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ABSTRACT 

 In this thesis work, the Method of Lines ( )MOL  which is based on eigenpair calculation is 

modified using Padé approximants ( )PBPM .  Because the use of Padé approximants decreases the 

numerical demand of the MOL  from 3N  to N, where N  is the number of discretizations,  the 

PBPM  is far more efficient than the MOL.  Various numerical experiments which are reported in 

this thesis work confirm that the PBPM  is much more efficient than the MOL  when the number of 

transverse mesh points is large. The PBPM  has been applied in the analysis of a variety of integrated 

optical devices. This includes a beam expander, which connects two waveguides of different core widths, 

using a linearly tapered junction. In addition, a waveguide crossing with a resonant cavity at the center 

has been studied. Finally a novel three-way 900 beam splitter is proposed and its operation has been 

verified using the developed PBPM  approach. This type of beam splitter utilizes a rectangular cavity 

at the center. 
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  ملخص الرسال
)ARABIC( ABSTRACT  

  محمد  أمير الدين: ــــــمـالاســــــــ

  طريقة تقريبات باديه واستخداماها في تحليل تقاطعات  قائد الموجة و مقسمات الحزم الضوئية : الرسالة عنوان

  هندسة آهربائية: ــصــالتخصــــ

  م2004مايو : رجــالتخ تاريخ

  :الملخص

لجهد إن استخدام تقريبات باديه تقلل من ا. في هذه الرسالة تم تغيير طريقة الخطوط وذلك بإدخال تقريبات باديه عليها

بدلاً من تناسبه مع مكعب ن قبل ) عدد النقاط المستعملة في الحل(الحسابي للحاسوب حيث يتناسب هذا الجهد مع ن 

وتوجد العديد من التجارب الحسابية في هذه الرسالة والتي تؤآد بأن .  استخدام تقريبات باديه على طريقة الخطوط

وقد استخدمت طريقة الحساب . كثير من الطريقة المستخدمة من قبلالطريقة المتبعة في هذه الرسالة أآثر فعالية ب

الجديدة والمبنية على تقريبات باديه لدراسة وتحليل أنواع عديدة من الدوائر الضوئية المدمجة، مثل دائرة توسيع 

 موجها آما تمت دراسة منطقة التقاطع  بين. الشعاع والتي تكون حلقة وصل بين موجها موجة ذا عرضين مختلفين

وأخيراً تمت دراسة قاسم أشعة جديد ثلاثي . موجة متعامدان، حيث تحتوي هذه المنطقة على فجوة رنين في وسطها

الحزم ذا أقسام متعامدة  وقد تمت محاآاة عمل هذا القاسم باستخدام طريقة الحساب الجديدة، مع العلم بأن هذا القاسم 

  .لة الشكل والتي توجد في مرآز القاسمالجديد يعتمد على استخدام فجوة رنين مستطي
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CHAPTER 1  

INTRODUCTION 

1.1. INTEGRATED OPTICS 

 Integrated optics or integrated photonics [1-5] is a branch of optics that combines 

various technologies such as electro-optics, non-linear optics, opto-electronics waveguide 

technology etc. In 1969 S.E. Miller [2], introduced the term “integrated optics” which 

emphasized the similarity between the planar optical circuits technology and the 

integrated micro-electronic circuits technology. His idea was to fabricate integrated 

optical circuits in which various optical elements, passive as well as active, were 

integrated in a single substrate, combining and interconnecting them via small optical 

transmission lines called optical waveguides. Thus, resulting in devices which are 

compact and low weight, robust, faster operational capability, stability with regards to 

alignment, high optical power density and low cost. 

 

 When the refractive index contrast between the waveguide core and the outside 

regions is high, the waveguide core can be made sufficiently small while maintaining 

strong confinement of the field. This leads to the concept of the so called photonic wire, 

which results in improved utilization of space in integrated optical circuits, leading 

potentially to high density integrated optics. 
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  Also, because of the strong light confinement in high contrast optical waveguides, 

new and interesting device operations are possible, which do not exist in low contrast 

waveguides. 

1.2. PROPOSED THESIS WORK 

 In this thesis work, we will consider only high index contrast waveguides and study 

various IO  structures based on them. This includes a waveguide junction between two 

waveguides of different core widths. This type of junction is termed beam expander. In 

addition, we will analyze a waveguide junction in which two waveguides cross each other 

at a 090  angle. In reality, this later case can give rise to a multitude of possibilities. We 

will consider two of those possibilities. The first is when the junction is designed to 

prevent optical power from leaking from one waveguide into the other leading to 

minimum cross-talk and the bulk of optical power remaining in the same waveguide. In 

this thesis, this type of junction is termed as waveguide crossing. The second possibility 

considered in this thesis is when the junction is designed as a 090  three-way beam splitter. 

In this later case, we are interested in controlling the amount of optical power that is 

channeled into the various arms of this 090  three-way beam splitter. For simplicity this 

type of junction will be termed as a beam splitter. 

 

 Thus in summary, our purpose is to analyze a simple waveguide junction, a 

waveguide crossing and a beam splitter. 
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1.3. CALCULATION METHOD 

 In general, analytical solutions of the electromagnetic field in IO  structures are not 

available which makes numerical methods indispensable for analysis of these structures. 

Various numerical tools are available for this purpose, which includes the Method of 

Lines ( )MOL  [6-23], the finite-difference time-domain method ( )FDTD  [24-28], the 

finite-element method ( )FEM  [29-32], and the beam propagation method ( )BPM  [33-

45].  

 

 In this thesis work, we will utilize the MOL  for the analysis of the proposed 

structures. However, the MOL  relies on the calculation of the eigenvalues and 

eigenvectors (eigenpairs) of the system matrix. Although the MOL  is accurate, it is very 

demanding numerically when the matrix dimension exceeds few hundreds in value. In this 

thesis work, therefore, the computation of the eigenpairs will be avoided. Instead, we will 

incorporate Padé approximants in the Method of Lines ( )PMOL  in order to enhance the 

CPU memory and time requirements. Due to the similarities in the formulation of the 

PMOL  and the Matrix formulation of BPM  with Padé approximants, PMOL  will be 

referred to as PBPM  so as to credit the initial work done in the BPM  Framework.  
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1.4. THESIS ORGANIZATION 

 The thesis work is organized in seven chapters. The first chapter is an introductory 

which includes introduction to integrated optics. The second chapter introduces the basic 

Method of Lines and describes how the eigenpairs are utilized in the field calculations. 

The third chapter introduces Padé approximants with sufficient details. This chapter also 

contains a general procedure for deriving Padé primes for arbitrary functions. It also 

discusses a general iterative approach for analyzing multiple longitudinal discontinuities 

in planar waveguide structures. Chapters four, five and six are dedicated respectively to 

the analysis of the beam expander, the waveguide crossing, and the three-way beam 

splitter mentioned earlier. The final chapter (chapter 7) concludes this thesis work. 
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CHAPTER 2  

METHOD OF LINES 

2.1. INTRODUCTION 

 The Method of Lines ( )MOL  [6-23] is a semi analytical technique for solving 

partial differential equations ( )PDE . The PDE  is transformed into an ordinary 

differential equation ( )ODE  by discretizing all the independent variables except one. If 

there are n  independent variables then ( 1)n −  variables are discretized resulting in an 

ODE  which can then be solved analytically in terms of the remaining variable [46]. The 

MOL  has been applied to several types of planar longitudinally uniform optical and 

microwave waveguide problems. It has been used to analyze single [47] and multiple 

discontinuities in optical waveguides [7, 48] and to solve non-linear waveguide problems 

[9] as well as diffraction problems from waveguide ends [8]. It has been successfully used 

to model 3 D−  problems [14-16] for both optical and microwave waveguides. This 

procedure guarantees a high numerical precision and an acceptable computational expense 

[6]. However, the MOL  relies on the computation of eigenvalues and eigenvectors 

(eigenpairs) of the system matrix. If the size of the problem is exceedingly large, the 

computation of the eigenpairs becomes computationally demanding and even prohibitive 

in some cases. This is due to the fact that the eigenpairs calculation requires a numerical 
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effort proportional to 3,M  where M  is the number of discrete points used in the field 

representation.  

 

 Consequently, in the simulation of two-dimensional optical waveguide problems 

using a relatively large value of ,M  the method of lines ( )MOL  approach (based on 

eigenpair calculation) becomes unpractical. A similar situation occurs in the simulation of 

three-dimensional problems, in which case M  can easily become large, prohibiting the 

MOL  approach. Part of the objectives of the present thesis work is to implement a new 

numerical approach [49, 50] that does not require calculation of the eigenpairs of the 

system matrix. The new approach is based on Padé approximants for the solution of the 

Helmholtz equation. This approach which will be discussed in detail in the next chapter, 

reduces the numerical effort significantly making it proportional to ,M  rather than the 

3M  as in the case of the MOL . In the present chapter, however, the basic MOL  

formulation will be introduced including its use in the conventional manner. Extensions to 

the basic MOL  will be discussed in this chapter as well. This includes:  

1. Incorporation of a perfectly matched layer ( )PML . 

2. The use of a higher order approximation of the second derivative operator in 

the transverse direction. 

 Finally, application of the MOL  to calculate the reflected and transmitted fields due 

to a single and to a double longitudinal waveguide discontinuities will be discussed. 
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2.2. BASIC MOL FORMULATION 

 One of the simplest optical waveguide structures is the dielectric slab waveguide. 

Because of longitudinal uniformity in its geometry, the guided modes and the radiation 

modes of the slab waveguide retain their basic shape as the field propagates within this 

waveguide and can thus be described by simple mathematical expressions. A schematic 

diagram of a three layer planar waveguide is shown in Figure 2-1. It consists of the 

superstrate, the core and the substrate with refractive indices 3 1 2,   and n n n , respectively, 

where 1 2 3( ,  )n n n>  in order to ensure total internal reflection in the core. In order to 

simplify the numerical analysis, the structure is assumed to be uniform and infinitely 

stretched along the y  direction, so that the field does not vary along the y − axis, which 

means 0y
∂
∂ = . The direction of propagation is assumed to be the z − direction and the time 

dependence is assumed to be j te ω− . For this waveguide structure, the waveguide 

geometry is discretized in the x-direction and the boundary layers are parallel to the y-z 

plane. The computational window is bounded by an electric wall ( 0)yE =  or a magnetic 

wall ( 0)yH = . Under this assumption, the three-dimensional wave equation is reduced to 

a two-dimensional equation. The two dimensional wave equation is given by 

 

 
2 2

2 2
02 2

( , ) ( , ) ( , ) 0x z x z k n x z
z x

ψ ψ ψ∂ ∂+ + =
∂ ∂

 (2.1) 
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Figure 2-1 A dielectric slab waveguide 

 

where ψ  represents either yE  or yH  depending on whether we have TE  or TM  

polarized waves, respectively. 0k  is the free space wave number and n  is the refractive 
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index. Upon discretization, the 2

2x
∂
∂

 term in equation (2.1) is replaced by the three-point 

central difference approximation: 

 
2

1 1
2 2

2
( )

i i i i

x x
ψ ψ ψ ψ+ −∂ − +=

∂ ∆
 (2.2) 

where the subscript i  refers to the field at the thi  mesh line in the discretized space, as 

shown in Figure 2-2.  

 

 

Figure 2-2 Discretization of space in the x-direction 

 

Using equation (2.2), equation (2.1) can then be written in the form: 

 
2

221 1
2 2

( , ) ( , ) 2 ( , ) ( , ) ( , ) 0
( )

i i i i
o i i

d x z x z x z x z k n x z
dz x

ψ ψ ψ ψ ψ+ −− ++ + =
∆

 (2.3) 
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 If M  is the total number of transverse discretization points, then equation (2.3) 

leads to the following matrix equation: 

 
( )

1 1

2 2

3 3
2

22

( ) ( )2 1
( ) ( )1 2 1
( ) ( )1 2 1

1

1 2 1
1 2 1

( ) ( )1 2M M

z z
z zO
z z

d
dz x

O
z z

ψ ψ
ψ ψ
ψ ψ

ψ ψ

−⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟−⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟−
⎜ ⎟ ⎜ ⎟⎜ ⎟
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 (2.4) 

or, equivalently: 

 
2

2
2 0o

d C k N
dz

Ψ + Ψ + Ψ =  (2.5) 

where C  is a tri-diagonal matrix, N  is a diagonal matrix with elements being the square 

of the refractive indices ( )2 2 2
1 2 3n n n ………  at the mesh points and 

[ ]21 3( ) ( ) ( ) ( ) t
Mz z z zψ ψ ψ ψΨ = "  is a column vector that represents the 

discretized field. Finally, equation (2.5) can be written as: 
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2

2 0d Q
dz

Ψ + Ψ =  (2.6) 

where 2
0 .Q C k N= +  

 Equation (2.6) is an ordinary second order matrix differential equation whose 

general solution is given by [10] 

 j Qz j Qze A e B−Ψ = +  (2.7) 

 The first term on the right hand side of equation (2.7) represents field propagation in 

the z+  direction and the second term represents field propagation in the z−  direction. A  

and B  represent the z±  propagating fields at 0,z =  respectively. Both A  and B  are 

column vectors of size 1M × , and ( ) or j Qz j Qze e+ −  is a matrix of size M M×  and is 

evaluated using eigenvalue decomposition. The square matrix Q  is first expressed in 

terms of its eigenpairs in the form: 

 1Q UVU −=  (2.8) 

and 

 1Q U VU −=  (2.9) 

where U  is the eigenvector matrix and V  is a diagonal matrix containing the eigenvalues 

of Q . The matrix exponentials j Qze±  can then be found using the following relation: 

 1j Qz j Vze Ue U± ± −=  (2.10) 
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 The above procedure, which relies on eigenpair calculation for the evaluation of 

Q  and j Qze± , is a fundamental feature of the MOL . 

2.3. IMPROVEMENT TO THE BASIC MOL SCHEME 

 In the previous section,  the basic MOL  has been presented, however, important 

improvement and extensions are required to enhance the MOL  performance. This 

includes the introduction of a suitable perfectly matched layer ( )PML  in order to absorb 

the radiative part of the field. In addition, the central difference approximation used to 

approximate 2

2x
∂
∂

 can be replaced with a much more accurate approximation using higher 

order approximation. The above extensions have been made to the basic MOL  and the 

results will be presented next. 

2.3.1. Perfectly Matched Layer 

 The field samples 0 ( )zψ  and 1( )M zψ +  are not included in equation (2.4) which 

implies that the computational window is terminated by either an electric or a magnetic 

wall ( ) ( )0 1 0Mz zψ ψ += =⎡ ⎤⎣ ⎦ . The presence of these walls on the extreme end of the 

computational window causes the radiative field to experience complete reflection and 

causing it to return to the computational window and thus resulting in large errors in the 

calculated field. Because the problems under consideration in this thesis are unbounded, 
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there is a need for absorbing the radiated field. This can be done using the well known 

Perfectly Matched Layer ( )PML  [11, 51-53]. PML  layers are added on the top as well as 

on the bottom of the computational window as shown in Figure 2-3. The PML  that will 

be used in this work is based on the transformation of the real space into the complex 

space [52], so that the field is substantially attenuated before it reaches the electric wall 

(magnetic wall) of the computational window. The real space is transformed to a complex 

one according to: 

 (1x x j→ + σ)  (2.11) 

 (1x x j∆ → ∆ + σ)  (2.12) 

where σ  is the attenuation or the decay factor of the PML  region. Under this type of 

transformation, a wave ( )jkxe+  propagating in  x+  direction becomes: 

 ( )1jkx j jkx k xe e e+ + σ + − σ=  (2.13) 

in the complex space. The resulting exponential decay factor causes the field to attenuate 

in the x+  direction. The value of σ  and the number of points in the PML  are chosen so 

that the field becomes significantly low when it reaches the electric or the magnetic wall 

at the extreme end of the computational window. 
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Figure 2-3 Discretization of space in the x-direction including the PML layers 

  

 There are various ways of selecting appropriate values of σ  [54]. The value of σ  

may be assumed to be uniform throughout the PML  region or else it can be taken as non-

uniform. In general  

 ( ) ( ) ( )P ii
x f xησ∆ =  (2.14) 

where ( )i
xσ∆  represents the value of the imaginary part of the mesh size σ  at the thi  

mesh point in the PML , η  is the PML  strength parameter and P  represents the number 

of mesh points in the PML  layer. The parameter ix  is chosen as 
( )2 1i

ix
P
π=
+

 and ( )if x  

is an arbitrary increasing function of ix , which can be linear ( )i if x x= , tangent 

( ) ( )tani if x x= , parabolic ( ) 2
i if x x=  or any other suitable increasing function of ix . In 
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this thesis work ( )if x  is chosen to be tangent which has a superior performance 

compared to other functions. 

  

 In order to test the PML  performance, a TE − polarized Gaussian beam is used as 

excitation at the input of a planar single mode three layer waveguide (see Figure 2-4). 

Because the Gaussian beam is not completely guided by the planar waveguide, the excess 

energy is radiated away from the waveguide core and effectively absorbed by the PML . 

After a sufficiently long distance in the z − direction the remaining field (guided) has a 

transverse pattern identical to the 0TE  mode pattern, as seen in the same figure. 

 

Figure 2-4 Gaussian beam propagation in single mode waveguide. 
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2.3.2. Improvement to the Basic MOL Scheme 

 In section 2 of this chapter, the 2

2x
∂
∂

 term was approximated by a three-point central 

difference approximation given by equation (2.2). This approximation is inaccurate as it 

does not incorporate the interface conditions at the superstrate/core and the core/substrate 

interfaces. It is also inefficient, because it utilizes a uniform meshing scheme. In order to 

efficiently model the field a three-point, five-point and seven-point approximation 

schemes that accounts for the boundary condition and that utilizes a non-uniform mesh 

size will be used in our work [55]. The use of higher order schemes reduces the numerical 

error due to the field discretization. 

 

 Consider the planar waveguide structure shown in Figure 2-5. The refractive indices 

of the superstrate, the substrate and the core are respectively taken as 3 1,n =  2 3.4,n =  

1 3.6n = .  The width of the core is taken to be 0.3 µm. The widths of superstrate and the 

substrate are taken sufficiently wide in order for the 0TE  modal field to decay 

substantially before reaching the electric wall of the computational window. The 

wavelength of operation is 1 µm. This structure has been numerically simulated for 

evaluating the modal effective refractive index using the three, the five and the seven 

point approximation schemes with different number of discretization points. The 3, 5 and 

7 point approximation schemes considered here have been reported in reference [17, 55] 

in detail and will not be shown in this thesis. The results are shown in Figure 2-6. 
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Figure 2-5 A three-layer waveguide 
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Figure 2-6 Absolute Error in the Effective Refractive Index for the 3-point, the 5-point 
and the 7-point approximation schemes versus the Number of Discretization Points. 
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 The results shown in Figure 2-6 correspond to the 0TE  mode. For the 0TM  mode, 

the results are similar to those shown in Figure 2-6 and therefore, they will not be 

presented here. Figure 2-6 clearly shows a decrease in the absolute error 

( ), , eff exact eff calculatedn n−  as the order of approximation increases and as the number of 

transverse discretization points increases. Accuracy and computational expense are the 

two major criteria for the selection of the approximation scheme. However, the five point 

approximation scheme provides significant accuracy and smaller computational expense 

when compared with the seven point approximation scheme. Therefore, the five point 

approximation scheme will be used throughout this thesis work. 

2.4. ANALYSIS OF WAVEGUIDE DISCONTINUITIES 

 Longitudinal waveguide discontinuities can be modeled effectively by use of the 

MOL . Consider the simple case of a waveguide with a single longitudinal discontinuity 

as shown in Figure 2-7. The discontinuity is assumed to be located at 0z = . The problem 

space is divided into two regions namely region 0 and region 1. The field is assumed to be 

incident from region 0. Due to the discontinuity, part of the field is reflected back into 

region 0 and the remaining part of the field is transmitted to region 1. 
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Figure 2-7 A single longitudinal waveguide discontinuity  

 

 The mathematical expressions for the transmitted and the reflected fields derived 

from the interface conditions at 0z =  are given as [12]: 

 0 0B RA=  (2.15) 

and  

 1 0A TA=  (2.16) 

where 0A  is the incident field in region 0 at 0z = , 0B  is the reflected field at 0z =  in 

region 0, and 1A  is the transmitted field at 0z =  in region 1. R  and T  are respectively, 

the reflection and the transmission matrices, which are given by: 
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( ) ( )
( ) ( )

11 1
0 1 0 1

11 1 1 1
0 0 1 1 0 0 1 1

                         For TE Polarization

    For TM Polarization

I S S I S S
R

I S N N S I S N N S

−− −

−− − − −

⎧ + −⎪= ⎨
⎪ + −⎩

 

 
( )
( )

11
0 1

11 1
0 0 1 1

2                          For TE Polarization

2                For TM Polarization

I S S
T

I S N N S

−−

−− −

⎧ +⎪= ⎨
⎪ +⎩

 

where 0N  and 1N  are diagonal matrix containing the square of the refractive index 

distribution of region (0) and (1) respectively. I  is the identity matrix having the same 

size as Q . In the above expressions S  and 1S −  are to be computed. Here S Q=  where 

Q  has been defined in section 2 and the subscripts 0 and 1 represent the respective region. 

S  is evaluated by first decomposing Q  in terms of its eigenpair, V  and U . Where V  is a 

diagonal matrix containing the eigenvalues of Q  and U  is a square matrix containing the 

corresponding eigenvectors of Q  as column vectors. S  is then evaluated using: 

 1
2 1S UV U −=  (2.17) 

 Let us next consider the case of a planar waveguide structure with two longitudinal 

discontinuities one located at 0z =  and the other located at z d=  as shown in Figure 2-8. 

The problem space in this case is divided into three regions. The field within each region 

is the sum of the forward and the backward fields. Using the layer by layer algorithm [23, 

56], the reflected and the transmitted fields are given as: 

 0 0 0B A= Γ  (2.18) 

and 
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 ( ) ( )1 1
2 2 1 1 1 2 1 10.5A I S S D A I S S B− −⎡ ⎤= + + −⎣ ⎦  (2.19) 

where 0A  is the incident field in Region 0 and 

 
( ) ( )

( ) ( )

1 1
0 0 1 0 1 1 1 1

11 1
0 1 0 1 1 1 1

x

            

I S S I S S D D

I S S I S S D D

− −

−− −

⎡ ⎤Γ = − + + Γ⎣ ⎦

⎡ ⎤+ + − Γ⎣ ⎦

 (2.20) 

 1 1
1

jS dD e+=  (2.21) 

 
11 1

1 1 2 0 1I S S I S S
−− −⎡ ⎤ ⎡ ⎤Γ = − +⎣ ⎦ ⎣ ⎦  (2.22) 

 1 1 1 1B D A= Γ  (2.23) 

 ( ) ( )1 1
1 1 0 0 1 0 00.5A I S S A I S S B− −⎡ ⎤= + + −⎣ ⎦  (2.24) 

  

 The major difference between the single discontinuity and the double discontinuity 

waveguide (or the multiple discontinuity) problems is the appearance of the exponential 

factor ( )1 1
1

jS dD e+=  in the equations (see equations (2.18)-(2.24)) to be solved. The 

exponential is evaluated in a similar manner to the square-root, using also eigenvalue 

decomposition, giving:  

 

 1jSd j V de Ue U+ + −=  (2.25) 
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Figure 2-8 A double discontinuity waveguide 

 

 Multiple longitudinal discontinuities in a planar waveguide structure can be 

implemented using either the Layer by Layer [23, 56] or the Cascading and Doubling 

Procedures [13]. Numerical results for the single discontinuity and the double 

discontinuity problems will be presented in the next chapter including a comparison along 

of the new approach based on Padé approximants. 

 

 The MOL  is known to have a high numerical accuracy. However, computation of 

the eigenvalues and the eigenvectors is numerically inefficient when the number of 

discretization points is too large. The memory and time requirements of the MOL  is 

known to be proportional to 2M  and 3M  respectively [57]. 

 

 In the next chapter we will introduce an alternative approach which does not rely on 

eigenpairs calculation. This new approach is based on Padé approximants [58]. Padé 
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approximants have been implemented in the beam propagation method ( )BPM  

framework [34, 35, 38, 43, 44, 57, 59, 60]. This approach significantly reduces the 

numerical effort as will be demonstrated in the next chapter. 
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CHAPTER 3  

APPLICATION OF PADÉ APPROXIMANTS TO THE METHOD OF 

LINES 

3.1. INTRODUCTION 

 As discussed in the previous chapter, the MOL  relies on computing the eigenpairs 

of the system matrix, which makes it numerically inefficient when the matrix dimension is 

relatively large. However, computation of the eigenpairs can be avoided with the use of 

the Padé approximation, which makes it potentially a very efficient approach. The basic 

idea of Padé approximants is to overcome the divergent nature of Taylor series 

approximation by representing a given function as a ratio of two polynomials. Padé 

approximants can provide an approximation to the function throughout the whole complex 

plane, and is a topic of study in mathematical approximation theory [58]. 

3.2. PADÉ APPROXIMANTS 

 A Padé Approximant is the ratio of two polynomials, the coefficients of these 

polynomials (called Padé primes) are constructed from the coefficients of the Taylor 

series expansion of the function to be approximated. This ratio is matched with the Taylor 
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series as far as necessary. Any arbitrary function ( )f X  can be represented in one of the 

two standard Padé forms: 

 ( ) ( )
( )

( )
1

0 1
1

pp
k

n
k k

h Xf X f
e X=

⎛ ⎞
= +⎜ ⎟⎜ ⎟+⎝ ⎠

∑  (3.1)  

or  

 ( ) ( )
( )

( )

1

1

1
0

1

p
p

k
k

n
n

k
k

d X
f X f

e X

=

=

⎛ ⎞
+⎜ ⎟

⎜ ⎟=
⎜ ⎟+⎜ ⎟
⎝ ⎠

∏

∏
 (3.2) 

 

where ( ) ,p
kd  ( ) ,p

kh  are called Padé primes of order p  for the numerator and ( )n
ke  is the 

Padé prime of order n  for the denominator. The approximated function is represented as 

( ), ,P p n  where p  is the order of the numerator and n  is the order of the denominator. In 

this thesis work the order of the numerator and the denominator are taken to be equal 

( ).p n=  The second Padé approximant form given by equation (3.2) will be used since it 

offers certain advantages over the first form. The advantage of this form will be seen later. 

In the next section, detailed explanation for obtaining Padé primes will be presented. It is 

to be stressed here that this is just one of many other possible approaches that can be used 

for this purpose. 
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3.3. CALCULATION OF PADÉ PRIMES 

 Consider an arbitrary function ( )f X  whose Padé primes are to be evaluated. This 

function is first represented by its Taylor series expansion as shown below 

 ( ) ( ) ( )
0 0

0
!

m
m m

m
m m

Xf X f c X
m

∞ ∞

= =

= =∑ ∑  (3.3) 

where 
( ) ( )0

!
m

m
fc m=  are the Taylor series coefficients. 

  

 In order to obtain a Padé approximation of order ( ),P N N  we equate equation (3.3) 

to Padé approximation which has a form essentially the same as equation (3.2).  

 
2

0 1 2
2

0 0 1 2

N
m N

m N
m N

a a X a X a Xc X
b b X b X b X

∞

=

+ + + +=
+ + + +∑ """"

""""
 (3.4) 

 

 The symbol N  has been used here to indicate the order of Padé approximants. In 

order to simplify our calculations we let 0 1b =  which results in ( )0 0 0a c f= = . Thus we 

are left with 2N  unknowns, by considering the Taylor series terms up to 2N  we should 

have sufficient equations to solve for the Padé primes. Thus we have: 

 
2

0

0

0

N
i

iN
m i

m N
jm

j
j

a X
c X

b X

=

=

=

=
∑

∑
∑

 (3.5) 
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or 

 
2

0 0 0

N N N
m i j

m i j
m i j

c X b X a X
= = =

=∑ ∑ ∑  (3.6) 

 

Matching the coefficients of equal powers of X  from 1 to 2N N+  in equation (3.6) 

results in the following set of equations: 
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1 1 1 2 2 2 1 2 1

2 1 1 2 2 3 1 2 2
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            N N N N Nc b c b c b c b c− − ++ + + + = −

#
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 (3.7) 

which can be represented in matrix form as: 

 

1 2 2 1 2

1 1 2 2 1 2 1

2 1 2 3 2 2 2

1 2 3 1 11 1

=

N N N N N N

N N N N N N

N N N N N N

N NNXN NX NX

c c c c b c
c c c c b c
c c c c b c

c c c c b c

+ + −

− + − − −

− − − − −
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⎢ ⎥ ⎢ ⎥ ⎢ ⎥
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" "

(3.8) 

or equivalently, 

 [ ][ ]C B C⎡ ⎤= ⎣ ⎦  (3.9) 
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Finally 

 [ ] [ ] 1B C C− ⎡ ⎤= ⎣ ⎦  (3.10) 

  

 With the use of equation (3.10) all the ib  coefficients are evaluated. Using equation 

(3.6) and matching coefficients of equal powers of X  from 0 to ,N  results in the 

following set of equations: 

 
 

 

0 0

1 0 1 1

2 0 2 1 1 2

0 1 1 2 2N N N N N

a c

a c b c

a c b c b c

a c b c b c b c− −

=

= +

= + +

= + + + +

#

#

""

 (3.11) 

 

 Which gives all the ia  coefficients from the previously calculated ib  coefficients. 

The form shown in equation (3.4) can easily be modified to be represented in product 

form (or zero-pole form) as shown in equation (3.2). This can be done by finding the roots 

of the numerator and the denominator in equation (3.4). 
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3.4. PADÉ APPROXIMATION OF THE SQUARE ROOT 

FUNCTION 

 Let us consider an example of the simple square-root function y  of the scalar 

quantity y . The square root function is first modified in order to avoid the singularity of 

the higher derivatives of y  in Taylor series expansion at 0y = .  The function y  is 

then rewritten as  

 ( ) 1y f X X= = +  (3.12) 

 
( ) ( )

( ) ( )
1 1

11 1
1 1

p p

p p

pp
k k

k kk k

h X d XX
e X e X= =

++ ≈ + =
+ +∑ ∏  (3.13) 

where 1X y= − , and ( )p
kd , ( )p

ke  and ( )p
kh  are called Padé primes of order p . These Padé 

primes are actually available in closed form [60] and are obtained from ( )( ) 2cos ,p
ke kθ=  

( )( ) 2s inp
kh kθ= , 

( )
( )

0 .5

p
p k

k
cd

p
=

+
 where 

2 1p
πθ =

+
.  

 

 The Padé primes of the same square root function were evaluated using the above 

mentioned method and compared with the ones available in closed form. The results are 

presented in Table 3-1. 
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Table 3-1 Comparison of Padé Primes of order P (10, 10) for the Square Root Function 

Padé 
Primes 

Developed 
Program 

Closed 
Form 

Absolute 
Error 

Padé 
Primes

Developed 
Program 

Closed 
Form 

Absolute 
Error 

d1 2.2214E-02 2.2214E-02 4.7330E-08 e1 9.7779E-01 9.7779E-01 3.0580E-08

d2 8.6880E-02 8.6881E-02 1.6807E-07 e2 9.1312E-01 9.1312E-01 1.1513E-07

d3 1.8825E-01 1.8826E-01 3.0972E-07 e3 8.1174E-01 8.1174E-01 2.3235E-07

d4 3.1733E-01 3.1733E-01 4.1448E-07 e4 6.8267E-01 6.8267E-01 3.4995E-07

d5 4.6263E-01 4.6263E-01 4.4506E-07 e5 5.3736E-01 5.3737E-01 4.2986E-07

d6 6.1126E-01 6.1126E-01 3.9691E-07 e6 3.8874E-01 3.8874E-01 4.4011E-07

d7 7.5000E-01 7.5000E-01 2.9349E-07 e7 2.5000E-01 2.5000E-01 3.6975E-07

d8 8.6653E-01 8.6653E-01 1.7141E-07 e8 1.3347E-01 1.3347E-01 2.4011E-07

d9 9.5048E-01 9.5048E-01 6.7172E-08 e9 4.9515E-02 4.9516E-02 1.0134E-07

d10 9.9442E-01 9.9442E-01 7.7363E-09 e10 5.5846E-03 5.5846E-03 1.2190E-08

 

For the above mentioned square root function, the Padé approximation of equation 

(3.13) is not accurate when 0y <  (this fact can easily be concluded, since y  is pure 

imaginary when 0,y <  while the calculated Padé primes are real. Padé approximants 

predict a real number for y  in this case, which is a clear contradiction). Figure 3-1 

shows the absolute relative error in calculating y  using Padé approximants of order 

( )5,  5P  as well as the error that results from the use of Taylor series expansion of order 

10. 
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 The relative error ( ). .R E  is defined as: 

 . . exact approx

exact

f f
R E

f
−

=  (3.14) 

where exactf  is the exact value of the function and approxf  is its approximated value using 

either Padé approximants or Taylor series approximation. 

 

 It is well known that the Taylor series has a limited range of convergence, when y  

increases beyond this range Taylor series expansion fails to converge. However, the Padé 

approximation has a wider range of convergence for positive values of y  and 

comparatively superior performance with respect to Taylor series approximation. This fact 

can easily be seen in Figure 3-1. In this figure, the Padé approximation results in small 

error for 0y > . However, for 0,y <  it produces large relative error. Hence, equation 

(3.13) cannot be used to approximate the square root function for 0.y <  
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Figure 3-1 The relative error for y  using Taylor and Padé approximations 

  

 In order to extend Padé approximation to include the range 0,y <  we use [49]: 

 ( )1y y−1
2= γ 1+ γ −  (3.15) 

or,  

 X−1
2= γ 1+  (3.16) 

where 1X y= γ −  is used in this case. The complex factor γ can be written in the form 

jeα θγ =  where α  is the magnitude and θ  is the angle of γ . When θ ≠ 0 , the factor γ  

causes the branch cut of the square root function to be rotated in the complex plane. In 

this case, equation (3.13) can be used to approximate 1 X+  appearing in equation (3.16) 
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 Figure 3-2 shows the relative error for the square root function for different values 

of γ . When we make γ  pure imaginary by letting 2
πθ = − , we find a substantial 

decrease in the relative error of the Padé approximants of the square root function. The 

relative error is reduced even further when α  the magnitude of γ  is reduced. In reality, 

there is a limited range of α  and θ , for which Padé approximation converges. In the next 

sections, when Padé approximation with branch cut rotation is applied to the MOL , we 

will address the range of α  and θ  that result in low calculational errors.  
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Figure 3-2 Relative Error of y  using Padé Approximations with and without branch cut 
rotation 
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3.5. IMPLEMENTATION OF THE MOL WITH PADÉ 

APPROXIMANTS 

 This section is divided into three sub-sections. The first sub-section deals with the 

computation of the reflection operator at a single longitudinal discontinuity using Padé 

approximants. The second sub-section deals with the computation of the propagation 

operator. Finally, in the third sub-section, a generalized approach that utilizes Padé 

approximants is developed for the analysis of multiple longitudinal waveguide 

discontinuities. 

3.5.1.  Implementation of the Reflection Operator 

 As discussed in the previous chapter, the problem of a single longitudinal 

discontinuity (see Figure 3-3) involves computation of S Q= . The matrix Q  is 

inherently sparse and computing its square root produces a full matrix, which results in 

large memory requirements. With the use of Padé approximants (as in equation 2.2), the 

sparsity of the matrices can be fully utilized which results in small memory requirements 

and faster computational time. Applying equations (2.15) and (2.16) for TE  polarized 

waves at the single longitudinal discontinuity, we have: 

 ( ) ( )11 1
0 0 1 0 1 0B I S S I S S A

−− −= + −  (3.17) 

 ( ) 11
1 0 1 02A I S S A

−−= +  (3.18) 
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Equation (3.17) is first rewritten in the form: 

 ( ) ( )1 1
0 1 0 0 1 0I S S B I S S A− −+ = −  (3.19) 

Incorporating Padé approximation for 1S  and 1
0S −  in equation (3.19) leads to the following 

relationship: 

 

( )

( )

( )

( )

( )

( )

( )

( )

1 1
2 2

1 1
2 2

0 1
0 1 0

1 10 1

0 1
0 1 0

1 10 1

                      

p pp p
k k

p p
k kk k

p pp p
k k

p p
k kk k

I b X I a XI B
I a X I b X

I b X I a XI A
I a X I b X

+ −

+ −

= =

= =

⎛ ⎞⎡ ⎤ ⎡ ⎤+ ++ γ γ =⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟+ +⎣ ⎦ ⎣ ⎦⎝ ⎠
⎛ ⎞⎡ ⎤ ⎡ ⎤+ +− γ γ⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟+ +⎣ ⎦ ⎣ ⎦⎝ ⎠

∏ ∏

∏ ∏
 (3.20) 

where 0 0 0X Q I= γ − , 1 1 1X Q I= γ − . The complex constants 0γ  and 1γ  are associated with 

region 0 and region 1 respectively. For simplicity, we will assume that 0 1γ = γ , so that 

1 1
2 2

0 1 1−γ γ = . I  represents the identity matrix with the same dimensions as Q . 1
1S −  can 

easily be obtained by simply interchanging the Padé primes of the numerator and the 

denominator respectively as clearly seen in equation (3.20). Expanding equation (3.20) for 

the case 4p =  (i.e. fourth order Padé approximants): 

 

1 0 2 0 3 0 4 0

1 0 2 0 3 0 4 0

3 11 1 2 1 4 1
0

1 1 2 1 3 1 4 1

1 0 2

1 0

                

I b X I b X I b X I b XI
I a X I a X I a X I a X

I a XI a X I a X I a X B
I b X I b X I b X I b X

I b X I b XI
I a X

⎧ ⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞+ + + +⎪ +⎨ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟+ + + +⎪ ⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠⎩
⎫⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞++ + + ⎪ =⎬⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟+ + + + ⎪⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎭

⎛ ⎞+ +− ⎜ ⎟+⎝ ⎠
0 3 0 4 0

2 0 3 0 4 0

3 11 1 2 1 4 1
0

1 1 2 1 3 1 4 1

                

I b X I b X
I a X I a X I a X

I a XI a X I a X I a X A
I b X I b X I b X I b X

⎧ ⎛ ⎞⎛ ⎞⎛ ⎞+ +⎪
⎨ ⎜ ⎟⎜ ⎟⎜ ⎟+ + +⎪ ⎝ ⎠⎝ ⎠⎝ ⎠⎩

⎫⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞++ + + ⎪
⎬⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟+ + + + ⎪⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎭

 (3.21) 
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 In equation (3.21) the matrices 0X  and 1X  are sparse because 0Q  and 1Q  are also 

sparse and 0A  and 0B  are M  element column vectors. Considering the right hand side 

( )RHS  of equation (3.21), we first multiply ( )4 1I a X+  with 0A  which results in a 

column vector. The resulting vector is next left divided by ( )4 1I b X+  which again results 

in a column vector. The left division is used in this case to avoid inversion of ( )4 1I b X+ , 

which would result in a full matrix, thereby causing both the memory and runtime 

requirements to be large. Thus, by repeating this procedure we would never encounter full 

matrices and after every multiplication and division step the resultant is a column vector. 

Thus equation (3.21) is implemented computationally using only sparse matrix vector 

product and sparse matrix vector divide. After computing the RHS  of equation (3.21), 0B  

can then be calculated using the BICGSTAB (Biconjugate Gradients Stabilized Method) 

[61] subroutine in Matlab environment which solves a system of linear equations 

iteratively. BICGSTAB guesses a particular value of 0B  and that guessed value is fed as 

input to a function which evaluates the LHS  of equation (3.21) in a similar way as the 

RHS  was evaluated and then tries to equate it to the RHS . If the residual norm is less 

than a certain specified value, then BICGSTAB converges. The convergence of 

BICGSTAB depends on the type of the problem at hand. If the problem is complex then 

BICGSTAB needs more iterations to converge which in turn increases the computational 

time. The single longitudinal discontinuity problem presented in section 4 of chapter 2 

was calculated using the method that we have just described. The input waveguide is 

excited by its fundamental TE  mode, whose profile is shown in Figure 3-4. The reflected 
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and the transmitted fields are shown in Figure 3-5 andFigure 3-6 for a range of Padé orders using 

1α =  and 2
πθ = − .  

 

 

Figure 3-3 An abrupt longitudinal waveguide discontinuity 
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Figure 3-4 Profile of the Incident field in region 0, which corresponds to the fundamental 
TE mode 
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Figure 3-5 Reflected field at 0z =  at the waveguide discontinuity using the MOL and the 
PBPM computational methods. The order of Padé approximants are shown in the 
brackets. 

  

 As shown in Figure 3-5, with the increase in the Padé order in the MOL , the 

reflected fields computed using the MOL  and PBPM  have better agreement as the Padé 

order increases. However, even when the Padé order becomes large [i.e. order P (16, 16)], 

as seen in Figure 3-5 d, there is a substantial disparity between the two approaches. This 

situation can be largely improved by reducing the value of α = γ , as can be seen in the 

next set of figures (see Figure 3-6 a-d).  
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  When α  is reduced from unity to 0.1, the agreement in the calculated reflected 

fields improves, as seen in Figure 3-6 a. A better agreement is achieved for 0.02α =  and 

0.01α =  as seen in Figure 3-6 b and c. However, when α  is too low the calculated 

results begin to disagree again (see Figure 3-6 d). The value of 0.0007α =  is too low to 

allow accurate results using the PBPM  for this particular problem. It is noteworthy that 

the calculated results shown in Figure 3-6 correspond to a Padé order of 4. This means 

that there is a range of values of the parameter α  for which the PBPM  gives accurate 

results for the reflected field, even for a relatively low order of Padé approximant.  

-2 0 2 4
0

0.01

0.02

0.03

0.04

0.05

(a)

-2 0 2 4
0

0.01

0.02

0.03

0.04

0.05

(b)

-2 0 2 4
0

0.01

0.02

0.03

0.04

(c)

-2 0 2 4
0

0.01

0.02

0.03

0.04

(d)

R
ef

le
ct

ed
 F

ie
ld

 A
m

pl
itu

de

MOL
PBPM α=0.1

MOL
PBPM α=0.0007

MOL
PBPM α=0.01

MOL
PBPM α=0.02

x-axis 

P (4, 4)        
θ = -π/2 

x-axis x-axis 

x-axis 
 

Figure 3-6 Reflected field at 0z =  at the waveguide discontinuity using the MOL and 
PBPM computational methods. 
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 The effect of the magnitude α  and the phase θ  of γ  is analyzed for various Padé 

orders in the computation of the reflected field. Firstly, the effect of α  is studied. Figure 

3-7 shows the root mean square error between the reflected fields computed using the 

PBPM  with different values of α  and MOL  computational methods. The root mean 

square relative error is defined as: 

 
( )

1
2 2

1

2

1

 

M
c p
i i

i
M

c
i

i

Relative Error
ψ ψ

ψ
=

=

⎡ ⎤
−⎢ ⎥

⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

∑

∑
 (3.22) 

where ψ  represents the field and the superscripts c  and p  refer to MOL  and PBPM  

respectively.  
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Figure  3-7 Relative error in the reflected field (computed using the PBPM, and the MOL 
computational methods) versus α  with 2

πθ =  
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 As seen in Figure 3-7, there is a range of α  for which the error is low. This range of 

α  depends on Padé order used and this range is seen to increase with higher orders of 

Padé approximation. For the case of 4p = , α  ranges approximately from 

3 21 10  to 2 10− −× × . Based on a number of simulations for various problems, the value of 

α  was set to 
( )2

0

1
1.5k

α = , where 0k  is the wave number. The value of α  in this case 

is evaluated to be 0.011, which lies within the range of α  specified above for low error. 

In this thesis work, the value of α  is fixed to ( ) 2
01.5k − . However, the phase θ  also has a 

significant effect on the convergence of the PBPM .  

 

 Figure 3-8 shows the relative error in the reflected field versus θ  and fixed value of 

0.011.α = . As can be seen in the figure, the optimum value of θ  also depends on the 

Padé order used. However, for any Padé order 4p ≥ , 2
πθ = −  is seen to have a low 

relative error ( )310−≤ .  Thus, ( ) 2
01.5 kα −= ×  and 2

πθ = −  will be used throughout this 

thesis. The Padé order 4p =  will be fixed, for the square root operator, throughout the 

thesis work. 
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Figure 3-8 Relative error in the reflected field (computed using the PBPM and the MOL 
computational methods) versus θ  with 0.011α =  

  

 Using the above mentioned fixed values, the reflected field is computed. After 

computing the reflected field 0B , the transmitted field 1A  can easily be obtained using the 

relationship 1 0 0A A B= + . Figure 3-9 shows the transmitted field 1A  computed using the 

PBPM  and the MOL  methods. As can be seen in the figure, the two fields agree well 

with each other.  
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Figure 3-9 Transmitted field at 0z =  at the waveguide discontinuity using the MOL and 
the PBPM computational methods 

   

 Figure 3-10 shows the computational time requirements for the MOL  and the 

PBPM  for the calculation of the reflected field at the waveguide discontinuity. Clearly, 

the time taken to numerically simulate the single discontinuity problem with the MOL  is 

many folds more than that required by the PBPM .  
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Figure 3-10 Comparison of computational time requirements for the MOL and the PBPM 
for the calculation of the reflected field 

 

 The time taken by the MOL  when the number of transverse mesh points 520M =  

is 312.06 seconds. For the same case, the time requirement is reduced to just 3.6 seconds 

when the PBPM  is used. The PBPM  is faster than the MOL  in this case by a factor of 

approximately 85. From Figure 3-10, it is also easily seen that the MOL  time requirement 

is proportional to 3M . However, the PBPM  time requirement is proportional to M . 
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3.5.2. Implementation of the Propagation Operator 

 In order to analyze multiple discontinuities the propagation operator 

j QzjSze e++ =  discussed at the outset of this section also needs to be accounted for in 

the PBPM . For this purpose, we express this term as: 

 

 

( )

 

1
2

1
2

11

1

1           

          

Q

X

X

j zj Qd

j z

g

e e

e
e

γγ

γ

−

−

−+ ++

+ +

+=

=

=  (3.23) 

 

where g j z
−1

2= + γ  and .X Q I= γ −  The Taylor series expansion coefficients of 

( )exp 1g X+  need to be obtained first. Calculation of Taylor series coefficients of this 

function is straight forward, but this task becomes tedious for higher order coefficients. In 

order to simplify this process, we have used the Matlab symbolic math function for this 

purpose. The coefficients which are functions of g  are given by: 
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 (3.24) 

 

 The expressions for the coefficients in equation (3.24) are stored as a function in an 

m-file with g  as a variable, which can be accessed to compute the Taylor series 

coefficients, whenever needed. 

 

  Based on a number of simulations, it became clear to us that there is an upper limit 

on z  ( )z+ , which depends on the problem at hand. However, the most important attribute 

of the maximum step size z+  is that, it is actually independent of x∆  (the transverse 

mesh size). Subsequently, if the field needs to be propagated over a distance larger than 

the maximum step size z∆ , then multi-step propagation is used. 

 

 In order to analyze the effect of z+ , a TE − polarized Gaussian beam with a spot 

size of 0.1µm was propagated a total distance of 5µm in a homogeneous medium (see 
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Figure 3-11) of width 3 µm and refractive index 1n =  at the operating wavelength λ=1.0 

µm. The Gaussian beam is first propagated over the 5 µm distance using the MOL . The 

same beam was then propagated using the PBPM  using different values of z+ . The 

order of the Padé approximants for the propagation operator is set to 10p = . This order 

will be used throughout this thesis work to approximate the propagation operator.  

 

 

Figure 3-11 A homogeneous medium 

 

 In Figure 3-12, the Gaussian beam propagation over the 5 µm distance, as calculated 

by the MOL  is used as reference. When the step size z∆  is relatively large, the PBPM  

results are clearly inaccurate (see Figure 3-12 (a) corresponding to 2 µmz∆ = ). However, 

as seen in the remaining figures (Figure 3-12 b-d ), when z∆  is approximately 0.5 µm or less, 

the PBPM  results agree very well with the MOL  calculations. Although, this may 
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appear as a serious limitation of the PBPM , the PBPM  actually remains more efficient 

than the MOL  with respect to the CPU time and memory requirements, as will be seen 

later. 
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Figure 3-12 Comparison of the MOL and the PBPM in the case of Gaussian beam 
propagation over a 5 µm distance in air 

  

 In the previous two sections (5.1 and 5.2), we have presented and demonstrated the 

application of the PBPM  in the case of reflection from a single longitudinal discontinuity 

as well beam propagation in a longitudinally uniform region. However, many interesting 

integrated optical devices involve multiple longitudinal discontinuities. The procedures 
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presented in section 5.1 and 5.2 cannot be used on their own to handle this type of 

problem. Thus, we need a general procedure that can effectively account for multiple 

longitudinal waveguide discontinuities. This general procedure, which will be presented 

in the next section relies on the results that were presented in sections 5.1 and 5.2 as will 

be seen next. 

3.5.3. Generalized PMOL Procedure for Analysis of Multiple 

Longitudinal Waveguide Discontinuities 

 Consider the arbitrary structure shown in Figure 3-13 which contains multiple 

longitudinal discontinuities along the direction of wave propagation. The discontinuities 

are assumed to be present at iz  where 0,  1,  2 ...., m-1, m, ........, Li = .  

 

 

Figure 3-13 Arbitrary multiple longitudinal waveguide discontinuities 

  

 The first discontinuity is assumed to be at the origin. The width of the thm  layer is 

1m m md z z −≡ − . The field in the thm  layer is expressed as: 
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 ( )1m m mmjS z z jS z z
m m me A e Bψ

⎛ ⎞
⎜ ⎟
⎝ ⎠−− − −= +  (3.25) 

For TE − polarized waves, application of the boundary conditions at mz z=  result in: 

 1 1 1m m m m m mP A B A P B+ + ++ = +  (3.26) 

and 

 1 1 1 1 1m m m m m m m m m mS P A S B S A S P B+ + + + +− = −  (3.27) 

where 

 ( )1m m mm m jS z zjS d
mP e e −−= =  (3.28) 

and 0P I= , where I  is the identity matrix having the same size as Q . By substituting 

different values of m  in equations (3.26) and (3.27), we have: 

 

 1 0 1 1 0 0 0A B PB P A A+ − = − = −  (3.29) 

 1 1 0 0 1 1 1 0 0S A S B S PB S A− − + = −  (3.30) 

 1 1 2 1 2 2 0P A A B P B− + − =  (3.31) 

 1 1 1 2 2 1 1 2 2 2 0S P A S A S B S P B− − + =  (3.32) 

 2 2 3 2 3 3 0P A A B P B− + − =  (3.33) 

 2 2 2 3 3 2 2 3 3 3 0S P A S A S B S P B− − + =  (3.34) 
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We proceed in this manner and finally arrive at the last set of equations which are: 

 

 1 1 1 0L L L L L LP A A B P B+ + +− + − =  (3.35) 

 1 1 1 1 1 0L L L L L L L L L LS P A S A S B S P B+ + + + +− − + =  (3.36) 

  Note that since, there is no reflected field in the transmission layer ( )1m L= + , the 

vector 1LB +  will be set to zero in equations (3.35) and (3.36). In equation (3.29), 0A  is the 

incident field vector at 0z = . The above set of equations can be simplified by eliminating 

m mP B  from equations (3.29), (3.31), (3.33) up to (3.35), and by eliminating m m mS P A  from 

equations (3.32), (3.34) up to (3.36) while retaining equation (3.30). Thus, we have the 

new set of equations: 

 ( ) ( )1 1 1 0 0 1 0 02S A S S B S S A− + − = − +  (3.37) 

 1 1 0 0 1 1 1 0 0S A S B S PB S A− − + = −  (3.38) 

  

 ( ) ( )1 2 1 1 2 2 2 1 12 0S S P A S A S S B+ − + − =  (3.39) 

 ( ) ( )2 1 2 1 1 2 1 2 22 0S S A S B S S P B− + − + =  (3.40) 

 ( ) ( )2 3 2 2 3 3 3 2 22 0S S P A S A S S B+ − + − =  (3.41) 

 ( ) ( )3 2 3 2 2 3 2 3 32 0S S A S B S S P B− − − + =  (3.42) 
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We proceed in a similar manner for the remaining equations. The last set of equations is 

thus: 

 ( ) ( )1 1 1 12 0L L L L L L L L LS S P A S A S S B+ + + ++ − + − =  (3.43) 

 ( )1 1 2 0L L L L LS S A S B+ +− + =  (3.44) 

  

 Arranging equations (3.37), (3.38) up to (3.44) in matrix form, with all the 

unknowns iA  and iB  assembled in a column vector as shown in equation (3.45). The 

square matrix in equation (3.45) has been sub-divided into four regions in order to 

improve readability and to make it easier for the reader to relate the different terms in the 

matrix relation. 
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            The matrix relation (3.45) can be made computationally more efficient by 

multiplying it by 1
iS −  at appropriate positions and by removing the common factors. This 

results in the following modified matrix relation: 

 

 

 

(3
.4

6)
 

(
)

(
)

(
)

(
)

(
)

(
)

(
)

(
)

(
)

(
)

1
1

1
0

2

1
1

1
1

2
1

1
2

1
2

2

1
1

1
1

3
2

2
3

2
2

2

1
1

1
1

1
!

2
2

1 0
1

1
1

1
2

2

1
1

2
3

2

1
1

1
2

 
0

0
0

   
 

0
0

0

0
0

0
0

0

0
0

0
0

0

0
0

0
0

0

0
0

0

0
   

   
0

0

0
0

0

0
0

0
0

  
  

L
L

L
L

L

L
L

I
S

S
I

I
S

S
P

I
S

S
I

I
S

S
P

I
S

S
I

I
S

S
P

I
S

S
I

S
S

S
S

I

S
S

I

S
S

I

−

−
−

−
−

−
−

+
+

−

−

−

−
+

−

−
+

−

−
+

−

−
+

−

−

−

−

"
"

"
"

"
"

#
#

#
#

#
#

#
#

#
#

"
"

" " "

#
#

#
#

#

(
)

(
)

1 2 3 1

1
0

0
1

1

1
1

1
1

2
2

2

1
1

2
2

3
3

2

0
0

0
0

0
0

0

   
0

0
0

L LA A A A B
I

S
SP

B
I

S
S

IP

B
I

S
S

IP

B
I

+

−

−

−

⎡
⎤ ⎡

⎢
⎥ ⎢

⎢
⎥ ⎢

⎢
⎥ ⎢

⎢
⎥ ⎢

⎢
⎥ ⎢

⎢
⎥ ⎢

⎢
⎥ ⎢

⎢
⎥ ⎢

⎢
⎥ ⎢

⎢
⎥ ⎢

⎢
⎥ ⎢

⎢
⎥ ⎢

⎢
⎥ ⎢

⎢
⎥ ⎢

⎢
⎥ ⎢

⎢
⎥ ⎢

⎢
⎥

⎢
⎥

⎢
⎥

⎢
⎥

⎢
⎥

⎢
⎥

⎢
⎥

⎢
⎥

⎢
⎥

⎢
⎥

⎢
⎥

−
⎢

⎥
⎢

⎥
⎢

⎥
⎢

⎥
⎢

⎥
−

+
⎢

⎥
⎢

⎥
⎢

⎥
⎢

⎥
⎢

⎥
⎢

⎥
−

+
⎢

⎥
⎢

⎥
⎢

⎥
⎢

⎥
⎢

⎥
⎢

⎥
⎢

⎥
⎢

⎥
⎢

⎥
⎢

⎥ ⎣
⎢

⎥
⎣

⎦

#

" "

#
#

#
#

#
#

"

(
)

1
1

1
0

0
2

00 0 0

     
     

     
    

0 0 0

I
S

S
A

A−
⎡

⎤
⎤

+
⎢

⎥
⎥
⎢

⎥
⎥
⎢

⎥
⎥
⎢

⎥
⎥
⎢

⎥
⎥
⎢

⎥
⎥
⎢

⎥
⎥
⎢

⎥
⎥
⎢

⎥
⎥
⎢

⎥
⎥
⎢

⎥
⎥
⎢

⎥
⎥
⎢

⎥
⎥
⎢

⎥
⎥
⎢

⎥
⎥
⎢

⎥
⎥
⎢

⎥
⎢

⎥
⎢

⎥
⎢

⎥
⎢

⎥
⎢

⎥
⎢

⎥
⎢

⎥
⎢

⎥
⎢

⎥
⎢

⎥
⎢

⎥
⎢

⎥
⎢

⎥
⎢

⎥
⎢

⎥ =
⎢

⎢
⎥
⎢

⎢
⎥
⎢

⎢
⎥
⎢

⎢
⎥
⎢

⎢
⎥
⎢

⎢
⎥
⎢

⎢
⎥
⎢

⎢
⎥
⎢

⎢
⎥
⎢

⎢
⎥
⎢

⎢
⎥
⎢

⎢
⎥
⎢

⎢
⎥
⎢

⎢
⎥
⎢

⎢
⎥
⎢

⎢
⎥
⎢

⎢
⎥
⎢

⎢
⎥
⎢

⎢
⎥
⎢

⎢
⎥
⎢

⎢
⎥
⎢

⎢
⎥
⎢

⎢
⎥
⎢

⎢
⎥ ⎦
⎣

⎦

# #

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥



55 

 

          The unknowns in equation (3.46) are iA  ( )1 1L i+ ≥ ≥  and iB  ( )0L i≥ ≥ . Because 

of the extremely large size of the square matrix in equation (3.46), explicit solution of this 

equation will be avoided. In addition, the matrix elements of the square matrix are 

themselves full square matrices, which will not be obtained explicitly in order to maintain 

relatively low memory usage. An iterative procedure using the BICGSTAB routine will 

be used to solve for all the unknown in equation (3.46) simultaneously. 

3.6.  ANALYSIS OF WAVEGUIDE WITH TWO 

LONGITUDINAL DISCONTINUITIES 

 The general PMOL  procedure that accounts for multiple longitudinal 

discontinuities, which was presented in the previous section, will be demonstrated for a 

waveguide structure having two longitudinal discontinuities.  

 

 Consider the structure shown in Figure 3-14, which has two longitudinal 

discontinuities, one located at 0z =  and the other at 0.5z d mµ= = . The 0TE  mode of 

region 0 is assumed to be incident from the left hand side of the structure. In the case of 

two longitudinal discontinuities, equation (3.46) reduces to the following relation: 
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Figure 3-14 Waveguide with two longitudinal discontinuities 
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                                 (3.47) 

 In equation (3.47), the right hand side vector is known. This vector can be computed 

once using sparse matrix vector multiply and sparse matrix vector divide as mentioned in 

section 5.1. On the other hand, the vector on the left hand side of equation (3.47) is 

unknown. The BICGSTAB subroutine in Matlab environment provides a guess for the 

value of this unknown vector. Then using the procedures presented in section 5.1 and 5.2, 

the matrix vector product shown on the left hand side of the equation is performed. This 

process is repeated until the left and the right hand side are equal. In this case BICGSTAB 

converges, giving accurate results.  



57 

 

 As mentioned earlier, the value of γ will be fixed to a specific value for both the 

square root and propagation operators. A Padé order of four is used for the square root 

operator and a Padé order of 10 is used for the propagation operator. 

 

 The reflected and the transmitted fields associated with Figure 3-14, (at 

1.00 µmλ = ) were calculated using both the PBPM  and the MOL . The results are 

shown in Figure 3-15 andFigure 3-16 respectively. The computed fields are seen to be in good 

agreement with each other. 
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Figure 3-15 Reflected field at z=0 for the double discontinuity waveguide using the 
PBPM and the MOL 
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Figure 3-16  Transmitted field at z=d+ for double discontinuity waveguide using PBPM 
and MOL 

 

 In order to verify the accuracy of the generalized procedure further, a multiple 

discontinuity problem with more than two discontinuities was analyzed. The planar 

waveguide shown in Figure 3-17 with six longitudinal discontinuities, each 0.5µm apart, 

was simulated using the same parameters used for the double discontinuity problem 

considered earlier. 
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Figure 3-17 Planar waveguide with six longitudinal discontinuities spaced 0.5µm apart. 

  

 The generalized PBPM  and the MOL  were both used to compute the reflected and 

the transmitted fields and their results were compared, as shown in Figure 3-18 andFigure 3-19 

respectively. There is good agreement between the two methods as can be observed from 

these two figures. 
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Figure 3-18 Comparison of the reflected field at z=0 for the waveguide with multiple 
longitudinal discontinuities 
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Figure 3-19 Comparison of the transmitted field at z=2.5 µm for the waveguide with 
multiple longitudinal discontinuities 
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3.7. CONCLUSION 

 In conclusion, it has been seen that the PBPM  provides results that are very close 

to the MOL  calculations, establishing the accuracy of the approach discussed in this 

chapter. The CPU time requirement of the PBPM  as compared to the MOL  is in general, 

problem dependent. For problems with relatively low number of mesh points (few 

hundred or less), the MOL  is faster than the PBPM . However, when the number of mesh 

points exceeds fewer hundred, the PBPM  becomes faster than the MOL . A 

demonstration of this statement will be shown in the next chapter, when the PBPM  is 

applied to a practical problem. 

 

 Having developed and validated the general PBPM  approach, we apply it in the 

next chapter for the analysis of the beam expander as mentioned in chapter 1. 
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CHAPTER 4  

ANALYSIS OF WAVEGUIDE BEAM EXPANDER 

4.1. INTRODUCTION 

 In this chapter, we study a simple waveguide junction in the form of a linearly 

tapered waveguide that connects two waveguide having different core widths, as shown in 

Figure 4-1. We focus our attention on waveguides with high refractive index contrast. The 

reflected, transmitted and radiated power associated with this beam expander will be 

considered. 

  

 A major advantage of the general PBPM  formulation discussed in the previous 

chapter is the simulation of guided structures exhibiting many longitudinal discontinuities. 

The MOL , in general is inefficient when applied to such structures if the reflected, 

transmitted as well as the field within the structure are of interest. This is due to the large 

memory storage requirements of the MOL  in this particular case. However, the PBPM  

does not suffer this limitation, because its memory requirements are very low. The study 

of the linearly tapered waveguide junction will provide us with an opportunity to test the 

general PBPM  approach for this type of problems and compare its results with the MOL  

based calculations. The linearly tapered junction will be modeled using locally 



63 

 

homogeneous layers based on the staircase approximation scheme, thus treating this 

problem as a multi longitudinal discontinuity problem. 

  

 We will assume that the input power is incident from the narrow waveguide into the 

wider waveguide, thus we effectively have a beam expander. Both a symmetric and 

asymmetric beam expanders will be considered in this chapter.  

 

4.2. SYMMETRIC BEAM EXPANDER 

 We will first study the symmetric beam expander (see Figure 4-1). As mentioned 

above, the tapered beam expander will be modeled using the staircase approximation. The 

input core width 1w  is kept at 0.2 µm which ensures single mode operation for the input 

waveguide at the operating wavelength 1.55 mλ = µ . The taper is allowed to expand 

resulting in an output waveguide with a core width of 2w . The tapered section of length t  

connects cores of the input and the output waveguides. The refractive index of the input 

waveguide core, the tapered section, and the output waveguide core have the same value 

of 3.6n = . The cladding is assumed to be air throughout. The tapered section is divided 

into a number of divisions ( )sN  in the z-direction using the staircase approximation. The 

width of each division ( )dz  is thus 
s

tdz N= . Initial simulations were done to check the 
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convergence of the staircase approximation for the tapered section for different values of 

sN  and different values of dx , where dx  is the transverse mesh size. 

 

 

Figure 4-1 A symmetric beam expander 

 

  Figure 4-2 shows the modal reflectivity of the symmetric beam expander for 

2 2 µm,w =  2 µmt =  and 25sN = , for different values of dx . It can be seen in this 

figure, that as dx  decreases the modal reflectivity converges. Values of 0.03dx <  give 

convergent results. The structure is then checked for convergence by varying sN . The 

same values of 2w  and t  were used with dx  fixed to 0.04. Figure 4-3 shows the modal 
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reflectivity of the symmetric beam expander for different values of sN . As sN  increases, 

the results converge. Convergence is obtained for values of 18,sN >  implying a proper 

staircase approximation to the tapered section of the beam expander. In this chapter, 

0.025dx =  and 25sN =  will be used for the remaining simulations. 
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Figure 4-2 Convergence of the modal reflectivity of the symmetric beam expander with 
dx 
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Figure 4-3 Convergence of the modal reflectivity of the symmetric beam expander with 
Ns 

 

 The behavior of the beam expander was studied by varying its various parameters. 

The input waveguide core width, as mentioned earlier is fixed to 0.2 µm, and the effect of 

varying t  and 2w   is studied. Firstly, the effect of varying t  on the modal reflectivity and 

the fraction of power transmitted was studied. The output waveguide core width was fixed 

at 2 2 w m= µ  in this case. 
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 As can be clearly seen in Figure 4-4, as t  increases from zero, the modal reflectivity 

initially decreases. However, beyond a certain value of ,t  it starts to increase reaching a 

peak value near 5.6 µmt =  and then it starts to decrease again. 
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Figure 4-4 Variation of the modal reflectivity of the symmetric beam expander with t 

 

 Figure 4-5 shows the fraction of power transmitted versus t . The fraction of power 

transmitted is fairly constant at around 1 for values of t  below 5 µm. However, at few 

values of t , the fraction of power exceeds 1 by a small amount, which can be ascribed to 
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slight numerical inaccuracies in the PBPM . The fraction of transmitted power exceeds 

unity by less than 1 %. It is also seen from this figure that the fraction of power 

transmitted starts to decrease as t  exceeds 5 µm. 
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Figure 4-5 Fraction of power transmitted versus t 

  

 The fraction of power transmitted in the output waveguide was calculated at 

different longitudinal positions along the output waveguide. This was done for various 
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values of t. the results are shown in Figure 4-6, the fraction of power transmitted is seen to 

decrease as we advance along the output waveguide.  
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Figure 4-6 Fraction of power transmitted along the output waveguide 

 

 The other parameter that was varied is the output waveguide core width 2w  with t  

fixed to 2 µm. The modal reflectivities were calculated using both the PBPM  and the 

MOL  as shown in Figure 4-7. The modal reflectivity calculated using both methods agree 

very well with each other, thus verifying the accuracy of the general PBPM  for this type 

of problem. As can be seen in the figure, the modal reflectivity increases from zero for 
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2 0.2 µmw =  (equal core widths for the input and the output waveguides 

1 2 0.2 µmw w= = ) to approximately 0.004 at 2 7 µmw =  and continues to increase as the 

outer waveguide core width increases.  
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Figure 4-7 Comparison of the modal reflectivities for the symmetric beam expander for 
different output waveguide core widths w2 using the PBPM and the MOL 

  

 As seen in Figure 4-8, there is no significant variation in the fraction of power 

transmitted as the outer waveguide core width increases. 
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Figure 4-8 Fraction of transmitted power versus the output waveguide core width w2 

 

 Figure 4-9 shows the fraction of power transmitted along the output waveguide, 

which is seen to decrease linearly with distance along the output waveguide. However, 

even after a sufficiently long distance, the power drop is in the range of 2-4 % only. 
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Figure 4-9 Fraction of power transmitted along the output waveguide 

 

 The computational time required by the PBPM  and the MOL  for the waveguide 

with a single longitudinal discontinuity was demonstrated in chapter 3. However, the 

problem of the single discontinuity requires less computational time. This is due to two 

reasons. Firstly, the propagation operator is not required in this case and secondly, the 

BICGSTAB requires more iterations, in general, for multi-discontinuity problems. In 

order to illustrate the efficiency of the general PBPM  over the MOL  in the case of 

multiple longitudinal discontinuities, the two methods were compared with respect to the 
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computational time required in the analysis of the symmetric beam expander. As 

mentioned earlier, sN  and dx  are fixed at 25 and 0.025 respectively. Thus, increasing 2w  

implies an increase in the number of discretization points. This is more evident from the 

relation 2

s

wM
N dx

=
×

, where M  is the number of transverse discretization points. Thus 

increasing 2w  results in higher discretization points.  

 

 The layer by layer approach was used in the MOL  in such a manner so that the 

memory requirement by the MOL  is minimized. By doing so, the MOL  was constrained 

to computing only the reflected field, without computing the fields inside the structure or 

the transmitted field. However, in the PBPM  case, the reflected field and more 

importantly the field within the structure and the transmitted field were computed.  

 

 Figure 4-10 shows the computational time requirements for both the MOL  and the 

general PBPM  versus the number of discretization points .M  As can be seen, when M  

is small, the MOL  requires a smaller computational time than the general PBPM . At 

350M ≈ , the computational time required by both of these approaches is almost the 

same. However, as M  increases further, clearly the general PBPM  becomes faster than 

the MOL . The computational time requirements of the MOL  is seen to be proportional to 

3,M  which fits the cubic interpolation shown in the same figure. Whereas, the general 



74 

 

PBPM  is seen to increase only linearly with M  which fits the linear interpolation, also 

shown in the Figure 4-10.  
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Figure 4-10 Comparison of the computational time requirement by the PBPM and the 
MOL for the symmetric beam expander. 

 

 At 630M = , the general PBPM  is about four times faster than the MOL , thus 

establishing its higher efficiency as compared to the MOL  for large values of .M  It is 

also obvious that as M  increases further, the PBPM  becomes much more efficient than 

the MOL . Comparison of the time required by the two methods for 630M >  was not 
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done, because the MOL  becomes exceedingly slow and it almost exhausts the computer 

memory available. However, the time requirement of the PBPM  continues to increase 

linearly and can easily obtain the required results for much higher values of .M  

 

 The symmetric waveguide structure shown in Figure 4-1 is studied with the input 

being fed from the wider waveguide as shown in Figure 4-11. The output core width is 

fixed at 1 0.2w µm=  and the effect of varying t  and 2w  is studied.  

 

 

Figure 4-11 Symmetric tapered waveguide structure with wide input waveguide and 
narrow output waveguide. 
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 Firstly, the modal reflectivity and the modal transmissivity were studied by varying 

t  while fixing 2w  at 2 µm.  As can be seen in Figure 4-12, the modal reflectivity has a 

peak value of 0.26�  at 0.9 .t µm�  Beyond this peak, the modal reflectivity generally 

becomes a decreasing function of .t  The modal transmissivity shown in Figure 4-13 

generally increases with t  and remains fairly constant at approximately 0.97 for 5 .t µm> . 
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Figure 4-12 Variation of modal reflectivity with t 
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Figure 4-13 Modal Transmissivity versus t 

 

 With t  fixed at 2 µm, the input waveguide core width 2w  is varied. Figure 4-14 

shows the modal reflectivity versus 2w . Initially the modal reflectivity increases with 2w , 

reaching a peak value of 0.57≈  at approximately 2 4.2w µm= . Beyond this peak, the 

modal reflectivity decreases with 2w , reaching very low values beyond 2 6w µm≈ . The 

modal transmissivity shown in Figure 4-15, is generally a decreasing function of 2w . 

However, the modal transmissivity remains high for 2 1.0w µm≤ . 
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Figure 4-14 Modal reflectivity versus w2 
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Figure 4-15 Modal Transmissivity versus w2 
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4.3. ASYMMETRIC BEAM EXPANDER 

 Consider the asymmetric beam expander shown in Figure 4-16. The input and 

output waveguide cores have a refractive index of 3.6 and are surrounded by air 

throughout. The widths of the input and the output waveguide cores are taken to be 0.2 

µm and 2 µm, respectively. The length t  of the tapered section is fixed at 2 µm. The 

position of the output waveguide core, is kept fixed while the core of the input waveguide 

is moved vertically away from the line of symmetry. The lower end of the output 

waveguide core is taken as the reference axis and the input waveguide is shifted upwards. 

The resulting displacement is denoted as .d  The structure becomes symmetric when 

0.9 µm.d =  The values  25sN =  and 0.025dx =  were used because they lead to 

convergent results.  
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Figure 4-16 An asymmetric beam expander 

  

 This beam expander is analyzed by varying .d  Figure 4-17 shows the modal 

reflectivity of the beam expander for different values of .d  As can be seen in the figure, 

as d  increases from zero, the modal reflectivity also increases and reaches a peak value of 

approximately 48.8 10−×  at 0.9  µm.d =  which corresponds to the value of the modal 

reflectivity for 2 2 µmw =  in Figure 4-7. This means that maximum modal reflectivity 

occurs, when the beam expander becomes symmetric. 

 

 Figure 4-18 shows the fraction of power transmitted for different values of .d  The 

fraction of power transmitted is fairly constant at about 1. 
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Figure 4-17 Modal reflectivity of the asymmetric beam expander versus d 
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Figure 4-18 Fraction of power transmitted for the asymmetric beam expander versus d 
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4.4. SPECIAL CASE OF THE ASYMMETRIC BEAM 

EXPANDER 

 We next analyze a special case of the asymmetric beam expander. As shown in 

Figure 4-19, the lower boundaries of the input and the output waveguide cores are 

aligned, resulting in a one-sided linearly tapered beam expander. The width of the input 

waveguide core is fixed at 0.2 µm. The beam expander is then analyzed by varying t . 

 

Figure 4-19 A one-sided linearly tapered beam expander 
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 The output waveguide width 2w  was kept fixed at 2 µm and t  was varied. Figure 

4-20 shows the modal reflectivity versus t . The modal reflectivity is in general low. 

However, it reaches a peak value of approximately 38.8 10−×  when 5.7 µm.t =  The 

fraction of power transmitted is also fairly constant up to 5.7 µmt <  and then it decreases 

as shown in Figure 4-21. 

 

 Figure 4-22 shows the fraction of power transmitted along the output waveguide for 

various values of t . It can be seen in the figure that the transmitted power decreases with 

both t  and the propagation distance along the output waveguide. 
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Figure 4-20 Modal reflectivity of the one-sided linearly tapered beam expander versus t 
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Figure 4-21 Fraction of power transmitted versus t 
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Figure 4-22 Fraction of power transmitted along the output waveguide  
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 The behavior of the one-sided beam expander was analyzed for different values of 

2w . The results are almost similar to those of the symmetric beam expander, and thus the 

results will not be shown here. 

4.5. CONCLUSION 

 In this chapter, we have demonstrated the efficiency of the general PBPM  

approach when applied to a multi-discontinuity problem. The linearly tapered beam 

expander was modeled using the stair-case approximation, thus giving rise to a multi-

discontinuity situation. The performance of the general PBPM  and the MOL  were 

compared. Even for a constraint MOL  routine based on the layer by layer approach, the 

PBPM  is seen to be more computationally efficient, when the number of transverse mesh 

points is relatively large. The time requirement of the MOL  was seen to be proportional 

to 3,M  while the general PBPM  time requirement is proportional only to .M  

 

  For the case of the symmetric beam expander, it is observed that any value of t  

(length of the tapered section) less than 5 µm results in low modal reflectivity and high 

fraction of power transmitted in the output waveguide. Whereas, increasing t  further 

results in higher modal reflectivity and reduces the fraction of power transmitted in the 

output waveguide. A similar behavior was observed for the case of the asymmetric beam 

expander. However, the modal reflectivity continuously increases as the output waveguide 

core width 2w  increases for both the symmetric and asymmetric beam expanders. The 
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fraction of power transmitted in the output waveguide, in general decreases as we advance 

long the output waveguide.  From the analysis of the asymmetric beam expander, it can be 

concluded that maximum modal reflectivity occurs when the beam expander is symmetric 

along the horizontal axis. However, the fraction of power transmitted is lower than that 

associated with the symmetric beam expander. 

 

 When the input optical power is incident from the wide waveguide side of the beam 

expander, the structure has a completely different response. When compared to the 

response of the same device when excited from the narrow waveguide side. 
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CHAPTER 5  

ANALYSIS OF WAVEGUIDE CROSSINGS 

5.1. INTRODUCTION 

 Waveguide crossings ( )WC  are integral part of any optical integrated circuit, 

because they are essential for realizing complex optical integrated circuit designs. The 

main criterion in designing the junction is the ability of the structure to couple negligibly 

small power from one waveguide into the other thus minimizing crosstalk. The term 

crosstalk is defined as the undesirable power that is coupled to the other waveguide. The 

other design criterion is of optical symmetry of the structure on all four sides of the 

waveguide crossing. In a simple waveguide crossing, the two waveguides are made to 

intersect directly. This results in a relatively large amount of optical power being reflected 

back into the input waveguide. In addition, an undesirably high crosstalk results in this 

case and the resulting transmitted power is relatively low. Thus, the simple waveguide 

crossing needs to be modified to avoid these undesirable effects. 

 

 In addition to analysis of the waveguide crossing, this structure will give us an 

opportunity to test the PBPM  in the situation where optical guided fields in the vertical 

(transverse direction) are encountered. The PBPM  has not been tested for accuracy or 

convergence in this unique situation.  
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5.2. A SIMPLE 90-DEGREE CROSSING 

 The structure shown in Figure 5-1 is a simple four way 90-degree symmetric 

waveguide crossing. The two waveguides directly cross each other and have the same 

core width 0.2 µmcw =  and the same core refractive index 3.2n = . The waveguide core 

is surrounded by air. This insures single mode operation for TE  polarized waves in the 

entire wavelength range under consideration. 

   

 

Figure 5-1 A simple 900 waveguide crossing 
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 Ideally, when two waveguides cross each other, they should not affect each other. 

That is to say, the reflected power back into the input waveguide should be zero, the 

crosstalk should be zero and all the input power should be transmitted (i.e. all the input 

optical power should remain in the input waveguide). This ideal situation, as we will see 

shortly is not even nearly achievable by the simple waveguide crossing depicted in Figure 

5-1. However, this simple waveguide crossing will be analyzed in order to establish useful 

reference values. The modal reflectivity in the left arm(input arm) is denoted as 1R , the 

modal transmissivity in the right arm is 3T , the crosstalk in the upper and the lower arms 

are denoted as 2T  and 4T , respectively.  

 

 The left arm of the WC  is excited by the 0TE  mode of the waveguide. The spectral 

response of the structure is then calculated over the wavelength range 1.48-1.62 µm. As 

seen in Figure 5-2 the modal reflectivity ( )1R , which is clearly undesirably high, is in the 

approximate range 0.015-0.03. The modal reflectivity is also seen to increase with 

wavelength. This value of 1R  may seem to be somewhat low. However, in some 

applications it may prove to be undesirably high. 

 

 The crosstalk ( )2 4 and T T  are computed using the following procedure. The field 

samples are collected at specific intervals ( )dz  along the propagation axis (z-axis), 

sufficiently far from the center of the waveguide crossing in the transverse direction (x-

axis) as shown in Figure 5-3. In addition, the analytically available 0TE  mode pattern 
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along the z-direction is discretized at the same points used in the sample field. Finally, 

overlap integration is calculated using these two field samples in order to calculate the 

crosstalk.   

1.48 1.5 1.52 1.54 1.56 1.58 1.6 1.62
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Wavelength in µm

M
od

al
 R

ef
le

ct
iv

ity

 

Figure 5-2 Modal reflectivity in the simple waveguide crossing 

 

 The crosstalk level is shown in Figure 5-4. Because of structural symmetry, the 

crosstalk levels ( )2 4 and T T  in the upper and lower vertical arms, respectively, are 

identical to each other and thus only one crosstalk level is depicted in Figure 5-4. The 

value of 2 4T T=  is about 0.07, which is clearly undesirably high. The modal 
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transmissivity 3T  is approximately 0.83 as can be seen in Figure 5-5. It can be seen that 3T  

is substantially independent of λ over the range of the figure. The fraction of radiated 

power due to the WC  is shown in Figure 5-6. The figure shows that only a small fraction 

of the input optical power is lost to radiation. This power generally decreases with 

wavelength, as seen in Figure 5-6. 

 

 

Figure 5-3 Simple waveguide crossing 
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Figure 5-4 Crosstalk in a simple waveguide crossing 
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Figure 5-5 Modal transmissivity in a simple waveguide crossing 
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Figure 5-6 Fraction of radiated power in the simple waveguide crossing  

 

5.3. WAVEGUIDE CROSSING WITH SQUARE RESONANT 

CAVITY 

 In order to transmit maximum power with minimum reflection and minimum 

crosstalk the simple WC  is modified at the junction. Instead of joining all the four arms 

directly, the four arms are coupled using a resonant cavity as shown in Figure 5-7 [62, 

63]. The square cavity shown in Figure 5-7 has the same refractive index as the 

waveguide core and it is separated from the four arms by a small air gap of width ga . If 
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the size of the square cavity (of dimensions s s× ) is appropriately chosen, then the 

resonant mode with odd symmetry in the horizontal direction and even symmetry in the 

vertical direction is excited by the input modal field. Excitation of this mode insures small 

power coupling to the vertical arms, which results in low crosstalk 2T  and 4T  [62, 63]. If 

the air gap is appropriately chosen, the modal reflectivity 1R  can be made small and the 

modal transmissivity 3T  is maximized.  

 

 

Figure 5-7 Waveguide crossing with a square resonant cavity at the center 
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 When the side of the square cavity 0.36 µms =  and the air gap separating the 

cavity from the four arms is taken as 0.04 µm,ga =  the WC  is optimized (i.e. small 1R , 

2T , 4T  and large 3T ) around the wavelength 1.55 µm.λ =  Figure 5-8 shows an image of 

the field intensity around the WC . The origin is located at the geometrical center of the 

cavity. The fundamental mode of arm 1 is assumed to be incident on the WC  and is not 

shown in the image in order to enhance the visibility of the reflected field. 
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Figure 5-8 Field intensity image inside the WC with square resonant cavity 
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 Figure 5-8 clearly shows odd mode excitation (in the horizontal direction) inside the 

square resonant cavity, thus causing a small amount of power to be coupled to the upper 

and the lower arms of the WC . Figure 5-9,Figure 5-10,Figure 5-11 andFigure 5-12 respectively show a 

comparison between the modal reflectivity, crosstalk, the modal transmissivity and the 

fraction of power radiated for the simple WC  and WC  with the square resonant cavity. As 

seen in Figure 5-9, the modal reflectivity of the modified WC  (having a square cavity) is 

generally much smaller than that corresponding to the simple WC . The minimum 

reflectivity of the modified WC  is about 41.5 10−×  which occurs around 1.57 µm.λ =  

The modal reflectivity generally remains low ( )210−<  for λ  ranging between 1.54-1.60 

µm. 
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Figure 5-9 Comparison of the modal reflectivity of the simple WC and the WC with 
square cavity 
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Figure 5-10 Comparison of crosstalk of the simple WC and the WC with square cavity 
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Figure 5-11 Comparison of modal transmissivity of the simple WC and the WC with 
square cavity 
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Figure 5-12 Comparison of fraction of radiated power of the simple WC and the WC with 
square cavity 

 

 As seen in Figure 5-10, the crosstalk has decreased from about 0.07 for the simple 

WC  to about 0.001 for the WC  with the square cavity. This reduction in the crosstalk is 

important, because crosstalk is undesirable. The modal transmissivity, as shown in Figure 

5-11, has increased from approximately 0.83 for the simple WC  to about 0.965 for the 

WC  with square cavity. The modal transmissivity in this case remains higher than the 

modal reflectivity of the simple WC  for a wide range of wavelengths. However, there is 

an increase in the fraction of radiated power for the WC  with square cavity as can be seen 

in Figure 5-12. This can be ascribed to the presence of the air gaps between the arms and 

the resonant cavity.  



 

 

99

5.4. WAVEGUIDE CROSSING WITH OCTAGONAL CAVITY 

 In this section, we replace the square resonant cavity with a resonant cavity having 

the shape of an octagonal. We have two major aims in the selection of the octagonal 

cavity. First, we are interested in examining the suitability of the general PBPM  for this 

type of structure, since it contains longitudinally tapered portions and at the same time, 

this structure gives rise to a guided optical field in the vertical direction. Thus, this should 

be a unique structure for testing the applicability of the PBPM .  

 

 The second aim is to analyze the spectral response of the WC  with octagonal and 

square cavities and compare the results in order to make a decision on which cavity shape 

provides a better spectral response.  

 

 The octagonal cavity can be thought of as a square with the corners chopped off. 

The structure consists of eight sides with four sides parallel to the four waveguide arms 

with equal width ( )cw  as that of the waveguide cores, and the other four sides are inclined 

as shown in Figure 5-13 each having a width of w . The inclined walls of the octagonal 

cavity are approximated using the staircase approximation as done in chapter 4 when 

considering the beam expander. The number of steps used for the stair case approximation 

to the inclined walls were fixed at 10 which gives convergent results using the general 

PBPM . With 10 steps for the stair case approximation, the total number of longitudinal 
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discontinuities are 24, which makes the analysis of this type of problems computationally 

demanding using the MOL . The number of transverse mesh points per micron were fixed 

at 40 points. 

 

 An extensive number of simulations were done in order to find optimized parameter 

values of ga  and w . The air gap width 0.06 µmga =  and the inclined width 0.13 µmw =  

gave optimized results. Figure 5-14 shows comparison of the modal reflectivities for the 

WC  with the octagonal and the square resonant cavities. The octagonal cavity results in a 

smaller reflectivity minimum ( 52 10−×  at λ=1.564 µm) than the square cavity ( 41.5 10−×  at 

λ=1.57 µm). The octagonal cavity also gives rise to a wider reflectivity bandwidth. 

However, there is an increase in the crosstalk for the WC  with octagonal cavity, as seen in 

Figure 5-15. However, for a wide wavelength range, the crosstalk remains below 0.01. 

  

 Figure 5-16 shows a comparison of the modal transmissivities for the WC  with 

octagonal and square resonant cavities. The value of 3T  for the WC  with the octagonal 

cavity is slightly higher than that of the WC  with the square cavity. The fraction of 

radiated power is approximately 0.015 for the WC  with the octagonal cavity when 

compared to about 0.032 for the WC  with the square cavity as shown in Figure 5-17. 
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Figure 5-13 Waveguide crossing with an octagonal resonant cavity 
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Figure 5-14 Comparison of the modal reflectivity of the WC with octagonal and square 
cavities 
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Figure 5-15 Comparison of crosstalk of the WC with octagonal and square cavities 
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Figure 5-16 Comparison of the modal transmissivity of the WC with octagonal and square 
cavities 
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Figure 5-17 Comparison of the fraction of radiated power of the WC with octagonal and 
square cavities 

 

 The air gap ga  and the width w  of the WC  are crucial in deciding the values of 1R , 

2T , 3T  and 4T . The effect of which are analyzed and shown in Figure 5-18 andFigure 5-19. 

Figure 5-18 shows the behavior of the structure with different values of w  while fixing 

ga  at 0.06 µm. As can be seen in the figure, that as w  increases, the resonance 

wavelength of the WC  shifts towards higher wavelengths. In each case considered, the 

minimum reflectivity is very small. 

 

 When the air gap changes while fixing w  to 0.13 µm there is also a shift in the 

resonance wavelength, as seen in Figure 5-19. The resonance wavelength also increases 

with the air gap width. From Figure 5-18 andFigure 5-19 it can be observed that the air gap and 
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the width are inter-related with each other. For a particular value of ga  there is a certain 

value of w  which gives the least modal reflectivity. For some combinations of these two 

parameters, the minimum modal reflectivity can reach as low as 610− .  
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Figure 5-18 Comparison of modal reflectivities for the WC with the octagonal cavity for 
different widths w, and fixed air gap ag=0.06 µm 
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Figure 5-19 Comparison of modal reflectivity for the WC with the octagonal cavity for 
different air gaps ag and fixed width w =0.13 µm 

 

5.5. CONCLUSION 

 Three different types of waveguide crossings were studied in this chapter. The 

simple WC  has a comparatively high modal reflectivity and high crosstalk, with relatively 

low transmissivity. However, the radiation loss is small. The performance of this WC  can 

be improved by coupling to a resonant cavity. The square resonant cavity offers higher 



 

 

106

transmissivity, lower reflectivity and lower crosstalk but with higher radiation losses 

when compared to the simple WC . The proposed octagonal structure surpasses 

performance of the simple WC  and the WC  with square cavity in all aspects with the 

exception of some increase in the crosstalk. 

  

 As discussed at the outset of this chapter, the primary design criterion of waveguide 

crossing is to minimize crosstalk. However, the cavity in the waveguide crossing may be 

modified in order to result in relatively high coupling to the vertical arms, leading to a 

three way beam splitter. As will be shown in the next chapter, a rectangular cavity of 

suitable dimension may be used for this purpose. 
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CHAPTER 6  

ANALYSIS OF THREE WAY BEAM SPLITTER 

6.1. INTRODUCTION 

 We have seen in the previous chapter that when a resonance cavity is imbedded at 

the center of the WC , it is possible to minimize the modal reflectivity and the crosstalk, 

while maximizing the modal transmissivity. The device operation relies on the excitation 

of a cavity mode which has odd symmetry in the horizontal direction and even symmetry 

in the vertical direction. In this chapter, we introduce a novel three way beam splitter that 

relies on a similar principle to the above mentioned WC . Here we are interested in 

causing optical power to be coupled to the vertical arms, rather than to inhibit the 

coupling, as has been done in the WC . If the square cavity of the WC  considered in the 

previous chapter is replaced by a rectangular cavity by reducing its horizontal dimension, 

the odd mode in the horizontal direction is suppressed and the mode with even symmetry 

in the horizontal direction is excited instead. Thus, the field in the horizontal center of the 

rectangular cavity is maximized in this case, which may result in substantial power 

coupling to the vertical arms. This principle will be demonstrated in the present chapter, 

which leads to a 90-degree three way beam splitter. All the calculational results were 

obtained using the general PBPM  approach and the field intensity images that will be 

presented correspond to an operating wavelength of λ = 1.55 µm.  
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6.2. THREE WAY BEAM SPLITTER 

 Consider the structure shown in Figure 6-1. This structure is similar to the structure 

discussed in the previous chapter. It differs only in the resonant cavity which is here 

rectangular in shape. The width w  of the cavity is taken to be less than the waveguide 

core width of the arms. This is done in order to insure excitation of the cavity mode which 

has symmetry in the horizontal and vertical directions. The height h  of the structure is 

assumed to be larger than the core width in order to improve power coupling in the upper 

and the lower waveguide arms. The waveguide core width is fixed to 0.2 µmcw = . The 

parameters 1 2 3 4, ,  and a a a a  are associated with the four air gap widths as shown in Figure 

6-1. the parameters 2a  and 4a  represent the upper and lower air gap width, respectively. 

However, 1 4 and a a  represent only a portion of the air gap width in the horizontal 

direction. The complete air gap in the horizontal direction can easily be calculated from 

the figure, if necessary. 

 

 The primary design criterion for the structure is to have minimum modal 

reflectivity. For all the cases considered in this chapter, the modal reflectivity is kept 

below about 10-3. 
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Figure 6-1 Three way beam splitter 

  

  The values of the various parameters of the three way beam splitter (i.e. 1a , 2a , 

3a , 4a , w  and h ) will be varied in order to control the splitting ratio in the different arms 

of the beam splitter, while maintaining low modal reflectivities. Only key cases will be 

presented in the sections to follow. We begin by considering the case in which most of the 

power transmitted in the forward direction to the right arm of the beam splitter. 
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6.2.1. Case I Maximum Forward Transmission 

 The first case to be studied is when maximum power transmission occurs in the 

forward direction with minimum power being coupled to the vertical arms and minimum 

reflectivity. The structure is kept symmetric with respect to the horizontal and the vertical 

axes, i.e. 1 3a a=  and 2 4a a= . The air gaps and the width and the height of the rectangular 

cavity are tuned in order to obtain the desired effect. The tuned parameter values in this 

case are 1 3 0.00 a a µm= = , 2 4 0.50 a a µm= = , 0.09 w µm=  and 0.53 h µm= . The 

parameters 1a  and 3a  being zero as mentioned earlier does not actually mean that there is 

no air gap separating the (left and right) arms from the rectangular cavity. The air gaps 

separating the horizontal arms from the cavity are both equal to 0.055 µm in this case.  

  

 Figure 6-2 shows the resulting modal reflectivity spectrum of the beam splitter. As 

can be seen in the figure, the modal reflectivity is extremely low ( )32 10−< ×  over a wide 

range of wavelength. Minimum reflectivity of ( )56 10−×  occurs at a wavelength of 1.56 

µm. Figure 6-3 shows the modal transmissivity coupled in the vertical arm. Note that 

since 2 4T T=  in this case, only one curve is shown in the figure. The value of 2 4T T=  is 

approximately 0.006 and it decreases with wavelength.  
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Figure 6-2 Modal reflectivity spectrum of the beam splitter 
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Figure 6-3 Modal transmissivity T2 coupled in the upper (or lower) vertical arm 

 



112 

 

 Figure 6-4 shows the modal transmissivity 3T  of the beam splitter. As can be seen 

from the figure, 3T  remains fairly high and is fairly constant over the entire wavelength 

range. It is approximately 0.985. The fraction of the radiated power is shown in Figure 

6-5. It remains relatively low, within the approximate range 0.003-0.007.   

 

 Figure 6-6 shows an image of the field intensity around the splitter. As mentioned 

earlier, all the field intensity images correspond to an operating wavelength 1.55 µm.λ = . 

The origin of the images is always centered at the geometric center of the structure. The 

0TE  modal field is assumed to be incident from the left. As can be seen in the figure, the 

power coupled into the upper and the lower arms of the splitter is very small. The absence 

of any visible standing wave pattern in the input arm indicates insignificant amount of 

power reflection.  

 

 The air gaps play an important role in coupling power to the respective arms. If the 

air gaps are not properly tuned, this would result in large radiation losses, large modal 

reflectivity, or lower modal transmissivities. Figure 6-7 shows the effect of varying 3a  

(with all other parameters fixed to their previous values) on 1R , 2 4T T= , 3T  and the 

fraction of radiated power.   
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Figure 6-4 Modal transmissivity T3 of the beam splitter 
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Figure 6-5 Fraction of radiated power in the beam splitter 
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Figure 6-6 Field intensity image showing maximum power coupling into the forward arm 

 

 As 3a  increases, 1R  initially increases reaching a peak value at 3 0.3 µma =  (see 

Figure 6-7 a) and starts to decrease as 3a  increases further. However, 1R  again starts to 

increase for 3 0.75 µm.a > . A similar behavior is observed for ( )2 4T T=  as seen in Figure 

6-7 b. As seen in Figure 6-7 c, there is a large decrease in 3T  as 3a  increases. This can be 

attributed to the increase in the fraction of radiated power as seen in Figure 6-7 d. 
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Figure 6-7 Variation of R1, T2, T3 and the fraction of radiated power with a3 

 

6.2.2. Case II Controlled Power in the Upper and the Lower 

Arms 

 The previous case studied was of low coupling of power in the vertical arms. 

However, this structure can be easily tuned for coupling more power in the vertical arms. 

This can be achieved by increasing the parameter 3a  and effectively reducing the air gaps 
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( )2 4by reducing  and a a  between the cavity and the vertical arms thus forcing the cavity 

to couple more power into the vertical arms. The parameter values 1 0.04 µm,a =  

3 0.07 µm,a =  2 4 0.12 µm,a a= =  0.06 µmw =  and 0.62 µmh =  cause an increase in 

the power coupled to the vertical arms from almost negligible values, as in case I, to 

around 0.11 in both arms. In order to maintain equal power coupling in the vertical arms, 

the two air gaps 2a  and 4a  were kept equal so that we always have 2 4T T= . The air gaps 

2 4 and a a  have been reduced from 0.5 µm in the previous case to 0.12 µm which helps in 

coupling more power in the vertical arms, while the air gap 3a  has been increased in order 

to cause less coupled power in arm 3.  

 

 Figure 6-8 shows the resulting modal reflectivity 1R  of the beam splitter. As can be 

seen, using the last set of parameters, the modal reflectivity is low over a wide range of 

wavelength. The coupling in the vertical arms increases in this case as can be seen in 

Figure 6-9. The modal transmissivity coupled is approximately 0.11. It is noteworthy that 

2T  remains almost unchanged over a wide range of bandwidth. The modal transmissivity 

is reduced in this case as can be seen in Figure 6-10 and it is approximately 0.77 in value. 

 

The fraction of the radiated power is shown in Figure 6-11. It remains relatively low, 

within the approximate range 0.005-0.01. Figure 6-12 shows an image of the field 

intensity around the splitter. 
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Figure 6-8 Modal reflectivity spectrum of the beam splitter 
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Figure 6-9 Variation of the modal transmissivity in the upper arm with wavelength 
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Figure 6-10 Variation of the modal transmissivity T3 with wavelength 
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Figure 6-11 Variation of the fraction of radiated power with wavelength   
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Figure 6-12 Field intensity image showing increased power coupling in the upper and 
lower arms 

 

6.2.3. Case III Equal Power in all Arms 

 The third case considered is when nearly equal power is being coupled in the 

vertical and the forward arms. This can also be achieved in a similar manner as in case II 

by further increasing 3a . The set of parameters used in this case are 1 0.04 µm,a =  

3 0.19 µm,a =  2 4 0.3 µm,a a= =  0.06 µmw =  and 0.53 µm.h =  
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 As can be seen in Figure 6-13, the modal reflectivity remains relatively low over the 

entire wavelength range considered. The modal transmissivities 2T  and 3T , are shown in 

Figure 6-14 andFigure 6-15 respectively. It is clear from these two figures that 2 4 3T T T= ≈  over 

the entire range of wavelength. The fraction of radiated power has slightly increased when 

compared with the previous case to about 0.015-0.02 (see Figure 6-16). 
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Figure 6-13 Modal reflectivity spectrum of the beam splitter 
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Figure 6-14 Variation of the modal transmissivity in the upper arm with wavelength 
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Figure 6-15 Variation of the modal transmissivity T3 with wavelength 
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Figure 6-16 Variation of the fraction of radiated power with wavelength 

 

 Figure 6-17 shows an image of the field intensity around the beam splitter. The 

intensity in the three output arms, as suggested by the image, are nearly equal in this case. 
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Figure 6-17 Field intensity image showing equal power coupling 

 

6.2.4. Case IV Higher Power in the Vertical Arms  

 The fourth case we have considered is when the guided power coupled into the 

vertical arms (arms 2 and 4) is higher than the power in arm 3. In order to achieve this 

effect, the parameter 3a  is further increased and the vertical air gaps 2a  and 4a  are further 

reduced in value. The parameters are 1 0.00 µm,a =  3 0.31 µm,a =  2 4 0.08 µm,a a= =  

0.08 µmw =  and 0.23 µm.h =    
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 Figure 6-18 shows the modal reflectivity spectrum corresponding to this case. The 

reflectivity remains to be extremely low over a wide range of wavelengths. The modal 

transmissivity in each vertical arm is in this case around 0.42 as shown in Figure 6-19 

which is greater than the power being coupled to arm 3. The modal transmissivity 3T  is 

around 0.14 as seen in Figure 6-20. Figure 6-21 shows the fraction of radiated power 

which is generally less than 0.05 and decreases with wavelength. 
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Figure 6-18 Modal reflectivity spectrum of the beam splitter 
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Figure 6-19 Modal transmissivity spectrum in the vertical arms 
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Figure 6-20 Modal Transmissivity spectrum in the output horizontal arm (T3) 
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Figure 6-21 Fraction of radiated power associated with the beam splitter 

  

 As can be clearly seen from the field intensity image shown in Figure 6-22, higher 

field power is coupled to the vertical arms than to arm 3. This is the maximum power that 

we could achieve for symmetric power coupling in arms 2 and 4. It is also possible, by 

selecting a different set of parameters, to cause asymmetric power coupling between arms 

2 and 4, making the power, for instance, higher in arm 2 with respect to arm 4. This case 

is presented in the next section. 
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Figure 6-22 Field intensity image showing higher power being coupled to the vertical 
arms 

 

6.2.5. Case V Maximum Power in the Upper Vertical Arm 

 The fifth and the final case to be considered is when maximum power is coupled to 

the upper vertical arm and comparatively less power being coupled to the lower vertical 

and the forward arms. The tuned parameters that give rise to this case are 1 0.00 µm,a =  
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3 0.25 µm,a =  2 0.02 µm,a =  4 0.23 µm,a = , 0.08 µmw =  and 0.22 µm.h =  Note that 

2a  was reduced with respect to 4a  in order to achieve this effect. 

 

 As seen in Figure 6-23, the modal reflectivity is very low reaching a minimum of 

about 63 10−×  at λ=1.54 µm. The modal reflectivity remains below 310−  for the entire 

wavelength range under consideration. Figure 6-24 shows the modal transmissivity 2T  

and 4T  in the vertical arms. Since this is a vertically asymmetric case (since 2 4a a≠  and 

thus 2 4T T≠ ), both 2T  and 4T  are shown. 2T  is approximately 0.67, which is much higher 

than 4T  which is only 0.13 in this case. The modal transmissivity 3T  in the forward arm is 

around 0.17 as seen in Figure 6-25. As seen in Figure 6-26, the fraction of radiated power 

in this case ranges from 0.025 – 0.045 which can be ascribed to the increase in the 

parameters 3a  and 4a . Figure 6-27 shows an image of the field intensity around the beam 

splitter corresponding to this case. It is clearly seen in the image that the power coupled to 

the upper vertical arm ( )2T  is higher than the power coupled to the forward ( )3T  and the 

lower vertical ( )4T  arms. 
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Figure 6-23 Modal reflectivity spectrum of the beam splitter 
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Figure 6-24 Modal transmissivity spectrum in the vertical arms 
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Figure 6-25 Modal transmissivity spectrum in the forward arm 
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Figure 6-26 Variation of the fraction of radiated power with wavelength 
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Figure 6-27 Field intensity image showing higher power coupling in the upper vertical 
arm 

 

6.3. CONCLUSION 

 The proposed novel three way 090  beam splitter provides flexibility with regards to 

the coupling of power in all the three arms and has a wide controllability range. The 

spectral response of all the cases presented show relatively wide spectral responses, which 

is an important advantage of the proposed device. In addition, it is relatively easy to tune 
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the device for a certain power distribution. Finally, the radiation loss of the proposed 

beam splitter is relatively low.  
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CHAPTER 7  

CONCLUSION AND FUTURE WORK 

7.1. SUMMARY 

 In this thesis work we have presented an important extension to the Method of 

Lines, by use of Padé approximants. In addition, several types of waveguide junctions 

have been analyzed. A summary of the several key points covered in this thesis work is as 

follows: 

o Higher order approximation of 
2

2x
∂
∂

 (transverse second derivative operator) was 

incorporated in the MOL  and verified for accuracy. 

 

o A perfectly-matched layer using a non-uniform loss profile was incorporated into 

the MOL  and verified for accuracy. 

 

o A general routine for obtaining Padé primes from Taylor series expansion of a 

given function was presented and tested for accuracy. 

 

o The implementation and verification of the square root operator using Padé 

approximants with branch cut rotation. 
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o Calculation and verification of the reflected field at a single longitudinal 

discontinuity using Padé approximants. 

 

o The calculation and verification of the field propagation in longitudinally uniform 

media was implemented using Padé approximants. 

 

o A general approach for implementing Padé approximants was presented in the 

MOL  framework, which leads to the general PBPM  approach. The general 

PBPM  approach ability to account for multiple longitudinal discontinuities was 

tested and verified in various situations. 

 

o We have utilized the BICGSTAB numerical routine for obtaining the reflected 

field from a single longitudinal discontinuity as well as in the general PML  

approach. 

 

o We have studied in some details a high contrast linearly tapered symmetric beam 

expander as well as its asymmetric version. 

 

o Waveguide crossings that utilize a resonant cavity were also studied for both the 

square and the octagonal cavity shapes. 

 

o Finally, a novel three way 090  beam splitter that also utilizes a resonant cavity 

was analyzed in some detail. 
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7.2. CONCLUSION 

o The general PBPM  approach presented in this thesis produced accurate results in 

a variety of guided-wave problems. 

 

o The general PBPM  is generally much more memory efficient than the MOL . The 

CPU time requirement of the MOL  is smaller than the requirement of the PBPM  

when the number of mesh points is relatively small ( 350M ≤  points). However, 

the PBPM  becomes much more time efficient for large values of .M  

 

o The MOL  and the PBPM  time requirements are proportional to 3N  and ,N  

respectively. 

 

o The maximum longitudinal step size z∆  in the PBPM  is independent of the 

transverse mesh size .x∆  

 

o It is necessary to use branch-cut rotation along with Padé approximants in the 

PBPM  in order to account for the evanescent part of the field correctly. In 

addition, the complex factor ,je θαγ =  which causes branch-cut rotation, has to 

have a low magnitude α  for enhanced accuracy. 

 

o Padé orders of 4p =  for the square root operator and 10p =  for the propagation 

operator were found to be sufficient for all the problems considered in this thesis. 
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o Generally speaking a branch-cut rotation angle of 090θ = −  is adequate for all the 

problems considered. 

 

o From the analysis of the symmetric beam expander it can be concluded that, for 

efficient coupling of the input and the output waveguide cores, the distance joining 

them should not exceed a certain value. As the distance increases, the fraction of 

power transmitted to the output waveguide is reduced.   

 

o A similar behavior was observed in the case of the asymmetric beam expander 

studied. 

 

o For the two variants of beam expanders studied, as the output waveguide core 

width increases, the modal reflectivity increases and thus the fraction of power 

transmitted in the output waveguide decreases. 

 

o The WC  with octagonal cavity is observed to be superior to the WC  with square 

cavity and the simple WC , in terms of lower modal reflectivity, lower fraction of 

power radiated and higher modal transmissivity. However, it gives a higher value 

of the crosstalk. 

 

o A minimum modal reflectivity of about 52 10−×  at 1.564 µmλ =  is achieved for 

the WC  with octagonal cavity. Whereas, for the WC  with square cavity the 

minimum modal reflectivity is about 41.5 10−×  at 1.57 µm.λ =  
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o The air gaps between the rectangular cavity and the four arms, and the width and 

the height of the cavity, in the three way beam splitter play an important role in 

deciding the amount of power flow to each arm. 

 

o With, proper tuning of the parameters 1a , 2a , 3a , 4a , w  and h , the power flow in 

any of the output arms of the three way beam splitter can be controlled over a wide 

range of values.  

 

7.3. FUTURE WORK 

o The developed general PBPM  method can be used to analyze complex 2-D 

problems which require higher number of discretization points. 

 

o This method can be considered as an initial step forward in the analysis of 3-D 

problems, which require higher number of discretization points (in the order of 

thousands) and thus cannot be analyzed using the MOL . 

 

o An alternate to the BICGSTAB subroutine can be developed which minimizes the 

computational time required, thereby making the general PBPM  much more time 

efficient. 

 

o The developed general PBPM  can be formulated in order to compute just the 

reflected and the transmitted fields without actually computing the field inside the 

structure. This may lead to further reduction in the CPU time and memory 

requirements. 
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o Different types of Padé polynomials may be investigated, such as the mini-max 

polynomial and the chebychev polynomials. These special polynomials may 

extend the range of Padé approximants beyond the current range.  
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APPENDICES 

MAIN PROGRAM 

%% This is the main program which computes the entire field for a multiple 
%% discontinuity structure. 
 
clear all;close all;clc; 
format long e; 
 
global I whichpt TE lambda w d_x m Xp d exp_order sq_order bcr exp_a exp_b c0 sq_a 
sq_b d_z; 
 
whichpt=5; %% ORDER OF APPROXIMATION 3,5 OR 7. 
 
w=[1 0.3 0.3 2.5]; %% w = WIDTH OF EACH LAYER 
 
n=[ 1 1 3.6 3.4         %% REFRACTIVE INDEX PROFILE 
    1 3.6 3.6 3.4 
    1 1 3.6 3.4]; 
 
M=10*[2 2 2 4];  %% NUMBER OF DISCRETIZATION POINTS IN EACH LAYER 
 
lambda=1.00;     %% WAVELENGTH 
k0=2*pi/lambda;  %% WAVE NUMBER  
TE=1;  %% 1 FOR TE AND 0 FOR TM MODE  
 
pmlsup=10; %% NUMBER OF POINTS IN PML ABOVE SUPERSTRATE  
etasup=1.2; %% VALUE OF ETA IN PML ABOVE SUPERSTRATE 
 
pmlsub=10; %% NUMBER OF POINTS IN PML BELOW SUBSTRATE 
etasub=1.2; %% VALUE OF ETA IN PML BELOW SUBSTRATE
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d=[0.5]; %% DISCONTINUITIES 
 
exp_order=10; sq_order=4;  
%% EXPONENTIAL AND SQUARE ROOT FUNCTION ORDER 
 
bcr=(1.5*k0)^-2*exp(-j*0.5*pi); %% COMMON BRANCH CUT ROTATION VALUE 
 
[d_x,n,M,w]=pml(pmlsup,etasup,pmlsub,etasub,n,M,w); %% FUNCTION FOR 
ADDING THE PML LAYERS 
 
N=[]; %% REFRACTIVE INDEX MATRIX 
m=length(d_x); %% TOTAL MESH POINTS 
I=speye(m,m);  %% IDENTITY MATRIX 
x=[]; 
 
%% CALCULATING THE Q AND N MATRIX AND STORING THE BRANCH CUT  
%% ROTATED VALUE OF Q 
 
for i=1:1:length(n(:,1)) 
    [qq,nn]=gensol(n(i,:),M,k0); 
    X=bcr*qq-I;     
    clear qq; 
    Xp=[Xp;X];  %% STORING BRANCH CUT ROTATED VALUES OF Q 
    clear X 
    N=[N;nn]; 
    clear nn 
 
end 
 
%% FINDING THE FUNDAMENTAL MODE OF THE INPUT WAVEGUIDE  
 
[U0,V0] = eigs(bcr.^-1*(Xp(1:m,1:m)+I),1,k0*k0*3.462^2); 
A0=U0/max(abs(U0));  %% FUNDAMENTAL MODE 
clear U0 V0; 
 
%% EVALUATING THE PADE PRIMES FOR SQUARE ROOT FUNCTION 
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i=1:1:sq_order; 
sq_a=(sin((i.*pi)/(2*sq_order+1))).^2; 
sq_b=(cos((i.*pi)/(2*sq_order+1))).^2; 
clear i; 
 
d_z=0.1; %% PROPAGATION STEP 
 
g=j*d_z*bcr^-0.5;  
[exp_a,exp_b,c0]=exp_aandb(g);  
%% FINDING THE PADE PRIMES FOR THE EXPONENTIAL FUNCTION 
 
%% Kn REPRESENT THE CONSTANT MATRIX IN THE DERIVATION IN THE 
%% THESIS 
 
Kn=[-sq(A0,Xp(1:2*m,1:m),1,-1) 
    spalloc(m*length(d),1,1) 
    A0 
    spalloc(m*length(d),1,1)]; 
 
%% THIS THE MAIN FUNCTION FOR COMPUTING THE FIELD  
 
[Un,flag,relres,iter]=bicgstab(@muldisc,Kn,[],200); 
 
if flag~=0; 'WARNING bicgstab did not converge',flag,end; 
 
%% GENERATING THE X AXIS 
 
x=x_axis(n(1,:),M); 

PML 

%% THIS FUNCTION ADDS THE PML LAYERS AT THE SUBSTRATE AND THE 
%% SUPERSTRATE WITH THE CHOOSEN PML PROFILE. IN THIS THESIS  
%% WORK ONLY THE TANGENT PROFILE IS USED 
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function [d_x,n,M,w]=pml(pmlsup,etasup,pmlsub,etasub,n,M,w); 
 
h=w./M;         %% DELTA X IN EACH REGION 
d_x=[]; 
 
%% DELTA X WITHOUT PML 
 
for k=1:1:length(n(1,:)) 
    d_x=[d_x h(k)*ones(1,M(k))];  
end 
 
%% ADDING PML LAYER 
 
if pmlsup~=0   %% JUST TO CHECK THAT THERE IS A PML LAYER 
     M=[pmlsup M];h=[h(1) h]; 
     for i=1:1:length(n(:,1)) 
         n1(i,:)=[n(i,1)]; 
     end 
      
    for i=1:1:pmlsup 
        xi=(i*pi)/(2*(pmlsup+1)); 
        img(i)=(etasup/pmlsup)*tan(xi);    
%% tan(xi) TANGENT PROFILE. CHANGE TO ANY APPROPRIATE FUNCTION 
        invimg(pmlsup+1-i)=img(i); 
    end 
    d_x=[h(1)*(ones(size(invimg)))+invimg*j d_x]; 
    w=[h(1)*pmlsup w]; 
end 
 
if pmlsub~=0    %% JUST TO CHECK THAT THERE IS A PML LAYER 
    M=[M pmlsub];h=[h h(end)]; 
    for i=1:1:length(n(:,1)) 
        n2(i,:)=[n(i,end)]; 
    end 
    for i=1:1:pmlsub 
        xi=(i*pi)/(2*(pmlsub+1)); 
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        imgt(i)=(etasub/pmlsub)*tan(xi); 
    end 
     
    d_x=[d_x h(end)*(ones(size(invimg)))+imgt*j]; 
    w=[w h(end)*pmlsub]; 
end 
 
if length(n1)~=0 
n=[n1 n]; 
end 
if length(n2)~=0 
    n=[n n2]; 
end 

GENSOL 

 
%% GENERATES THE Q MATRIX 
%% GENERATES THE N MATRIX 
%% ALL THE VARIABLES USED ARE ALREADY DEFINED IN THE MAIN  
%% PROGRAM 
 
function [Qs,Ns,xaxis]=gensol(n1,M,k0) 
 
%% n_x = REFRACTIVE INDEX COLUMN VECTOR WITH PML 
 
n_x=[]; 
 
for k=1:1:length(n1) 
    n_x=[n_x n1(k)*ones(1,M(k))];  
end 
 
%% USING SPARSITY FOR N 
 
nx=n_x.^2; 
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nx=nx.'; 
Ns=spdiags(nx,0,length(nx),length(nx)); 
 
[Dxx]=dxx(n_x,k0);  
 
 
%% COMPUTING THE Q MATRIX 
 
Qs=Dxx+k0^2*Ns; 
 

DXX 

function [Dxx]=dxx(n_x,k0);  
global whichpt TE lambda d_x; 
m=length(n_x); 
if whichpt==5 
    a2=[0 0 (-1/12)*d_x(1:end-2).^-2]; 
    a1=[0 (16/12)*d_x(1:end-1).^-2]; 
    a0=(-30/12)*d_x.^-2; 
    a_1=[(16/12)*d_x(2:end).^-2 0]; 
    a_2=[(-1/12)*d_x(3:end).^-2 0 0]; 
    t=[a_2.' a_1.' a0.' a1.' a2.']; 
     clear a2 a1 a0 a_1 a_2; 
     
    Dxx=spdiags(t,-2:2,m,m); 
    clear t; 
     
    for i=2:1:m-2     
        Nn1=n_n(whichpt,d_x(i)); 
        Np1=n_p(whichpt,d_x(i+1)); 
        Mn1=m_n(whichpt,i-1,n_x,k0,TE); 
        Mp1=m_p(whichpt,i,n_x,k0,TE); 
        Mp2=m_p(whichpt,i+1,n_x,k0,TE); 
        qn(1:2,:)=q_n(whichpt,d_x(i-1:i).'); 
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        qp(1:2,:)=q_p(whichpt,d_x(i+1:i+2).'); 
        C=[qn(1,:)*Mn1*Nn1 
            qn(2,:) 
            1 0 0 0 0 
            qp(1,:)*Mp1 
            qp(2,:)*Mp2*Np1*Mp1]; 
        Cm=(C)^-1; 
        if i>2 
            Dxx(i,i-2:i+2)=Cm(3,:); 
        end 
    end 
     
end 
 
if whichpt==3 
    a0=-2*d_x.^-2; 
    a1=[0 d_x(1:end-1).^-2]; 
    a_1=[d_x(2:end).^-2 0]; 
    t=[a_1.' a0.' a1.'];     
     clear a1 a0 a_1; 
    Dxx=spdiags(t,-1:1,m,m); 
     clear t; 
     
    for i=1:1:m-1 
        qn1=q_n(whichpt,d_x(i)); 
        qp1=q_p(whichpt,d_x(i+1)); 
        Mp1=m_p(whichpt,i,n_x,k0,TE); 
         
        C=[qn1 
            1 0 0 
            qp1*Mp1]; 
         
        Cm=C^-1; 
        if i>2 
            Dxx(i,i-1:i+1)=Cm(3,:); 
        end 
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    end 
end 
 
if whichpt==7 
    e=(2/180)*d_x.^-2; 
    c=(-490/180)*d_x.^-2; 
    a=(-27/180)*d_x.^-2; 
    b=(270/180)*d_x.^-2; 
     
    a3=[0 0 0 e(1:end-3)]; 
    a2=[0 0 a(1:end-2)]; 
    a1=[0 b(1:end-1)]; 
    a0=[c]; 
    a_1=[b(2:end) 0]; 
    a_2=[a(3:end) 0 0]; 
    a_3=[e(4:end) 0 0 0]; 
    t=[a_3.' a_2.' a_1.' a0.' a1.' a2.' a3.']; 
    Dxx=spdiags(t,-3:3,m,m); 
    clear t; 
    for i=3:1:m-3 
        Nn1=n_n(whichpt,d_x(i-1)); 
        Nn2=n_n(whichpt,d_x(i)); 
        Np1=n_p(whichpt,d_x(i+1)); 
        Np2=n_p(whichpt,d_x(i+2)); 
         
        Mn1=m_n(whichpt,i-2,n_x,k0,TE); 
        Mn2=m_n(whichpt,i-1,n_x,k0,TE); 
         
        Mp1=m_p(whichpt,i,n_x,k0,TE); 
        Mp2=m_p(whichpt,i+1,n_x,k0,TE); 
        Mp3=m_p(whichpt,i+2,n_x,k0,TE); 
        qn(1:3,:)=q_n(whichpt,d_x(i-2:i).'); 
        qp(1:3,:)=q_p(whichpt,d_x(i+1:i+3).'); 
         
        C=[qn(1,:)*Mn1*Nn1*Mn2*Nn2 
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            qn(2,:)*Mn2*Nn2 
            qn(3,:) 
            1 0 0 0 0 0 0 
            qp(1,:)*Mp1 
            qp(2,:)*Mp2*Np1*Mp1 
            qp(3,:)*Mp3*Np2*Mp2*Np1*Mp1]; 
         
        Cm=C^-1; 
        if i>4 
            Dxx(i,i-3:i+3)=Cm(3,:); 
        end 
         
    end 
end 

M_P 

 
%% This function computes M+ 
 
function [Mp]=m_p(whichpt,i,n_x,k0,TE); 
 
if TE==1 
    r=1;        %row  
elseif i==length(n_x) 
    r=1; 
else 
    r=n_x(i+1)^2/n_x(i)^2; 
end 
 
if i==length(n_x) 
    sig=0;          %sigma 
else 
    sig=(k0^2)*(n_x(i+1)^2-n_x(i)^2); 
end 
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if whichpt==5 
    Mp=[1 0 0 0 0 
        0 r 0 0 0 
        -sig 0 1 0 0 
        0 -sig*r 0 r 0 
        sig^2 0 -2*sig 0 1]; 
elseif whichpt==3 
    Mp=[1 0 0 
        0 r 0 
        -sig 0 1]; 
elseif whichpt==7 
    Mp=[1 0 0 0 0 0 0 
        0 r 0 0 0 0 0 
        -sig 0 1 0 0 0 0 
        0 -sig*r 0 r 0 0 0 
        sig^2 0 -2*sig 0 1 0 0 
        0 sig^2*r 0 -2*r*sig 0 r 0 
        -sig^3 0 3*sig^2 0 -3*sig 0 1 
    ]; 
end 
 

M_N 

%% This function computes M- 
 
function [Mn]=m_n(whichpt,i,n_x,k0,TE); 
 
if TE==1 
    r=1;        %row  
elseif i==length(n_x) 
    r=1; 
else 
    r=n_x(i+1)^2/n_x(i)^2; 
end 
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if i==length(n_x) 
    sig=0;          %sigma 
else 
    sig=(k0^2)*(n_x(i+1)^2-n_x(i)^2); 
end 
 
if whichpt==5 
    Mn=[1 0 0 0 0 
        0 r^-1 0 0 0 
        sig 0 1 0 0 
        0 sig*r^-1 0 r^-1 0 
        sig^2 0 2*sig 0 1]; 
     
elseif whichpt==3 
    Mn=[1 0 0 
        0 r^-1 0 
        sig 0 1]; 
         
elseif whichpt==7 
    Mn=[1 0 0 0 0 0 0 
        0 r^-1 0 0 0 0 0 
        sig 0 1 0 0 0 0 
        0 sig*r^-1 0 r^-1 0 0 0 
        sig^2 0 2*sig 0 1 0 0 
        0 sig^2*r^-1 0 2*r^-1*sig 0 r^-1 0 
        sig^3 0 3*sig^2 0 3*sig 0 1]; 
end 
 

N_P 

%% This function computes N+ 
 
function [Np]=n_p(whichpt,h); 
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if whichpt==5 
    Np=[1 h h^2/2 h^3/6 h^4/24 
            0 1 h h^2/2 h^3/6 
            0 0 1 h h^2/2 
            0 0 0 1 h 
            0 0 0 0 1]; 
     
elseif whichpt==7 
    Np=[1 h h^2/2 h^3/6 h^4/24 h^5/120 h^6/720 
            0 1 h h^2/2 h^3/6 h^4/24 h^5/120 
            0 0 1 h h^2/2 h^3/6 h^4/24 
            0 0 0 1 h h^2/2 h^3/6 
            0 0 0 0 1 h h^2/2 
            0 0 0 0 0 1 h 
            0 0 0 0 0 0 1]; 
end 
 

N_N 

%% This function computes N- 
 
function [Nn]=n_n(whichpt,h); 
if whichpt==5 
    Nn=[1 -h h^2/2 -h^3/6 h^4/24 
            0 1 -h h^2/2 -h^3/6 
            0 0 1 -h h^2/2 
            0 0 0 1 -h 
            0 0 0 0 1]; 
     
elseif whichpt==7 
    Nn=[1 -h h^2/2 -h^3/6 h^4/24 -h^5/120 h^6/720 
            0 1 -h h^2/2 -h^3/6 h^4/24 -h^5/120 
            0 0 1 -h h^2/2 -h^3/6 h^4/24 
            0 0 0 1 -h h^2/2 -h^3/6 
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            0 0 0 0 1 -h h^2/2 
            0 0 0 0 0 1 -h 
            0 0 0 0 0 0 1]; 
end 

Q_P 

 
%% Computes Q+ 
 
function qp=q_p(whichpt,h); 
if whichpt==5 
    qp(:,1:whichpt)=[ones(length(h),1) h h.^2/2 h.^3/6 h.^4/24]; 
elseif whichpt==3 
    qp(:,1:whichpt)=[ones(length(h),1) h h.^2/2]; 
elseif whichpt==7 
    qp(:,1:whichpt)=[ones(length(h),1) h h.^2/2 h.^3/6 h.^4/24 h.^5/120 h.^6/720]; 
end 
 

Q_N 

%% Computes Q- 
 
function qn=q_n(whichpt,h); 
if whichpt==5 
    qn(:,1:whichpt)=[ones(length(h),1) -h h.^2/2 -h.^3/6 h.^4/24]; 
elseif whichpt==3 
    qn(:,1:whichpt)=[ones(length(h),1) -h h.^2/2]; 
elseif whichpt==7 
    qn(:,1:whichpt)=[ones(length(h),1) -h h.^2/2 -h.^3/6 h.^4/24 -h.^5/120 h.^6/720]; 
end 
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EXP_AANDB 

%% COMPUTES THE PADE PRIMES FOR THE EXPONENTIAL FUNCTION 
%% RETURNS THE PADE PRIMES FOR THE NUMERATOR AND THE  
%% DENOMINATOR WITH THE CONSTANT AT ZERO 
 
function [aa,bb,c0]=exp_aandb(g); 
 
global exp_order 
 
c=expcoeff(g);   
%% TAYLOR SERIES EXPANSION COEFFICIENTS OF EXPONENTIAL  
%% FUNCTION 
 
C=zeros(exp_order,exp_order);  
%% INITIALIZATION INORDER TO SAVE MEMORY 
 
%% CHECK THE THESIS FOR THE BELOW IMPLEMENTED STEPS. 
 
for i=exp_order:-1:1 
    C=C+diag((c(i+1)*ones(i,1)).',-exp_order+i); 
end 
 
for i=1:1:exp_order-1 
    C=C+diag((c(exp_order+i+1)*ones(exp_order-i,1)).',i); 
end 
 
CC=rot90(-c(1,exp_order+2:2*exp_order+1)); 
 
b=C\CC; 
clear C; 
 
C1=zeros(exp_order,exp_order); 
 
for i=1:1:exp_order 
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    C1=C1+diag((c(i)*ones(1,exp_order-i+1)).',i-1); 
end 
 
CC1=rot90(c(2:exp_order+1)); 
 
a=C1*b+CC1; 
clear C1 CC1; 
 
a=flipud(a); 
a=[c(1) a.']; 
 
b=flipud(b); 
b=[1 b.']; 
 
a=fliplr(a); 
b=fliplr(b); 
c0=a(end); 
aa=roots(a); 
bb=roots(b); 
aa=-1./aa; 
bb=-1./bb; 
 

EXPCOEFF 

%% THIS FUNCTION COMPUTES THE TAYLOR SERIES COEFFICIENTS OF THE 
EXPONENTIAL 
%% FUNCTION USING BUILT IN SYMBOLIC FUNCTIONS IN MATLAB 
 
function c=expcoeff(g); 
 
global exp_order; 
 
c=exp(g)*[1  
    1/2*g  
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    (-1/8*g+1/8*g^2) 
    (1/16*g-1/16*g^2+1/48*g^3) 
    (-5/128*g+5/128*g^2-1/64*g^3+1/384*g^4) 
    (7/256*g-7/256*g^2+3/256*g^3-1/384*g^4+1/3840*g^5)  
    (-21/1024*g+21/1024*g^2-7/768*g^3+7/3072*g^4-1/3072*g^5+1/46080*g^6)  
    (33/2048*g-33/2048*g^2+15/2048*g^3-1/512*g^4+1/3072*g^5-
1/30720*g^6+1/645120*g^7)  
    (-429/32768*g+429/32768*g^2-99/16384*g^3+55/32768*g^4-
5/16384*g^5+3/81920*g^6-1/368640*g^7+1/10321920*g^8)  
    (715/65536*g-715/65536*g^2+1001/196608*g^3-143/98304*g^4+55/196608*g^5-
11/294912*g^6+1/294912*g^7-1/5160960*g^8+1/185794560*g^9) 
    (-2431/262144*g+2431/262144*g^2-143/32768*g^3+1001/786432*g^4-
1001/3932160*g^5+143/3932160*g^6-11/2949120*g^7+11/41287680*g^8-
1/82575360*g^9+1/3715891200*g^10)  
    (4199/524288*g-4199/524288*g^2+1989/524288*g^3-
221/196608*g^4+91/393216*g^5-91/2621440*g^6+91/23592960*g^7-
13/41287680*g^8+1/55050240*g^9-1/1486356480*g^10+1/81749606400*g^11)  
    (-29393/4194304*g+29393/4194304*g^2-20995/6291456*g^3+4199/4194304*g^4-
221/1048576*g^5+1547/47185920*g^6-91/23592960*g^7+13/37748736*g^8-
13/566231040*g^9+13/11890851840*g^10-
1/29727129600*g^11+1/1961990553600*g^12)  
    (52003/8388608*g-52003/8388608*g^2+24871/8388608*g^3-
11305/12582912*g^4+1615/8388608*g^5-323/10485760*g^6+119/31457280*g^7-
17/47185920*g^8+1/37748736*g^9-1/679477248*g^10+1/16986931200*g^11-
1/653996851200*g^12+1/51011754393600*g^13)  
    (-185725/33554432*g+185725/33554432*g^2-
22287/8388608*g^3+81719/100663296*g^4-
17765/100663296*g^5+969/33554432*g^6-323/88080384*g^7+323/880803840*g^8-
17/587202560*g^9+17/9512681472*g^10-
1/11890851840*g^11+1/348798320640*g^12-
1/15695924428800*g^13+1/1428329123020800*g^14)  
    (334305/67108864*g-334305/67108864*g^2+482885/201326592*g^3-
37145/50331648*g^4+81719/503316480*g^5-
81719/3019898880*g^6+3553/1006632960*g^7-
323/880803840*g^8+323/10569646080*g^9-
323/158544691200*g^10+17/158544691200*g^11-
17/3923981107200*g^12+1/42849873690624000*g^15+1/7847962214400*g^13-
1/408094035148800*g^14)  
    (-
9694845/2147483648*g+1/1371195958099968000*g^16+9694845/2147483648*g^2-
2340135/1073741824*g^3+1448655/2147483648*g^4-
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482885/3221225472*g^5+81719/3221225472*g^6-
81719/24159191040*g^7+81719/225485783040*g^8-
3553/112742891520*g^9+323/144955146240*g^10-
323/2536715059200*g^11+323/55807731302400*g^12-1/11426632984166400*g^15-
17/83711596953600*g^13+17/3264752281190400*g^14)  
    (1/46620662575398912000*g^17+17678835/4294967296*g-
1/342798989524992000*g^16-17678835/4294967296*g^2+8554275/4294967296*g^3-
1330665/2147483648*g^4+596505/4294967296*g^5-
51129/2147483648*g^6+62491/19327352832*g^7-
24035/67645734912*g^8+4807/150323855360*g^9-
4807/2029372047360*g^10+209/1449551462400*g^11-
19/2657511014400*g^12+1/5078503548518400*g^15+19/66969277562880*g^13-
19/2176501520793600*g^14)  
    (-1/10969567664799744000*g^17-
64822395/17179869184*g+1/1678343852714360832000*g^18+19/27423919161999360
00*g^16+64822395/17179869184*g^2-
1964315/1073741824*g^3+9821575/17179869184*g^4-
2217775/17179869184*g^5+1153243/51539607552*g^6-
39767/12884901888*g^7+62491/180388626432*g^8-
312455/9740985827328*g^9+24035/9740985827328*g^10-
4807/30440580710400*g^11+437/52183852646400*g^12-
19/54847838323998720*g^15-19/52183852646400*g^13+19/1492458185687040*g^14)  
    (1/4387827065919897600*g^17+119409675/34359738368*g-
1/372965300603191296000*g^18-
1/78354054748569600*g^16+1/63777066403145711616000*g^19-
119409675/34359738368*g^2+57998985/34359738368*g^3-
1137235/2147483648*g^4+516925/4294967296*g^5-
723695/34359738368*g^6+303485/103079215104*g^7-
8671/25769803776*g^8+3289/103079215104*g^9-
16445/6493990551552*g^10+3289/19481971654656*g^11-
23/2435246456832*g^12+1/1899492236328960*g^15+23/52183852646400*g^13-
23/1356780168806400*g^14)  
    (-1/2279390683594752000*g^17-
883631595/274877906944*g+1/142082019277406208000*g^18+23/1139695341797376
000*g^16-1/13426750821714886656000*g^19+883631595/274877906944*g^2-
214937415/137438953472*g^3+135330965/274877906944*g^4-
3866599/34359738368*g^5+682341/34359738368*g^6-
144739/51539607552*g^7+268801/824633720832*g^8-
8671/274877906944*g^9+95381/37108517437440*g^10+1/25510826561258284646400
00*g^20-3289/18554258718720*g^11+299/28862180229120*g^12-
23/31658203938816000*g^15-
299/584459149639680*g^13+23/1085424135045120*g^14)  
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(1/107145471557284795514880000*g^21+23/31911469570326528000*g^17+16410301
05/549755813888*g-23/1627484948086652928000*g^18-
23/797786739258163200*g^16+1/4882454844259958784000*g^19-
1641030105/549755813888*g^2+799476205/549755813888*g^3-
126233085/274877906944*g^4+57998985/549755813888*g^5-
3866599/206158430208*g^6+3866599/1443109011456*g^7-
227447/721554505728*g^8+268801/8658654068736*g^9-
268801/103903848824832*g^10-
1/510216531225165692928000*g^20+95381/519519244124160*g^11-
8671/779278866186240*g^12+23/24547284284866560*g^15+299/519519244124160*g
^13-23/909158677217280*g^14)  
    (-1/20408661249006627717120000*g^21-23/21601610170682572800*g^17-
6116566755/2199023255552*g+23/954791169544169717760*g^18+1/47144007485205
31002654720000*g^22+23/600044726963404800*g^16-
23/53707003286859546624000*g^19+6116566755/2199023255552*g^2-
745922775/549755813888*g^3+944835515/2199023255552*g^4-
218038965/2199023255552*g^5+39017499/2199023255552*g^6-
351509/137438953472*g^7+1757545/5772436045824*g^8-
351509/11544872091648*g^9+268801/103903848824832*g^10+23/4081732249801325
543424000*g^20-268801/1428677921341440*g^11+268801/22858846741463040*g^12-
23/20001490898780160*g^15-
8671/13715308044877824*g^13+667/22858846741463040*g^14)  
    
(1/6802887083002209239040000*g^21+1/685765402243891200*g^17+11435320455/43
98046511104*g-1/27202027622341017600*g^18-
1/857163772458278364119040000*g^22-
29/600044726963404800*g^16+1/1322018542445773455360*g^19-
11435320455/4398046511104*g^2+5584691385/4398046511104*g^3-
443229475/1099511627776*g^4+205399025/2199023255552*g^5-
73943649/4398046511104*g^6+10743949/4398046511104*g^7-
565471/1924145348608*g^8+229245/7696581394432*g^9-
76415/29686813949952*g^10-
1/81634644996026510868480*g^20+198679/1039038488248320*g^11-
11687/952451947560960*g^12+29/21334923625365504*g^15+11687/17144135056097
280*g^13-899/27430616089755648*g^14+1/216862434431944426122117120000*g^23)  
    (-1/3014202276776363478220800*g^21-29/15361145010263162880*g^17-
171529806825/70368744177664*g+29/559584568231015219200*g^18+1/27429240718
6649076518092800*g^22+899/15361145010263162880*g^16-
1/839376852346522828800*g^19+171529806825/70368744177664*g^2-
41929508335/35184372088832*g^3+26682414395/70368744177664*g^4-
3102606325/35184372088832*g^5+1684272005/105553116266496*g^6-
41079805/17592186044416*g^7+139671337/492581209243648*g^8-
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10743949/369435906932736*g^9+2827355/1108307720798208*g^10+1/446548485448
35014492160*g^20-15283/79164837199872*g^11+198679/15674637765574656*g^12-
899/576042937884868608*g^15-
198679/274306160897556480*g^13+899/24936923717959680*g^14-
1/37715205988164248021237760000*g^23+1/10409396852733332453861621760000*g
^24)  
    
(1/1594816019458393374720000*g^21+899/384028625256579072000*g^17+32247603
6831/140737488355328*g-899/13056973258723688448000*g^18-
1/117218977430191913041920000*g^22-
899/13091884951928832000*g^16+29/16787537046930456576000*g^19-
322476036831/140737488355328*g^2+157807422279/140737488355328*g^3-
25157705001/70368744177664*g^4+58701311669/703687441776640*g^5-
5336482879/351843720888320*g^6+2357980807/1055531162664960*g^7-
336854401/1231453023109120*g^8+139671337/4925812092436480*g^9-
139671337/55415386039910400*g^10-
29/797408009729196687360000*g^20+10743949/55415386039910400*g^11-
565471/43540660459929600*g^12+15283/8727923301285888000*g^15+198679/26124
3962759577600*g^13-
15283/391865944139366400*g^14+1/11604678765588999391150080000*g^23-
1/1734899475455555408976936960000*g^24+1/52046984263666662269308108800000
0*g^25)  
    (-29/27643477670612151828480000*g^21-15283/5446224140002394112000*g^17-
1215486600363/562949953421312*g+899/10287312264448966656000*g^18+29/17415
39093248565565194240000*g^22+15283/194508005000085504000*g^16-
899/381916467817667887104000*g^19+1215486600363/562949953421312*g^2-
74417546961/70368744177664*g^3+190178175567/562949953421312*g^4-
44509785771/562949953421312*g^5+40639369617/2814749767106560*g^6-
4515485513/2111062325329920*g^7+1114210711/4222124650659840*g^8-
77735631/2814749767106560*g^9+440501909/177329235327713280*g^10+899/16586
086602367291097088000*g^20-
10743949/55415386039910400*g^11+10743949/812758995252019200*g^12-
15283/7924400203707187200*g^15-
10743949/13584686063498035200*g^13+565471/13584686063498035200*g^14-
1/4789232506433555304284160000*g^23+1/514044289023868269326499840000*g^24
-
1/83275174821866659630892974080000*g^25+1/2706443181710666438004021657600
0000*g^26)  
    
(899/559780422829896074526720000*g^21+15283/4668192120002052096000*g^17+2
295919134019/1125899906842624*g-899/8402745816003693772800*g^18-
899/31347703678474180173496320000*g^22-
565471/6418764165002821632000*g^16+899/294096103560129282048000*g^19-
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2295919134019/1125899906842624*g^2+3376351667675/3377699720527872*g^3-
135054066707/422212465065984*g^4+63392725189/844424930131968*g^5-
697319977079/50665495807918080*g^6+103856166799/50665495807918080*g^7-
645069359/2533274790395904*g^8+12256317821/455989462271262720*g^9-
1114210711/455989462271262720*g^10-
899/11874130181240219762688000*g^20+440501909/2279947311356313600*g^11-
440501909/32916739307706777600*g^12+10743949/5135011332002257305600*g^15+
10743949/13166695723082711040*g^13-
10743949/244524349142964633600*g^14+29/68964948092643196381691904000*g^23
-
29/5948226772990475687920926720000*g^24+1/2379290709196190275168370688000
0*g^25-
1/4163758741093332981544648704000000*g^26+1/14614793181237598765221716951
04000000*g^27)  
    (-899/391147817734971945123840000*g^21-
10743949/2875606345921264091136000*g^17-
17383387729001/9007199254740992*g+33263/261418758720114917376000*g^18+899
/19948538704483569201315840000*g^22+10743949/110600244073894772736000*g^1
6-899/235276882848103425638400*g^19+17383387729001/9007199254740992*g^2-
4263849820321/4503599627370496*g^3+8199711192925/27021597764222976*g^4-
482335952525/6755399441055744*g^5+443749076323/33776997205278720*g^6-
697319977079/354658470655426560*g^7+697319977079/2837267765243412480*g^8-
14836595257/567453553048682496*g^9+12256317821/5107081977438142464*g^10+8
99/8940521548227930174259200*g^20-
12256317821/63838524717976780800*g^11+18941582087/1404447543795489177600*
g^12-10743949/4792677243202106818560*g^15-
440501909/526667828923308441600*g^13+440501909/9585354486404213637120*g^1
4-
899/1206886591621255936679608320000*g^23+899/8882685314332443693961917235
2000*g^24-
29/266480559429973310818857517056000*g^25+29/3331006992874666385235718963
2000000*g^26-
1/216515454536853315040321732608000000*g^27+1/818428418149305530852416149
25824000000*g^28)  
    
(31/9933912831364366860288000*g^21+370481/88480195259115818188800*g^17+32
968493968795/18014398509481984*g-21793/147466992098526363648000*g^18-
31/469377381281966334148608000*g^22-
15189721/143780317296063204556800*g^16+21793/4705537656962068512768000*g^
19-
32968493968795/18014398509481984*g^2+16184533402863/18014398509481984*g^3
-7792553119897/27021597764222976*g^4+3675732603725/54043195528445952*g^5-
56549732365/4503599627370496*g^6+76508461435/40532396646334464*g^7-
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24045516451/101330991615836160*g^8+24045516451/945755921747804160*g^9-
24045516451/10214163954876284928*g^10-
1147/8940521548227930174259200*g^20+9720527927/51070819774381424640*g^11-
38421059/2837267765243412480*g^12+15189721/6390236324269475758080*g^15+65
3158003/766062296615721369600*g^13-
653158003/13693363552006019481600*g^14+31/25815755970508148378173440000*g
^23-
31/1682326764078114335977635840000*g^24+31/133240279714986655409428758528
000*g^25-
31/13324027971498665540942875852800000*g^26+1/577374545431608840107524620
28800000*g^27-
1/11691834544990079012177373560832000000*g^28+1/4746884825265972078944013
665697792000000*g^29)  
    (-1147/282332259417724110766080000*g^21-
15189721/3286407252481444675584000*g^17-
125280277081421/72057594037927936*g+893513/5308811715546949091328000*g^18
+1/284813089515958324736640819941867520000000*g^30+1147/12516730167519102
243962880000*g^22+653158003/5751212691842528182272000*g^16-
21793/3981608786660211818496000*g^19+125280277081421/72057594037927936*g^
2-
46155891556313/54043195528445952*g^3+19781096381277/72057594037927936*g^4
-
23377659359691/360287970189639680*g^5+7792553119897/648518346341351424*g^
6-147029304149/81064793292668928*g^7+37161252697/162129586585337856*g^8-
24045516451/972777519512027136*g^9+168318615157/72958313963402035200*g^10
+1147/7239288703018566942720000*g^20-
24045516451/127677049435953561600*g^11+41533164779/3064249186462885478400
*g^12-653158003/261418758720114917376000*g^15-
883684357/1021416395487628492800*g^13+653158003/13278413141339170406400*g
^14-
31/17210503980338765585448960000*g^23+31/1017878378265749850339409920000*
g^24-
31/71251486478602489523758694400000*g^25+31/60563763506812116095194890240
00000*g^26-
31/649546363610559945120965197824000000*g^27+31/9353467635992063209741898
8486656000000*g^28-1/654742734519444424681932919406592000000*g^29)  
    
(37/7239288703018566942720000*g^21+1/176584115499894161336717308363957862
40000000*g^31+21069613/4182700139521838678016000*g^17+238436656380769/144
115188075855872*g-1239389/6572814504962889351168000*g^18-
1/37975078602127776631552109325582336000000*g^30-
37/304050125526779811594240000*g^22-
21069613/174279172480076611584000*g^16+28823/4550410041897384935424000*g^
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19-
238436656380769/144115188075855872*g^2+117197678560039/144115188075855872
*g^3-
28289094824837/108086391056891904*g^4+4466699182869/72057594037927936*g^5
-8295298482471/720575940379279360*g^6+251372681287/144115188075855872*g^7-
35910383041/162129586585337856*g^8+15583751131/648518346341351424*g^9-
13186250957/5836665117072162816*g^10-
1517/7963217573320423636992000*g^20+5429632747/29183325585360814080*g^11-
493602977/36479156981701017600*g^12+484601099/185897783978748385689600*g^
15+1339779509/1532124593231442739200*g^13-
1339779509/26556826282678340812800*g^14+37/14493055983443171019325440000*
g^23-
37/791683183095583216930652160000*g^24+1/1357171171020999800452546560000*
g^25-
1/101787837826574985033940992000000*g^26+1/926269324221832363808863027200
0000*g^27-
1/1062894049544552637470670323712000000*g^28+1/16368568362986110617048322
9851648000000*g^29)  
    (-1517/242688535567860529889280000*g^21-
1/2278504716127666597893126559534940160000000*g^31-
484601099/89230936309799225131008000*g^17-
14544636039226909/9223372036854775808*g+1239389/5948729087319948342067200
*g^18+1/9206079661121885244012632563777536000000*g^30+1517/97296040168569
53971015680000*g^22+22776251653/178461872619598450262016000*g^16-
1239389/172088234311755648466944000*g^19+14544636039226909/92233720368547
75808*g^2-
3576549845711535/4611686018427387904*g^3+6914663035042301/276701161105643
27424*g^4-
820383749920273/13835058055282163712*g^5+254601853423533/2305843009213693
9520*g^6-
19355696459099/11529215046068469760*g^7+1975071067255/9223372036854775808
*g^8-
107731149123/4611686018427387904*g^9+825938809943/373546567492618420224*g
^10+65231/291226242681432635867136000*g^20-
171421262441/933866418731546050560*g^11+8391250609/622577612487697367040*
g^12-1339779509/495727423943329028505600*g^15-
493602977/560319851238927630336*g^13+9378456563/182103951652651479859200*
g^14-
37/10702564418542649368117248000*g^23+1/113013833919932263255499077352933
0319360000000*g^32+37/547019959169957634370437120000*g^24-
37/32000667611442521610670571520000*g^25+37/21714738736335996807240744960
00000*g^26-
1/4704860059539465974902161408000000*g^27+1/45731239778723609276049008885
7600000*g^28-1/56020768728936421363160035885056000000*g^29)  



 

 

162

    
(65231/8736787280442979076014080000*g^21+1/536118756735921552445441543419
985920000000*g^31+22776251653/3926161197631165905764352000*g^17+27767032
438524099/18446744073709551616*g-
1339779509/5889241796446748858646528000*g^18-
1/3063535752776694585402523105257062400000*g^30-
65231/336366310297054694426542080000*g^22-
1339779509/10015717340895831392256000*g^16+28505947/353354507786804931518
7916800*g^19-
27767032438524099/18446744073709551616*g^2+40989428837821289/553402322211
28654848*g^3-
6611198199648595/27670116110564327424*g^4+3143028652291955/55340232221128
654848*g^5-
4400240113208737/415051741658464911360*g^6+74580340901843/461168601842738
79040*g^7-
4776080944453/23058430092136939520*g^8+1256863406435/55340232221128654848
*g^9-179551915205/83010348331692982272*g^10-
65231/252396076990574951084851200*g^20+825938809943/456556915824311402496
0*g^11-
825938809943/61635183636282039336960*g^12+1339779509/48075443236299990682
8288*g^15+109086257917/123270367272564078673920*g^13-
8391250609/160251477454333302276096*g^14+1517/336366310297054694426542080
000*g^23-1/141267292399915329069373846691166289920000000*g^32-
1517/16246492787347741740801982464000*g^24+37/216619903831303223210693099
52000*g^25-
37/1353874398945645145066831872000000*g^26+37/980591886093488697926976798
72000000*g^27-
37/8384060626099328367275651629056000000*g^28+1/2347536975307811942837182
4561356800000*g^29+1/74589130387155293748629391052935801077760000000*g^3
3)  
    (-1500313/171629332353590966737698816000*g^21-
1/173600359324012693172809642631233536000000*g^31-
1339779509/217942009337893291095490560*g^17-
106168065206121555/73786976294838206464*g+1339779509/54485502334473322773
87264000*g^18+37/46293429153070051512749238034995609600000*g^30+65231/277
247383032723869345513472000*g^22+1339779509/9615088647259998136565760*g^
16-
1339779509/150175665809392095895486464000*g^19+106168065206121555/7378697
6294838206464*g^2-
1633354849324947/2305843009213693952*g^3+16878000109691119/73786976294838
206464*g^4-
12055714364065085/221360928884514619392*g^5+2255585268115403/221360928884
514619392*g^6-
258837653718161/166020696663385964544*g^7+36976807674023/1844674407370955
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16160*g^8-
8147432199361/368934881474191032320*g^9+1404729689545/6640827866535438581
76*g^10+70514711/240281065295027353432778342400*g^20-
14786628311/83010348331692982272*g^11+48584635879/3652455326594491219968*
g^12-70514711/24654073454512815734784*g^15-
48584635879/54786829898917368299520*g^13+26160957781/49308146909025631469
5680*g^14-
65231/11436454550099859610502430720000*g^23+1/322896668342663609301425935
29409437696000000*g^32+65231/526076909304593542083111813120000*g^24-
1517/631292291165512250499734175744000*g^25+1517/368253836513215479458178
26918400000*g^26+1/5072060866326559974906798591599634473287680000000*g^3
4-
37/59841248433397515411953968742400000*g^27+37/46163248791478083317793061
60128000000*g^28-37/420085564002450558191916860571648000000*g^29-
1/9041106713594581060439926188234642554880000000*g^33)  
    
(70514711/7008197737771631141789368320000*g^21+37/25583210847749238993887
73680881336320000000*g^31+1339779509/207094217017907652172185600*g^17+20
3236010537432691/147573952589676412928*g-
1339779509/5085313551217510125561446400*g^18-
37/21865992177563452131527980178472960000000*g^30-
70514711/252295118559778721104417259520000*g^22-
3737279683/25886777127238456521523200*g^16+1339779509/1373034658828727733
90159052800*g^19-
203236010537432691/147573952589676412928*g^2+100101318622914609/147573952
589676412928*g^3-
1011124430534491/4611686018427387904*g^4+2411142872813017/461168601842738
79040*g^5-
7233428618439051/737869762948382064640*g^6+9989020473082499/6640827866535
438581760*g^7-
322226466873629/1660206966633859645440*g^8+15847203288867/737869762948382
064640*g^9-68671214251757/33204139332677192908800*g^10-
70514711/214536665441988708422123520000*g^20+1163918885623/66408278665354
38581760*g^11-
40135133987/3043712772162076016640*g^12+3737279683/1278359364308071926988
800*g^15+48584635879/54786829898917368299520*g^13-
3737279683/69728692598622105108480*g^14+1500313/2134804849351973793960453
73440000*g^23-37/376712779733107544184996924509776773120000000*g^32-
65231/409170929459128310509086965760000*g^24+65231/2008657290072084433408
2451046400000*g^25-65231/1104761509539646438374534807552000000*g^26-
1/596713043097242349989035128423486408622080000000*g^34+1517/159576662489
0600410985439166464000000*g^27-
1517/113099959539121304128593000923136000000*g^28+37/22619991907824260825
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7186001846272000000*g^29+1/200913482524324023565331693071880945664000000
0*g^33+1/355044260642859198243475901411974413130137600000000*g^35)  
    (-70514711/6178655964729274802557157376000*g^21-
37/1180763577588426415102510929637539840000000*g^31-
3737279683/552251245381087072459161600*g^17-
1558142747453650631/1180591620717411303424*g+71008313977/2534833216299189
66258755174400*g^18+1517/472305431035370566041004371855015936000000*g^30
+70514711/216252958765524618089500508160000*g^22+3737279683/2510232933550
3957839052800*g^16-
1339779509/126741660814959483129377587200*g^19+1/255631867662858622735302
64901662157745369907200000000*g^36+1558142747453650631/11805916207174113
03424*g^2-
1151670726378785249/1770887431076116955136*g^3+745198705303919867/3541774
862152233910272*g^4-
11122368735879401/221360928884514619392*g^5+31344857346569221/33204139332
67719290880*g^6-
2411142872813017/1660206966633859645440*g^7+9989020473082499/531266229322
83508654080*g^8-
9989020473082499/478139606390551577886720*g^9+322226466873629/15937986879
6850525962240*g^10+70514711/193840187128761562433165721600*g^20-
68671214251757/398449671992126314905600*g^11+68671214251757/5259535670296
067356753920*g^12-3737279683/1255116466775197891952640*g^15-
1163918885623/1314883917574016839188480*g^13+71008313977/1314883917574016
839188480*g^14-
70514711/8325738912472697796445769564160000*g^23+37/146414683620964875472
711355275054940160000000*g^32+3065857/1537059491533421131651526688768000
0*g^24-
65231/15370594915334211316515266887680000*g^25+65231/80346291602883377336
3298041856000000*g^26+37/47737043447779387999122810273878912689766400000
00*g^34-
65231/47002580587686775741752935448576000000*g^27+65231/31021703187873271
98955693739606016000000*g^28-
1517/5428798057877822598172464044310528000000*g^29-
37/22840690644870520573742971422908570664960000000*g^33-
1/40576486930612479799254388732797075786301440000000*g^35)  
    
(1905803/149107836252893509563973632000*g^21+41/6747220443362436657728633
88364308480000000*g^31+101007559/14344188191716547336601600*g^17+2989949
596465113373/2361183241434822606848*g-
101007559/341391678962853826611118080*g^18-
1763/314870287356913710694002914570010624000000*g^30-
1905803/5088304912129991013870600192000*g^22-
1919143621/12551164667751978919526400*g^16+1919143621/1689888810866126441
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72503449600*g^19-
1/2840354085142873585947807211295795305041100800000000*g^36-
2989949596465113373/2361183241434822606848*g^2+1473918815158858705/236118
3241434822606848*g^3-
715903424505731371/3541774862152233910272*g^4+342388594328828047/70835497
24304467820544*g^5-
20140505548754591/2213609288845146193920*g^6+9318741373304363/66408278665
35438581760*g^7-
121022615237719/664082786653543858176*g^8+269973526299527/132816557330708
77163520*g^9-1889814684096689/956279212781103155773440*g^10-
101007559/253483321629918966258755174400*g^20+269973526299527/15937986879
68505259622400*g^11-
113214704577221/8765892783826778927923200*g^12+55655165009/18408374846036
235748638720*g^15+1855978763561/2103814268118426942701568*g^13-
142767597197/2629767835148033678376960*g^14+1905803/190302603713661663918
760447180800*g^23-41/73207341810482437736355677637527470080000000*g^32-
82861/339826078060110114140643655680000*g^24+82861/1537059491533421131651
5266887680000*g^25-82861/768529745766710565825763344384000000*g^26-
1/38653476475934727124795797792614504202240000000*g^34+1763/9082624268152
03395975902134272000000*g^27-
1763/56403096705224130890103522538291200000*g^28+1/1891675820705153808241
239602722999673157373132800000000*g^37+1763/3948216769365689162307246577
680384000000*g^29+1/234263493793543800756338168440087904256000000*g^33+1/
8542418301181574694579871312167805428695040000000*g^35)  
    (-101007559/7135086090323644976172367872000*g^21-
1763/16316005799403710463234696482264186880000000*g^31-
2929219211/401637269368063325424844800*g^17-
11487701081155435591/9444732965739290427392*g+101007559/32513493234557507
2962969600*g^18+1763/193374883548488420305003810160168140800000*g^30+101
007559/237976106659618041264101916672000*g^22+172823933449/11045024907621
74144918323200*g^16-
101007559/8339711014664000621500170240*g^19+1/582636735413922786861088658
727342626675097600000000*g^36+11487701081155435591/944473296573929042739
2*g^2-
1416291914115053703/2361183241434822606848*g^3+5507801888225208845/283341
98897217871282176*g^4-
1318769466194768315/28334198897217871282176*g^5+414470403661212899/472236
64828696452136960*g^6-
18020452333096213/13281655733070877163520*g^7+4694403548957837/2656331146
6141754327040*g^8-
70065724611311/3541774862152233910272*g^9+184718728520729/956279212781103
15577344*g^10+101007559/233511908410592017402004766720*g^20-
99463930741931/597674507988189472358400*g^11+99463930741931/7791904696734
914602598400*g^12-7514084063/2454449979471498099818496*g^15-
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184718728520729/210381426811842694270156800*g^13+458359127843/84152570724
73707770806272*g^14-
1905803/163608573328487403369070067712000*g^23+1763/158964513645619007656
0866142986310778880000000*g^32+82861/283588193769378165839721450700800*g
^24-
82861/12396855327632816963850680559206400*g^25+82861/59600265998234696941
5898103808000000*g^26+41/58753284243420785229689612644774046387404800000
0*g^34-
82861/31637807867396251626493924343808000000*g^27+82861/18637544998247973
68542551179526144000000*g^28-
1/204505494130286898188242119213297261962959257600000000*g^37-
1763/2609256299754716315959571651336601600000*g^29+1/14376736237359168942
6334209806947975159960358092800000000*g^38-
41/4239053697216506870828976381296828743680000000*g^33-
1/2497014580345383372261808537402896971464704000000*g^35)  
    
(101007559/6504974591437920484770132787200*g^21+1763/98368962500752805111
67585125538988032000000*g^31+172823933449/22973651807853222214301122560*
g^17+22091732848375837675/18889465931478580854784*g-
172823933449/532571019182051969513344204800*g^18-
82861/5902137750045168306700551075323392819200000*g^30-
101007559/212495836653638735835824337715200*g^22-
458359127843/2871706475981652776787640320*g^16+2929219211/228244722506593
701220004659200*g^19-
41/6816849804342896606274737307109908732098641920000000*g^36-
22091732848375837675/18889465931478580854784*g^2+32695764615596239759/566
68397794435742564352*g^3-
883669313935033507/4722366482869645213696*g^4+423677068325016065/94447329
65739290427392*g^5-
1440502032305054621/170005193383307227693056*g^6+223176371202191561/17000
5193383307227693056*g^7-
4554619820452889/26563311466141754327040*g^8+6138835410175633/31875973759
3701051924480*g^9-361107965304449/191255842556220631154688*g^10-
101007559/216832486381264016159004426240*g^20+156300462594463/95627921278
1103155773440*g^11-
99463930741931/7889303505444101035130880*g^12+14209132963133/459473036157
0644442860224512*g^15+99463930741931/113956606189748126063001600*g^13-
99463930741931/1823305699035970017008025600*g^14+101007559/75623518338500
84422392572018688000*g^23-
1763/876713378287959375557811024313662308352000000*g^32-
4391633/12761468719622017462787465281536000*g^24+82861/102091749756976139
70229972225228800*g^25-82861/473997409585960648617820139028480000*g^26-
1763/10911324216635288685513785205458037186232320000000*g^34+82861/241738
67888883993079508827090452480000*g^27-
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82861/1359780068749724610722371523837952000000*g^28+1/1121385426514015177
5254068364941942062476907931238400000000*g^39+1/409010988260573796376484
23842659452392591851520000000*g^37+82861/8480082974202828026868607866843
9552000000*g^29-
1/15133406565641230465929916821783997385258985062400000000*g^38+1763/9017
6233195332964343089133929405266001920000000*g^33+41/37098502336559981530
746869698557326433189888000000*g^35)  
    (-2929219211/173465989105011212927203540992000*g^21-
82861/295106887502258415335027553766169640960000000*g^31-
14209132963133/1837892144628257777144089804800*g^17-
340212685864987900195/302231454903657293676544*g+10542259940389/312441664
58680382211449526681600*g^18+82861/4015059693908277759660238826750607360
000000*g^30+101007559/191725566905538709024803913728000*g^22+14209132963
133/87518673553726560816385228800*g^16-
172823933449/12781704460369247268320260915200*g^19+1763/10387580654236794
8286091235155960514012931686400000000*g^36+340212685864987900195/3022314
54903657293676544*g^2-
83948584823828183165/151115727451828646838272*g^3+163478823077981198795/9
06694364710971881029632*g^4-
32695764615596239759/755578637259143234191360*g^5+6185685197545234549/755
578637259143234191360*g^6-
1440502032305054621/1133367955888714851287040*g^7+2263646050765085833/136
00415470664578215444480*g^8-
31882338743170223/1700051933833072276930560*g^9+141193214434039559/765023
37022488252461875200*g^10+172823933449/346931978210022425854407081984000
*g^20-
6138835410175633/38251168511244126230937600*g^11+1/8971083412112121420203
25469195355364998152634499072000000000*g^40+952011908529911/765023370224
88252461875200*g^12-14209132963133/4558264247589925042520064000*g^15-
99463930741931/114753505533732378692812800*g^13+99463930741931/1823305699
035970017008025600*g^14-
101007559/6678440580542931697697336328192000*g^23+82861/24395502700186695
667695611111336690319360000000*g^32+4391633/1099978448560012279620737748
1728000*g^24-
4391633/453741110031005065343554321121280000*g^25+4391633/204183499513952
27940459944450457600000*g^26+1763/52903390141262005747945625238584422721
12640000000*g^34-
82861/18959896383438425944712805561139200000*g^27+82861/10238344047056750
01014491500301516800000*g^28-
1/1150138898988733515410673678455583801279682864742400000000*g^39-
41/467441129440655767287410558201822313058192588800000000*g^37-
82861/60918147079987662560362244267940249600000*g^29+41/12106725252512984
3727439334574271979082071880499200000000*g^38-
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1763/48791005400373391335391222222673380638720000000*g^33-
1763/674518224301090573286306721791951389694361600000000*g^35)]; 
 
c=c(1:2*exp_order+1).'; 
 

MULDISC 

 
%% IMPLEMENTS THE DERIVED MATRIX FORMULATION FOR THE  
%% MULTIPLE LONGITUDINAL DISCONTINUITY CASE 
%% sq AND tt ARE BOTH FUNCTIONS 
 
function [Un]=muldisc(An); 
global m Xp d;  
 
ndis=length(d);  %% TOTAL NUMBER OF DISCONTINUITIES 
 
 
A=An(1:(ndis+1)*m,1); 
B=An((ndis+1)*m+1:end,1); 
 
 
Un=[A(1:m,1)+sq(B(1:m,1),Xp(1:2*m,1:m),1,1)]; 
    for i=1:1:ndis 
        Un=[Un; tt(A(m*(i-1)+1:m*i,1),Xp(m*i+1:m*(i+2),1:m),d(i),1,-
1)+A(m*i+1:m*(i+1),1)+sq(B(m*i+1:m*(i+1),1),Xp(m*i+1:m*(i+2),1:m),1,1)]; 
    end 
     
 
Un=[Un; sq(A(1:m,1),Xp(1:m*2,1:m),-1,0)+B(1:m,1)-
tt(B(m+1:2*m,1),Xp(1:m*2,1:m),d(1),-1,0)]; 
 
    for i=1:1:ndis-1 
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        Un=[Un; sq(A(m*i+1:m*(i+1),1),Xp(m*i+1:m*(i+2),1:m),-
1,1)+B(m*i+1:m*(i+1),1)+tt(B(m*(i+1)+1:m*(i+2),1),Xp(m*i+1:m*(i+2),1:m),d(i+1),-
1,-1)]; 
    end 
 
 
Un=[Un; sq(A(m*ndis+1:end,1),Xp(m*ndis+1:end,1:m),-1,1)+B(m*ndis+1:end,1)]; 
 

X_AXIS 

%% THIS FUNCTION EVALUATES THE X AXIS FOR THE STRUCTURE 
 
function xaxis=x_axis(n1,M) 
 
global d_x 
 
[dummy core]=max(n1); 
 
x=cumsum(d_x); 
x0=sum(d_x(1:sum(M(1:core-1)))); 
xaxis=x-x0; 
xaxis=real(xaxis); 
 
 

SQ 

%% sq(field,X,K,L) 
%% K controls the order of inverse K=1 for S1^-1*S0 and K=-1 for S0^-1*S1 
%% L controls the sign L=1 is 0.5*(S1^-1*S0-I)*field and L=-1 is  
%% -0.5*(I+S1^- 1*S0)*field  
%% and if L=0 then it just returns S0^-1*S1*field 
 



 

 

170

function R=sq(field,X,K,L); 
 
global I m sq_a sq_b; 
 
%% USING DIFFERENT VARIABLES FOR DIFFERENT LAYERS 
 
X1=X(1:m,1:m);  
X2=X(m+1:2*m,1:m); 
clear X; 
 
R=field; 
 
if K==1 
    for i=1:1:length(sq_a) 
        R=(I+sq_a(i)*X1)*R; 
        R=(I+sq_b(i)*X1)\R; 
    end 
     
    for i=1:1:length(sq_a) 
        R=(I+sq_b(i)*X2)*R; 
        R=(I+sq_a(i)*X2)\R; 
    end 
     
elseif K==-1 
    for i=1:1:length(sq_a) 
        R=(I+sq_a(i)*X2)*R; 
        R=(I+sq_b(i)*X2)\R; 
    end 
     
    for i=1:1:length(sq_a) 
        R=(I+sq_b(i)*X1)*R; 
        R=(I+sq_a(i)*X1)\R; 
    end 
end 
 
if L==0 
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    return; 
elseif L==1 
    R=0.5*(R-field); 
elseif L==-1 
    R=-0.5*(field+R); 
end 
 

TT 

%% E=tt(A,X,Z,K,L); 
%% dont specify K,L to evaluate exp()*field==Pm*field 
%% K controls the order of evaluation of the inverses 
%% K=1 gives S1^-1*S0 and K=-1 gives S0^-1*S1 
%% and L controls the sign L=1 is 0.5*(S1^-1*S0-I)*field 
%% and L=-1 is -0.5*(I+S1^-1*S0)*field 
%% and if L=0 then it just returns S0^-1*S1*P1*field 
 
function E=tt(A,X,Z,K,L); 
 
global I m exp_a exp_b c0 d_z; 
 
field=A; 
 
k1=floor(Z/d_z); %% TOTAL NUMBER OF STEPS 
k2=rem(Z,d_z);  %% THE RESIDUE LESS THAN THE STEP 
 
if nargin==3 
    for i=1:1:k1 
        field=trans_field(field,X); 
    end 
    if k2~=0 
        field=trans_field(field,X,k2); 
    end 
end 
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if nargin>=4 
    if K==1 
        for i=1:1:k1 
            field=trans_field(field,X(1:m,:)); 
        end 
        if k2~=0 
            field=trans_field(field,X(1:m,:),k2); 
        end 
    elseif K==-1 
        for i=1:1:k1 
            field=trans_field(field,X(m+1:end,:)); 
        end 
        if k2~=0 
            field=trans_field(field,X(m+1:end,:),k2); 
        end 
    end 
end 
 
if nargin==5 
    E=sq(field,X,K,L); 
else 
    E=field; 
End 
 

TRANS_FIELD 

%% This function computes the field (A) transmitted by a distance of d_z in  
%% region defined by X  
 
function field=trans_field(A,X,d_z); 
global I bcr exp_order exp_a exp_b c0; 
if nargin==2 
    a=exp_a; 
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    b=exp_b; 
    c1=c0; 
end 
if nargin==3 
    g=j*d_z*bcr^-0.5; 
    [a,b,c1]=exp_aandb(g); 
end 
field=c1*A; 
clear A; 
 
for k=1:1:length(a) 
    field=field+a(k)*X*field; 
    field=(I+b(k)*X)\field; 
end 

PROP 

%% This function evaluates the propagated field after a distance Z. 
 
function field=prop(A,Q,Z); 
 
global I bcr d_z; 
 
 
 
Xp=bcr*(Q)-I; 
clear Q; 
field=A; 
 
k=floor(Z/d_z); 
kk=rem(Z,d_z); 
for i=1:1:k 
    field=trans_field(field,Xp); 
end 
if kk~=0 
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    field=trans_field(field,Xp,kk); 
end 

SQ_FIELD 

%%computes S*field; 
 
function R=sq_field(field,X,bcr); 
global I sq_a sq_b; 
 
R=field; 
 
for i=1:1:length(sq_a) 
    R=(I+sq_a(i)*X)*R; 
    R=(I+sq_b(i)*X)\R; 
end 
R=(bcr.^-0.5)*R; 
 

SQRT_PROD 

%computes the product S2^-1*S1*A 
 
function [A]=sqrt_prod(A,Q2,Q1) 
 
 
global I sq_a sq_b bcr; 
Xp2=bcr*(Q2)-I; 
Xp1=bcr*(Q1)-I; 
clear Q1 Q2; 
for i=1:1:length(sq_a) 
    A=A+sq_a(i)*Xp1*A; 
    A=(I+sq_b(i)*Xp1)\A; 
end 



 

 

175

 
for i=1:1:length(sq_a) 
    A=A+sq_b(i)*Xp2*A; 
    A=(I+sq_a(i)*Xp2)\A; 
End 
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