KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS ELECTRICAL ENGINEERING DEPARTMENT SECOND SEMESTER 2006/2007

EE 340 (01) MAJOR EXAM II

LOCATION: 7-122

TIME: 6:30 -8:00 P.M.

DATE: SATURDAY 19-MAY-2007

Student's Name:.....

Student's I.D. Number:

	Maximum Score	Score
Problem 1	25	
Problem 2	25	
Problem 3	25	
Problem 4	25	
Total	100	

Problem 1 [25 points]

A solenoidal inductor is formed by wrapping N turns of negligibly thin wire around a cylindrical shell. The cylindrical shell has a relative permeability μ_r , an inner radius a and an outer radius b. Assume that the length of the solenoidal inductor is much larger than its outer cross sectional radius (i.e. d >> b).

Derive an expression for the self inductance.

Problem 2 [25 points]

The diagram shows an infinitely-long filamentary conductor which carries the steady current I_1 . The *coplanar finite-length* filamentary conductor of length *h* carries the steady current I_2 . This conductor is placed in the x-z plane at 45° with respect to the x- axis. The separation between the infinitely-long conductor and the *near edge* of the finite-length conductor equals *d*. The surrounding medium is air.

Derive an expression for the resulting magnetic force \vec{F}_m acting on the *finite-length* conductor.

[Hint: The steady current I_1 induces the magnetic field \vec{H}_1 . An expression for \vec{H}_1 , valid only in the x-z, is given by: $\vec{H}_1 = \frac{I_1}{2\pi x} \vec{a}_y$].

Problem 3 [25 points]

Consider the plane boundary x = 0, which separates two semi-infinite media. Medium 1 (x > 0) is air and medium 2 (x < 0) is a magnetic material with a relative permittivity $\mu_r = 6$. The magnetic flux density vectors in medium 1 and medium 2 are respectively given by:

 $\vec{B}_1 = 3\vec{a}_x - 5\vec{a}_y + 10\vec{a}_z \quad [\mu Wb/m^2]$

 $\vec{B}_2 = B_{2x}\vec{a}_x + 36\vec{a}_y + 48\vec{a}_z \quad [\mu Wb/m^2]$

a) Find the numerical value of B_{2x} in $\mu Wb/m^2$.

b) Calculate the surface current density vector \vec{K} at the boundary.

Problem 4 [25 points]

The cross-sectional area of an infinitely-long cylindrical conductor of radius a is shown in the diagram. The conductor carries the steady current I, which flows in the positive z-direction. Assume nonmagnetic media throughout.

a) <u>Derive</u> an expression for the \vec{B} field:

- i) Inside the conductor ($\rho < a$).
- ii) Outside the conductor ($\rho > a$).

b) <u>Derive</u> an expression for the magnetostatic energy <u>per unit length</u>, stored <u>inside</u> the conductor.

