are odd.

clear x; x=1; if rem(ndis,2)==1

Ro(:,:,x)=R;

To(:,:,x)=T;

x=x+1;

end

% Cascading the double discontinuity for the periodic

% structure

clear k p hh tmp1;
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for k=1:log2(ndis)

tmp1=inv(I-(ESD0*R)^2)*ESD0*T;

R=R+T*ESD0*R*tmp1;

T=T*tmp1;

[p,hh]=find(wt==k);

if p==1

Ro(:,:,x)=R;

To(:,:,x)=T;

x=x+1;

end

end

clear k p hh tmp1;

% Adding the other discontinuities that are

% not in the power of 2

for k=1:x-1

[R,T]= sym_out_1133(R,T,Ro(:,:,k),To(:,:,k),S(:,:,r1),d0);

end clear k x;

R1=R;

T2=T;

% The other two matrices will be the same due to symmetry.

R2=R1;

T1=T2;

%****** End of Function ’cas_periodic_new1’ ************%

%*********** Start of function ’dis_single’ ************%

% This is a function that gives the four output parameters

% ie R1, T2, R2, T1 of one single discontinuities.

% The inputs to this function are individual R1,T2 and R2,T1

% of both the discontinuities (i.e. 8 parameters),

% the Matrix U = S for TE and N^-1S for TM, of the

% uniform region connecting both the discontinuities;

% and the distance ’d’ of that uniform region.

function [R1,T2,R2,T1]= dis_single(US1,SUS2)
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I=eye(length(US1));

R1=(I-inv(US1)*US2)*inv(I+inv(US1)*US2);

T2=2*inv(I+inv(US1)*US2);

R2=-R1;

T1=I+R2;

%************ End of Function ’dis_single’ ***************%

%*********** Start of function ’Mminus_matrix’ ***********%

% Function that gives the M_minus matrix for the higher order

% approximation.

function Mminus=Mminus_matrix(h,order,TE,kos,n1,n2);

m=[];

z21 = kos*(n2^2-n1^2);

if TE == 1

r21=1; % for TE mode.

else

r21=(n2^2)/(n1^2); % For TM Mode.

end

if order==3

m(1,:)=[ 1 0 0 ];

m(2,:)=[ 0 (r21)^(-1) 0 ];

m(3,:)=[ z21 0 1 ];

end

if order==5

m(1,:)=[ 1 0 0 0 0 ];

m(2,:)=[ 0 (r21)^(-1) 0 0 0 ];

m(3,:)=[ z21 0 1 0 0 ];

m(4,:)=[ 0 ((r21)^(-1))*z21 0 (r21)^(-1) 0 ];

m(5,:)=[ (z21^2) 0 2*z21 0 1];

end

if order==7

m(1,:)=[ 1 0 0 0 0 0 0 ];

m(2,:)=[ 0 (r21)^(-1) 0 0 0 0 0 ];
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m(3,:)=[ z21 0 1 0 0 0 0 ];

m(4,:)=[ 0 ((r21)^(-1))*z21 0 (r21)^(-1) 0 0 0 ];

m(5,:)=[ (z21^2) 0 2*z21 0 1 0 0 ];

m(6,:)=[ 0 ((r21)^(-1))*(z21^2) 0 2*((r21)^(-1))*...

z21 0 ((r21)^(-1)) 0 ];

m(7,:)=[ (z21^3) 0 3*(z21^2) 0 3*z21 0 1];

end

Mminus=m;

%************* End of Function ’Mminus_matrix’ ************%

%************* Start of function ’Mplus_matrix’ ***********%

% Function that gives the M_plus matrix for the higher order

% approximation.

function Mplus=Mplus_matrix(h,order,TE,kos,n1,n2);

m=[];

z21 = kos*(n2^2-n1^2);

if TE == 1

r21=1; % for TE mode.

else

r21=(n2^2)/(n1^2); % For TM Mode.

end

if order==3

m(1,:)=[ 1 0 0 ];

m(2,:)=[ 0 r21 0 ];

m(3,:)=[ -z21 0 1 ];

end

if order==5

m(1,:)=[ 1 0 0 0 0 ];

m(2,:)=[ 0 r21 0 0 0 ];

m(3,:)=[ -z21 0 1 0 0 ];

m(4,:)=[ 0 -r21*z21 0 r21 0 ];

m(5,:)=[ (z21^2) 0 -2*z21 0 1];

end
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if order==7

m(1,:)=[ 1 0 0 0 0 0 0 ];

m(2,:)=[ 0 r21 0 0 0 0 0 ];

m(3,:)=[ -z21 0 1 0 0 0 0 ];

m(4,:)=[ 0 -r21*z21 0 r21 0 0 0 ];

m(5,:)=[ (z21^2) 0 -2*z21 0 1 0 0 ];

m(6,:)=[ 0 r21*(z21^2) 0 -2*r21*z21 0 r21 0 ];

m(7,:)=[ -(z21^3) 0 3*(z21^2) 0 -3*z21 0 1];

end

Mplus=m;

%*********** End of Function ’Mplus_matrix’ ****************%

%*********** Start of function ’n_matrix_new’ **************%

%This is a function that generates the n matrix of the waveguide.

function [N]= n_matrix_new(n,M)

nlyr=length(n);

clear q

N=[];

for q=1:nlyr

N=[N (n(q)^2)*ones(1,M(q))];

end

clear q;

N=diag(N);

%****************** End of Function ’n_matrix_new’ ***********%

%****************** Start of function ’new_int_pml’ *********%

% This is a function that introduces pml layer on both

% the sides of the waveguide.

function [n_pml,w_pml,M_pml,h_pml]=

new_int_pml(n,w,M,lambda_new,lambda_old)

global pml_profile npml_sub npml_sup eta_sub eta_sup order;
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clear cstart cend;

h=w./M;

% Setting the default values if not given

if length(npml_sub)==0

if order==5

npml_sub=10;

else if order==3

npml_sub=15;

else

npml_sub=8;

end

end

end

if length(npml_sup)==0

if order==5

npml_sup=10;

else if order==3

npml_sup=15;

else

npml_sup=8;

end

end

end

if length(eta_sub)==0

eta_sub= 1.35/max(n(:,end));

end

if length(eta_sup)==0

eta_sup= 1.35/max(n(:,1));

end

%End of default value checking

for k=1:length(n(:,1))

cstart(k,:)=n(k,1)*ones(1,npml_sup);

cend(k,:)=n(k,length(n(k,:)))*ones(1,npml_sub);

end

n_pml=[cstart n cend];
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w_pml=[h(1)*ones(1,npml_sup) w

h(end)*ones(1,npml_sub)];

M_pml=[ones(1,npml_sup) M ones(1,npml_sub)];

clear cstart cend;

if lambda_old==0;

eta_sub=(eta_sub)*lambda_new/n(1,end);

eta_sup=(eta_sup)*lambda_new/n(1,1);

else

eta_sub=(eta_sub*lambda_new/lambda_old);

eta_sup=(eta_sup*lambda_new/lambda_old);

end

for i=1:npml_sub

x_sub(i)=(i*pi)/(2*(npml_sub+1));

end for i=1:npml_sup

x_sup(i)=(i*pi)/(2*(npml_sup+1));

end

if length(pml_profile)==0

disp(’default tan’);

f_sub=tan(x_sub);

f_sup=tan(x_sup);

elseif pml_profile==’tan’

disp(’tan’);

f_sub=tan(x_sub);

f_sup=tan(x_sup);

elseif pml_profile==’sec’

disp(’sec’);

f_sub=sec(x_sub);

f_sup=sec(x_sup);

elseif pml_profile==’exp’

disp(’exp’);

f_sub=exp(x_sub);

f_sup=exp(x_sup);

elseif pml_profile==’sin’

disp(’sin’);

f_sub=sin(x_sub);

f_sup=sin(x_sup);

elseif pml_profile==’sqr’

disp(’sqr’);
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f_sub=(x_sub).^2;

f_sup=(x_sup).^2;

elseif pml_profile==’cub’

disp(’cub’);

f_sub=(x_sub).^3;

f_sup=(x_sup).^3;

elseif pml_profile==’lin’

disp(’lin’);

f_sub=(x_sub);

f_sup=(x_sup);

elseif pml_profile==’unf’

disp(’unf’);

f_sub=ones(1,npml_sub);

f_sup=ones(1,npml_sup);

end

sub_imag=(eta_sub/npml_sub)*f_sub;

sup_imag=(eta_sup/npml_sup)*transpose(rot90(f_sup));

h_pml=[h(1)+sup_imag*j h h(end)+sub_imag*j];

%********** End of Function ’new_int_pml’ **************%

%********* Start of function ’Nminus_matrix’ ************%

% Function that gives the N_minus matrix for the higher order

% approximation.

function Nminus=Nminus_matrix(h,order);

n=[];

if order==3

n(1,:)=[ 1 -h (h^2)/2];

n(2,:)=[ 0 1 -h ];

n(3,:)=[ 0 0 1 ];

end

if order==5

n(1,:)=[ 1 -h (h^2)/2 -(h^3)/6 (h^4)/24];

n(2,:)=[ 0 1 -h (h^2)/2 -(h^3)/6 ];

n(3,:)=[ 0 0 1 -h (h^2)/2 ];
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n(4,:)=[ 0 0 0 1 -h ];

n(5,:)=[ 0 0 0 0 1];

end

if order==7

n(1,:)=[ 1 -h (h^2)/2 -(h^3)/6 (h^4)/24 -(h^5)/120 ...

(h^6)/720];

n(2,:)=[ 0 1 -h (h^2)/2 -(h^3)/6 (h^4)/24 -(h^5)/120];

n(3,:)=[ 0 0 1 -h (h^2)/2 -(h^3)/6 (h^4)/24];

n(4,:)=[ 0 0 0 1 -h (h^2)/2 -(h^3)/6];

n(5,:)=[ 0 0 0 0 1 -h (h^2)/2 ];

n(6,:)=[ 0 0 0 0 0 1 -h ];

n(7,:)=[ 0 0 0 0 0 0 1];

end

Nminus=n;

%********** End of Function ’Nminus_matrix’ ***************%

%********** Start of function ’Nplus_matrix’ **************%

% Function that gives the N_plus matrix for the higher order

% approximation.

function Nplus=Nplus_matrix(h,order);

n=[];

if order==3

n(1,:)=[ 1 h (h^2)/2];

n(2,:)=[ 0 1 h ];

n(3,:)=[ 0 0 1 ];

end

if order==5

n(1,:)=[ 1 h (h^2)/2 (h^3)/6 (h^4)/24];

n(2,:)=[ 0 1 h (h^2)/2 (h^3)/6 ];

n(3,:)=[ 0 0 1 h (h^2)/2 ];

n(4,:)=[ 0 0 0 1 h ];

n(5,:)=[ 0 0 0 0 1];

end
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if order==7

n(1,:)=[ 1 h (h^2)/2 (h^3)/6 (h^4)/24 (h^5)/120 (h^6)/720];

n(2,:)=[ 0 1 h (h^2)/2 (h^3)/6 (h^4)/24 (h^5)/120];

n(3,:)=[ 0 0 1 h (h^2)/2 (h^3)/6 (h^4)/24];

n(4,:)=[ 0 0 0 1 h (h^2)/2 (h^3)/6];

n(5,:)=[ 0 0 0 0 1 h (h^2)/2 ];

n(6,:)=[ 0 0 0 0 0 1 h ];

n(7,:)=[ 0 0 0 0 0 0 1];

end

Nplus=n;

%*********** End of Function ’Nplus_matrix’ *****************%

%*********** Start of function ’periodic’ *******************%

% This is a function that calculates the R an T of

% overall part by calculating the R an T of the arbitrary

% discontinuity which is assumed to be just after the periodic

% part of the structure, calculates the R and T of the periodic

% part and then joins both R and T to get the R and T of

% the resultant structure.

function [R1,T2,R2,T1]= periodic(Ra1,Ta2,Ra2,Ta1,w1,w2)

global US warning off

[Rb1,Tb2,Rb2,Tb1]=

cas_periodic_new1(w1(1),w1(3),w1(5),w1(2),w1(4));

[R1,T2,R2,T1] = cas_gen_new(Ra1,Ta2,Ra2,Ta1,Rb1,Tb2,

Rb2,Tb1,w1(1),w1(2));

[Rc1,Tc2,Rc2,Tc1] = dis_single(US(:,:,w1(1)),US(:,:,w2(1)));

[R1,T2,R2,T1] = cas_joining_0d(R1,T2,R2,T1,Rc1,Tc2,Rc2,Tc1);

%********** End of Function ’periodic’ ************************%

%******* Start of function ’Qminus_matrix’ ********************%

% Function that gives the Q_minus matrix for the higher order

% approximation.
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function Qminus=Qminus_matrix(h,order);

n=[];

if order==3

n=[ 1 -h (h^2)/2];

end

if order==5

n=[ 1 -h (h^2)/2 -(h^3)/6 (h^4)/24];

end

if order==7

n=[ 1 -h (h^2)/2 -(h^3)/6 (h^4)/24 -(h^5)/120 (h^6)/720];

end

Qminus=n;

%****************** End of Function ’Qminus_matrix’ *******%

%****************** Start of function ’Qplus_matrix’ ******%

% Function that gives the Q_plus matrix for the higher order

% approximation.

function Qplus=Qplus_matrix(h,order);

n=[];

if order==3

n=[ 1 h (h^2)/2];

end

if order==5

n=[ 1 h (h^2)/2 (h^3)/6 (h^4)/24];

end

if order==7

n=[ 1 h (h^2)/2 (h^3)/6 (h^4)/24 (h^5)/120 (h^6)/720];

end

Qplus=n;

%************* End of Function ’Qplus_matrix’ **********%

%******* Start of function ’sym_out_1133’ **************%
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% This is a function that gives the reflection and transmission

% matrices for a periodic pure symmetric structures and the

% resultant is also periodic.Structure 1 is considered to be

% 11 (symmetric by itself) and structure two (symmetric by

% itself)is 33. The resultant is also symmetric.

function [R1,T2]= sym_out_1133(RA,TA,RB,TB,S,d)

% the inputs are, the four matrices of structure 1,

% four matrices of structure 2, the S matric of the region

% joining them and longitudinal distance of that region.

I=eye(length(S));

[Us,Vs]=eig(S);

ESD=Us*diag(exp(j*(diag(Vs)*d)))*inv(Us);

% Since the structure 1 and 2 are symmetric RA1=RA2=RA,

% TA1=RA2,TA ans same for structure 2

TMP=inv(I-ESD*RA*ESD*RB)*ESD*TA;

R1=RA+TA*ESD*RB*TMP;

T2=TB*TMP;

%****************** End of Function ’sym_out_1133’ ***********%

%****************** Start of function ’uv_gen_new’ ***********%

% This is a function that calculates the Q matrix, divides

% Q into U and V (eigen pairs), makes all the imaginary part

% of V positive so that the field does not increase in the PML

% region and gives the following outputs U,V,neff,US.

function [U1,V1,S1,IS1,US,IN1,neff1,fs1]= uv_gen_new(n1,N1,h1,M1)

global TE EQ lambda ko order;

% Finding the C1 matrix for First waveguide

if length(order)==0

C1= new_5ptapprox(TE,EQ,lambda,n1,h1,M1);

elseif order==3

C1= new_3ptapprox(TE,EQ,lambda,n1,h1,M1);
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elseif order==5

C1= new_5ptapprox(TE,EQ,lambda,n1,h1,M1);

elseif order==7

C1= new_7ptapprox(TE,EQ,lambda,n1,h1,M1);

end

kos=ko^2;

clear ne f b

Q1=(C1)+(kos*N1);

[U1,V1]=eig(Q1);

[ne,b]=max(real(diag(V1)));

neff1=sqrt(ne)/ko;neff1;

f=U1(:,b);

fs1=(f/max(abs(f)));

% making all the imaginary terms of V1 positive

clear s

V1=diag(V1);

s=find(imag(V1)<0);

V1(s)=conj(V1(s));

V1=diag(V1);

% Finding the US matrix depending on the TE or TM mode.

S1=U1*diag(diag(V1).^(0.5))*inv(U1);

[US1,VS1]=eig(S1);

clear s

VS1=diag(VS1);

s=find(imag(VS1)<0);

VS1(s)=conj(VS1(s));

VS1=diag(VS1);

S1=US1*VS1*US1^(-1);

IS1=U1*diag(diag(V1).^(-0.5))*inv(U1);

[UIS1,VIS1]=eig(IS1);

clear s

VIS1=diag(VIS1);

s=find(imag(VIS1)<0);

VIS1(s)=conj(VIS1(s));

VIS1=diag(VIS1);



202

IS1=UIS1*VIS1*UIS1^(-1);

IN1=diag(diag(N1).^(-1));

if TE==1

US=S1;

else

US=IN1*S1;

end

%************ End of Function ’uv_gen_new’ ****************%

%************* Start of function ’x_axis’ *****************%

% Function the calculates the transverse distance based on

% the mesh size.

function xo1=x_axis(n,M,h);

clear xo;

[temp p]=max(n);

xo=cumsum(h(p)*ones(1,(M(p))));

temp=[0 cumsum(h(p-1)*ones(1,(M(p-1)-1)))];

clear i

for i=p+1:1:length(h)

xo=[xo xo(end)+cumsum(h(i)*ones(1,(M(i))))];

end

clear i

for i=p-2:-1:1

temp=[temp temp(end)+cumsum(h(i)*ones(1,(M(i))))];

end

xo1=[(-rot90(temp))’ xo];

%************* End of Function ’x_axis’ **************%
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Input m-file

%************ Start of Input file ’example’ *************%

clear all;

lambda1=0.7:0.02:3;

npml_sup=4;

npml_sub=8;

eta_sub=0.35;

eta_sup=0.5;

pml_profile=’tan’;

order=5;

TE=1;

w1=[ 1 0.2 0.1 0.05 0.2 0.3 0.15 0.15 3 ];

M1=[ 10 7 4 3 7 10 6 6 20];

203



204

n1=[ 1 1 1 1 1 3.6 3.6 3.6 3.4;...

1 1 1 3.6 3.6 3.6 3.6 3.6 3.4;...

1 1 1 1 3.6 3.6 3.6 3.6 3.4;...

1 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.4;...

1 1 3.6 3.6 3.6 3.6 3.6 3.6 3.4;...

1 1 1 1 1 1 3.6 3.6 3.4;...

1 1 1 1 1 1 1 3.6 3.4];

st=[1 [-1] ...

2 0.05 3 0.05 35 [-1] ...

4 0.02 5 0.02 35 [-1] ...

6 0.3 [-1] ...

7 ];

%********* End of Input file ’example’ ***************%
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