EE 207 MAJOR EXAM I
LOCATION: 14-108
DATE: SATURDAY 31-3-2007
TIME: 6:00-7:30 PM

Student's Name:
Student's I.D. Number:

	Maximum Score	Score
Problem 1	20	
Problem 2	20	
Problem 3	10	
Problem 4	10	
Total	60	

Problem 1 [20 points]

a) For the signal $x(t)=3 \sin (2 \pi t) \Pi(t)$, which of the following statements is correct? (Circle the correct answer):
i) $x(t)$ is an energy signal.
ii) $x(t)$ is a power signal.
iii) $x(t)$ is neither an energy nor a power signal.
b) Evaluate the following integral: $\int_{-\infty}^{+\infty}\left(3 t^{2}-2 t\right) \dot{\delta}(t-2) d t$
c) Find the fundamental period the periodic signal
$s(t)=5 \cos \left(40 \pi t+\frac{\pi}{8}\right)+7 \sin \left(60 \pi t-\frac{\pi}{3}\right)$.
d) Sketch the double-sided amplitude spectrum of the signal $s(t)$ given in part (c).
e) Sketch the signal $g(t)=\Pi(0.5 t+1.5)$.
f) Express the signal $y(t)$ (shown in the diagram below) in terms of singularity functions.

Problem 2 [20 points]

The circuit shown has an input voltage $x(t)$, output voltage $y(t)$, and zero initial conditions:

a) Show that the input $x(t)$ and the output $y(t)$ are related by a differential equation of the form:
$\tau_{o} \frac{d y(t)}{d t}+y(t)=x(t)$
And evaluate the constant τ_{o}.
b) Use the above differential equation to show that this circuit can be considered as a linear time-invariant (LTI) system.
c) Assuming that this circuit has the following impulse response: $\quad h(t)=\left(\frac{1}{\tau_{o}}\right) e^{-t / \tau_{o}} u(t)$

Find the step response $a(t)$ [i.e. the response due to a unit step input $x(t)=u(t)]$. [Express your final result using a single expression, which valid for all t].
d) Now consider the following input signal $x(t)$:

Express $x(t)$ in terms of a combination of step functions.
e) Find the output voltage of the circuit when the input is $x(t)$ shown in part (d). [Hint: It is useful to consider the answer to part (c)].

Problem 3 [10 points]

Consider the linear time invariant system shown:

The impulse response of the system is given by $h(t)=4 e^{-3 t} u(t)$.
Find the output $y(t)$ due to the input signal $x(t)=5 e^{-2 t} u(t)$.

Problem 4 [10 points]

Consider the periodic signal $x(t)$:

a) Find the period of $x(t)$.
b) Calculate the average value (D.C. value) of $x(t)$.
c) Calculate the Trigonometric Fourier Series coefficient a_{1} [i.e. the cosine coefficient associated with the fundamental frequency].
[Hint for part (c): $\int x \cos (b x) d x=\frac{x \sin (b x)}{b}+\frac{\cos (b x)}{b^{2}}$]

