EE 340 (01) MAJOR EXAM I
LOCATION: 7-122
TIME: 6:30-8:00 P.M.
DATE: SUNDAY 1-APRIL-2007

Student's Name:
Student's I.D. Number:

|  | Maximum Score | Score |
| :---: | :---: | :---: |
| Problem 1 | 25 |  |
| Problem 2 | 25 |  |
| Problem 3 | 25 |  |
| Problem 4 | 25 |  |
| Total | 100 |  |

Problem 1 [25 points]
The electrostatic potential $V=10 e^{-(x+2 y+3 z)} \quad$ [V] exists in free space.
a) Calculate the volume charge density in $C / m^{3}$ at point $P$ whose rectangular coordinates are $(1,0,0)$.
b) Calculate the maximum electrostatic energy density in Joule per cubic meter.
c) Calculate the total stored electrostatic energy inside the cubic volume $0.50[\mathrm{~m}]$ on the side (see figure).


Problem 2 [25 points]
An infinitely long line of charge of uniform density $\rho_{L}=\rho_{o}$ is placed on the entire $y$ axis as shown in the diagram. The surrounding medium is air. Consider the point $P$ which is situated in the $y-z$ plane [i.e. $P=P(0, y, z)]$.
a) Develop an expression for the electric field intensity vector $\vec{E}$ at point $P$.
b) Now consider the two points $A$ and $B$ with rectangular coordinates $(0,2,4)$ and $(0,6,9)$, respectively. Calculate the resulting potential difference $V_{A B}$ for $\rho_{o}=-3[\mathrm{nC} / \mathrm{m}]$.


Problem 3 [25 points]
The plane boundary $y=0$ separates two the semi infinite regions, region $1(y>0)$ and region 2 $(y<0)$. Region 1 is an air region and region 2 is a conductor.

Consider the electrostatic field: $\vec{E}_{1}=-2 x y \vec{a}_{x}-x^{2} \vec{a}_{y}+y \vec{a}_{z}[\mathrm{~V} / \mathrm{m}]$, which exists in air.
a) Find the electrostatic field on the conductor/air boundary.
b) Find the surface charge density $\rho_{s}$ on the conductor/air boundary.
c) Calculate the total charge $Q$ residing on the square area ( $0 \leq x \leq 1, y=0,0 \leq z \leq 1$ ).


Problem 4 [25 points]
A spherical shell of inner radius $a$ and outer radius $b$ exists in free space. This shell contains a uniform volume charge density $\rho_{v}=\rho_{o}$. Derive an expression for the electric flux density vector $\vec{D}$ in the regions:
a) $r<a$.
b) $b>r>a$.
c) $r>b$.


