KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
 ELECTRICAL ENGINEERING DEPARTMENT

SECOND SEMESTER 2006/2007

EE 207 MAJOR EXAM II

LOCATION: 14-108

DATE: MONDAY 14-5-2007

TIME: 6:30-8:00 PM

Student's Name: \qquad
Student's I.D. Number: \qquad
Section Number:

	Maximum Score	Score
Problem 1	15	
Problem 2	15	
Problem 3	15	
Problem 4	15	
Total	60	

Problem 1 [15 Points]

a) Given that $x_{1}(t)=\Pi(t)$, use the integral definition of Fourier Transform to find the Fourier Transform of $x_{1}(t)$.
b) The signal $x_{2}(t)$ has the Fourier Transform $X_{2}(f)=\frac{1}{1+j 2 \pi f}+\frac{1}{(3+j 2 \pi f)^{2}}$

Find the Fourier Transform of $x_{2}\left(\frac{t-3}{5}\right)$.
c) Consider the signal $x_{3}(t)$ shown in following graph:

The Fourier Transform $X_{3}(f)$ of the above signal is given by (select an answer):

1) $-j 12 \operatorname{sinc}^{2}(f) \cos (6 \pi f)$
2) $j 12 \operatorname{sinc}^{2}(f) \sin (6 \pi f)$
3) $j 6 \operatorname{sinc}^{2}(f) \cos (6 \pi f)$
4) $-j 12 \operatorname{sinc}^{2}(f) \sin (6 \pi f)$
5) $6 \operatorname{sinc}^{2}(f) \cos (3 \pi f)$
6) $6 \operatorname{sinc}^{2}(f) \sin (3 \pi f)$
[Hint for part c): The Fourier Transform of $x(t)=\Lambda(t)$ is $\left.X(f)=\operatorname{sinc}^{2}(f)\right]$.

Problem 2 [15 Points]

Consider the following LTI (Linear Time Invariant) system, with impulse response $h(t)$.

a) It is known that for time-domain signals, the input-output relation is given by the convolution $y(t)=x(t) * h(t)$.
i) Write the corresponding input-output relationship in the frequency-domain [between $X(f)$, $Y(f)$ and $H(f)]$.
ii) Suppose that the impulse response is given by $h(t)=2 \pi \exp (-2 \pi t) u(t)$. Use the integral definition of the Fourier Transform to show that the frequency response is given by $H(f)=1 /(1+j f)$.
iii) Plot the double-sided amplitude spectrum of $H(f)$ and specify the type offilter.
b) Now suppose that the input is given by $x(t)=5 \cos (2 \pi t)$, find:
i) $Y(f)$ [Expressed in the simplest possible form].
ii) $y(t)$ [Expressed in the simplest possible form].

Problem 3 [15 Points]

a)

The signal $x_{1}(t)$ shown above can be expressed in terms of singularity functions as:

$$
x_{1}(t)=5 u(t)-5 r(t)+5 r(t-1)+2 u(t-3)-2 u(t-4)
$$

i) Find the La Place Transform of $x_{1}(t)$.
ii) Find the La Place Transform of $\frac{d x_{1}(t)}{d t}$.
b) Find the inverse La Place Transform of the signal $X_{2}(s)=\frac{1}{3 s+12} e^{-7 s}$.

Problem 4 [15 Points]

Find the inverse La Place Transform of the following signals:
a) $X(s)=\frac{5 s^{2}+17 s+15}{\left(s^{2}+5 s+4\right)(s+1)}$
b) $Y(s)=\frac{2 s^{2}+14 s+17}{s^{2}+6 s+10}$

