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Abstract— In an OFDM system, the receiver requires an estimate
of the channel to recover the transmitted data. Most channel esti-
mation methods rely on some form of training which reduces the
useful data rate. Here instead we blindly estimate the channel by
maximizing the log likelihood of the channel given the output data.
Finding the likelihood function of a linear system can be very difficult.
However, in the OFDM case, central limit arguments can be used to
argue that the time-domain input is Gaussian. This together with the
Gaussian assumption on the noise makes the output data Gaussian.
The output likelihood function can then be maximized to obtain the
maximum likelihood (ML) estimate of the channel. Unfortunately,
the likelihood function is not uni-modal and thus finding the global
maxima is challenging. In this paper, we propose two methods to find
the global maxima of the ML objective function. One is the blind
Genetic algorithm and the other is the semi-blind Steepest descent
method. The performance of the proposed algorithms is demonstrated
by computer simulations.

Keywords— Gaussian assumption on data, Blind channel estima-
tion, Semi-blind channel estimation, Maximum likelihood estimation.

I. I NTRODUCTION

Orthogonal Frequency Division Multiplexing (OFDM) has
emerged as a modulation scheme that can achieve high data
rates by efficiently combating multipath effects. It does this by
dividing the frequency selective fading channel into parallel
frequency-flat channels. The additional advantages of simple
receiver implementation and high spectral efficiency due to
orthogonality contribute towards the increasing interest in
OFDM. This is reflected by the many standards that considered
and adopted OFDM, including those for digital audio and
video broadcasting (DAB and DVB), WIMAX (Worldwide
Interoperability for Microwave Access), high speed modems
over digital subscriber lines, and local area wireless broadband
standards such as the HIPER-LAN/2 and IEEE 802.11a, with
data rates of up to 54 Mbps [1]. OFDM is also being
considered for fourth-generation (4G) mobile wireless systems
[2].

In order to achieve high data rate in OFDM, receivers must
estimate the channel efficiently and subsequently the data.
Many techniques have been presented by the researchers for
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channel estimation in OFDM systems. They can be broadly
divided into three categories:

1) Training-based estimation: It involves sending pilots
(symbols which are known to the receiver) with the data
symbols so that the channel can be estimated and hence
the data at the receiver (see for example [3] - [5]). Use
of pilots results in decrease in bandwidth efficiency.

2) Blind estimation: The limitations in training based esti-
mation techniques motivated interest in the spectrally
efficient blind approach. These techniques use some
inherent structure of the communication system which
is produced by constraints including finite alphabet
constraint [6], [10], cyclic prefix [8], [9], [10], and time
and frequency correlation [7], [11]. Blind techniques are
generally computationally cumbersome.

3) Semi-blind estimation: Semi-blind techniques make use
of both pilots and the natural constraints to efficiently
estimate the channel. These methods use pilots to obtain
an initial channel estimate and improve the estimate by
using a variety of a priori information. Thus, in addition
to the pilots, semi-blind methods use the cyclic prefix
[7], [9], [10], time and frequency correlation [7], [11],
gaussian assumption on transmitted data [12], and virtual
carriers [13] for channel estimation and subsequent data
detection.

In this paper, we perform channel estimation by utilizing
the Gaussian assumption on the transmitted data and the
cyclic prefix. Specifically, the channel estimate is obtained by
maximizing the log likelihood of the channel given the output
data. Finding the likelihood function of a linear system can
be very difficult. However, in the OFDM case, central limit
arguments can be used to argue that the input is Gaussian
[12], [14]. Under the assumption that the noise is Gaussian,
this makes the output Gaussian and allows us to easily write
down the likelihood expression of the output. The likelihood
function can then be maximized to obtain the ML estimate of
the channel.

A. Paper Organization and Notation

After introducing the notation in Table 1, we give an
overview of the OFDM system in Section II. The log likeli-



Table 1. Notation used in the paper

Variable Notation employed
Scalars Small-case letters

(e.g.x)
Vectors Small-case boldface letters

(e.g.x)
Matrices Upper-case boldface letters

(e.g.Q)
Vectors in frequency domain Calligraphic notation

(e.g.H)
Individual entries of a vector h(l)
Estimate of a variable Hat over the variable

(e.g.X̂ )
Variables as function of time Time index appears as a subscript

(e.g.X i)
Cyclic prefix Underlined vector

(e.g.xi)
Super symbol Overlined vector

(e.g.xi = [xT
i xT

i ]T = [xT
i x̃T

i xT
i ]T )

hood function is derived in Section III by using the Gaussian
assumption on transmitted data. The channel can be estimated
by maximizing the likelihood function. For blind estimation,
the likelihood function should have global maxima when it
is plotted against the channel taps. Experimental results of
log likelihood function plot against channel taps are discussed
in Section III-B which show that it is multi-modal. To solve
this problem, two methods have been presented in this paper.
One is the blind channel estimation method implemented
using the Genetic algorithm (Section IV) and the second one
is a semi-blind approach using steepest descent algorithm
(Section V). The gradient of likelihood function involved in
the steepest descent algorithm is also derived in this section.
The simulation results are presented in Section VI followed
by the conclusion in Section VII.

II. SYSTEM OVERVIEW

In this paper, a simple OFDM system is used which involves
transmitting data in symbolsX i of length N each. Each
symbol then undergoes an IDFT operation to produce the time
domain symbolxi, i.e.

xi =
√

NQX i, (1)

whereQ is an IDFT matrix of sizeN ×N . A cyclic prefix of
length L is appended to form the super-symbolxi (Refer to
Table 1 for further explanation). We assume an FIR channel
of maximum lengthL + 1 given by

h =
[

h0 h1 · · · hL

]
(2)

For reasons to be explained shortly, we will focus in this paper
on time domain signals. Here, the input/output relationship is
given by

[
y

i
yi

]
=




hL hL−1 · · · 0
0 hL · · · 0

. ..
.. .

0 0 · · · h0







xi−1

xi

x̃i

xi


 +

[
ni

ni

]

or in matrix form

Y = HX + N (3)

where n is the output noise which we take to be white
Gaussian. The matricesY , H andX are of size(N +L)×1,
(N + L)× (N + 2L) and (N + 2L)× 1, respectively.

III. E VALUATING THE LOG L IKELIHOOD FUNCTION

To derive the likelihood function of a the output of a linear
system, the input is assumed usually to be Gaussian (otherwise
writing down the likelihood function can be very difficult).
This is usually not true in a data communication system as
the input is generated from a finite alphabet. Fortunately in an
OFDM system, the time domain input can be assumed to be
Gaussian by central limit theorem arguments [14]. Specifically,
from equation (1),we have the element by element relationship

xi(1) =
√

Nq1X i, xi(2) =
√

Nq2X i, ..., xi(N) =
√

NqNX i

whereqj are the rows ofQ. In other words, this shows that
xi(j) is a large (weighted) sum of iid random variables. The
validity of this assumption is evident from the histogram plot
shown in Figure 1 which describes the distribution of the
transmitted dataxi.
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Fig. 1. Number of samples vs transmitted data (xi)

Thus from this and the fact that noise is also Gaussian, we
can conclude that outputY will also be Gaussian with pdf

Y ∼ N (0,ΣY)

where ΣY is the second order moment ofY which (from
equation (3)) is given by

ΣY = E
[
HXXT HT

]
+ σ2

nI (4)

= HΣXHT + σ2
nI (5)



whereΣX is a matrix of size(N +2L)× (N +2L) given by

ΣX = E[XXT ]

= E




xi−1

xi

x̃i

xi




[
xT

i−1 xT
i x̃T

i xT
i

]

=




IL 0 0 0
0 IL 0 IL

0 0 IN−L 0
0 IL 0 IL


 (6)

The pdf of outputY can thus be written as

P (Y |h) =
1

det(ΣY)
exp(−Y T ΣY

−1Y ) (7)

So, the log likelihood function is given by

L(Y |h) = − ln det (ΣY) − Y T ΣY
−1Y (8)

A. Maximum Likelihood Estimation of the Channel IR

We can use the likelihood function derived above to obtain
the ML estimate of the channelh by maximizing it. i.e.

ĥML = max
h

L

= max
h

− ln det (ΣY) − Y T ΣY
−1Y (9)

which depends only on the output dataY and the channelh
(through the dependance ofΣY on h).

This approach for channel estimation using the Gaussian
input assumption is quite common in single carrier case,
but has not been applied in the OFDM case. There are two
disadvantages of applying it in the single carrier case [15],
[16]:

• The method assumes that the input is Gaussian which is
not the case in a single carrier system.

• Even if input is Gaussian, this method is usually phase
blind i.e. it can only be used to identify minimum phase
systems.

We avoid both of the problems in the OFDM case as the
input is Gaussian by central limit theorem arguments and as
the input is cyclostationary (due to the presence of the cyclic
prefix)[8].

Unfortunately, as we shall show next, the likelihood function
is not uni-modal (it could have local maxima) and so finding
the global maxima might be challenging.

B. Plot of Likelihood Function vs Channel Taps

The likelihood function is plotted against the channel taps
to investigate whether it has a global maxima. The input data
is considered to be Gaussian of lengthN = 64 and a cyclic
prefix of lengthL = 2 is used. Channel is considered to be an
FIR of lengthL+1 = 3 with first tap fixed at1 to avoid sign
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Fig. 2. 3D plot of likelihood function against channel taps with
σ2

n = 0.1

ambiguity inherent in all blind techniques1. In Figure 2 the
log likelihood function is plotted against the remaining two
channel tapsh1 andh2 whenσ2

n = 0.1.
This shows that a completely blind approach for channel

estimation would be challenging. In what follows, we present
two approaches to solve this channel estimation problem.

IV. B LIND ESTIMATION USING GENETIC ALGORITHM

Genetic algorithm (GA) is an iterative stochastic search
algorithm which was introduced by Holland [17] in 1975.
GA finds the best solution in a population of candidate
solutions (called chromosomes) based on natural selection
(survival of the fittest) and evolution. Each chromosome has
a fitness value associated with it which in our algorithm is
found by evaluating the likelihood function in equation (8).
The next generation is produced by using genetic operators
like mutation and crossover. As the channel IR is composed
of real values, real coded genetic algorithm [18] has been
implemented. As the likelihood function is multi-modal (de-
scribed in Subsection III-B), we have employed GA here
for blind channel estimation due to its ability to avoid local
maxima/minima. The algorithms used in the main operators
in the reproduction process (mutation and crossover) are as
follows:

A. Crossover

Crossover is the most important component of a GA. It is a
method of combining the features of two parent chromosomes
to form two offspring. There are many crossover algorithms
present in literature but we selected theBLX-α algorithm (with
α = 0.5) due to its superior performance in real coded genetic
algorithms [18].

B. Mutation

Mutation is a method in which an arbitrary element of a
selected chromosome is altered to prevent the premature con-
vergence of GA to suboptimal solutions. GA is able to avoid

1A channel with only two effective taps is chosen so that we can plot the
likelihood function against them in three dimensions.



local minima/maxima due to this operator. Like crossover,
researchers have presented many mutation operators. We have
used theNon-uniform mutationalgorithm as it is very appro-
priate for real coded genetic algorithms [18].

V. SEMI-BLIND ESTIMATION USING STEEPESTDESCENT

ALGORITHM

A semi-blind approach can also be pursued where we use a
few pilots to obtain an initial rough estimate of the channel and
subsequently improve the channel estimate using the Steepest
Descent algorithm i.e.

hT
(k+1) = hT

(k) − µ
∂L

∂h(k)
(10)

whereµ is called step size which is a small scalar value and
h(k) represents the estimate of channelh at kth iteration. The
algorithm continues to iterate until a maximum number of
iterations is reached or until a stopping threshold is crossed.
It can be seen from equation (10) that it involves the gradient
of the likelihood function with respect to the channel. Thus we
need to evaluate this gradient to implement the steepest descent
algorithm. We start by representing the channel convolution
matrix H in block form.

A. Writing H in Block Form

We can write the convolution matrix in the following block
form

H =




C B
C B

. ..
. ..
C B


 (11)

where

B =




h0 0 · · · 0
h1 h0 · · · 0
...

. ..
hL−1 hL−2 · · · h0


 (12)

C =




hL hL−1 · · · h1

0 hL · · · h2

...
. . .

...
0 0 · · · hL


 (13)

B. Evaluating Second Order Moment of OutputY

As the log likelihood function (equation (8)) involves second
order moment of outputY , we want to evaluate it in terms of
channelh or specifically in terms ofB andC.

The output autocorrelation matrixΣY can be decomposed
as

ΣY = GGT + σ2
nI (14)

where

G =




C B 0 · · · 0
0 C B · · · 0
...

...
. ..

.. .
...

0 0 0 · · · B
0 B 0 · · · C




The factor matrixG has the following properties

1) It is a square matrix of sizeN + L.
2) It is full rank if and only if hL 6= 0
Remember that we need to differentiate the likelihood

function with respect to the channel IR. Now, the likelihood
function is a function ofΣY which is a function ofG (see
equation (14)). The matrixG is itself a linear function of
the channel IR. Specifically, we can writeG as a linear
combination ofL + 1 constant matricesF 0, F 1, ..., F L i.e.

G =
L∑

i=0

hiF i (15)

The matrixF i is an indicator matrix, i.e. it indicates the entries
of G that depend onhi. We can thus write

GT =
L∑

i=0

hiF
T
i (16)

or

vec(GT ) =
L∑

i=0

hi vec(F T
i )

=
[

vec(F T
0 ) vec(F T

1 ) · · · vec(F T
L)

]



h0

h1

...
hL




= FhT (17)

where thevec operation transforms a matrixG into a long
column vector consisting of the concatenation of the columns
of G. Thus,

∂G

∂h

∆=
∂ vec(GT )

∂h
= FT (18)

We will use this relation in evaluating the gradient ofL w.r.t
h in the following subsection.

C. Gradient of likelihood functionL w.r.t channel IRh

We would like to find the gradient ofL w.r.t h. By the
chain rule, we can write

∂L
∂h

=
∂G

∂h

∂ΣY

∂G

∂L
∂ΣY

(19)

In carrying out the differentiation∂L
∂ΣY

, ΣY is treated as a
general matrix. Thus, despite the fact thatΣY is symmetric



and positive definite, we ignore this fact in obtaining∂L∂ΣY
.

All properties ofΣY are captured in its relation toG and in
the relation of the latter toh.

We have already evaluated∂G
∂h

. Lets now evaluate∂L
∂ΣY

.
We can show that [19]

∂L
∂ΣY

= − ∂

∂ΣY

(
ln det(ΣY) + Y T ΣY

−1Y
)

= −vec(ΣY
−T )− ∂

∂ΣY
tr(Y Y T ΣY

−1)

∂L
∂ΣY

= −vec(ΣY
−T −ΣY

−T Y Y T ΣY
−T ) (20)

Similarly in carrying out the differentiation∂ΣY

∂G , we ignore
the sparse structure ofG. The sparse structure is captured in
the relation ofG to the channel parametersh.

∂ΣY

∂G
=

∂

∂G
(GGT + σ2

nI)

= (I ⊗GT ) + Ks,m(GT ⊗ Is) (21)

where the second line is obtained by the product rule, and
⊗ and Ks,m stand for Kronecker product and Commutation
matrix respectively [19]. Combining the results (20) and (21)
yields

∂L
∂G

= −2 vec
[
GT ΣY

−1 −GT ΣY
−1Y Y T ΣY

−1
]

(22)

where we used the property that

Ks,mvec(AT ) = vec(A)

So, equation (19) can now be written as

∂L
∂h

=
∂G

∂h

∂L
∂G

= −2FT vec
h
GT ΣY

−1 −GT ΣY
−1Y Y T ΣY

−1
i

∂L
∂h

= −2

26664
tr(F 0G

T ΣY
−1 − F 0G

T ΣY
−1Y Y T ΣY

−1)
tr(F 1G

T ΣY
−1 − F 1G

T ΣY
−1Y Y T ΣY

−1)
...

tr(F LGT ΣY
−1 − F LGT ΣY

−1Y Y T ΣY
−1)

37775
which is our required gradient of size(L + 1) × 1. This

gradient can be used in equation (10) to estimate the channel
using the steepest descent algorithm.

VI. SIMULATION RESULTS

We consider an OFDM system withN = 64 and cyclic
prefix of length L = 8. The OFDM symbol consists of
BPSK or16-QAM symbols. The channel IR consists of9 iid
Rayleigh fading taps. The parameters used in implementing the
blind approach using GA are listed in Table 2. The proposed
semi-blind algorithm was run for20 iterations in all cases.

We compare the BER performance of the proposed al-
gorithms with the following two cases:(i) Perfectly known
channel, and(ii) Channel estimated usingL + 1 pilots. The
simulation results for BPSK and16-QAM modulated data are
discussed below:

Table 2. Simulation Parameters used to implement GA
Population Size 100

Number of Generations 50
Cross-over Scheme BLX-α Cross-over (α = 0.5)

Cross-over Probability 0.8
Mutation Scheme Non-Uniform Mutation

Mutation Probability 0.08
Number of Elite Chromosomes 5
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Fig. 3. BER vs SNR comparison for BPSK modulated data

A. BER vs SNR Comparison for BPSK Modulated Data

In Figure 3, the proposed algorithms are compared with
the above mentioned methods when the input data is BPSK
modulated. In this case, the semi-blind algorithm is initialized
with an estimate obtained by using6 pilots and channel
correlation. The step sizeµ used in this case was7.5× 10−3.
This figure clearly indicates that both the proposed algorithms
perform quite close to the case when channel is estimated
usingL + 1 pilots.

B. BER vs SNR Comparison for 16-QAM Modulated Data

Figure 4 shows the performance of the proposed algorithms
for the case of16−QAM modulated data. Similar to the BPSK
case, the semi-blind algorithm is again initialized with an
estimate obtained by using6 pilots and channel correlation.
The step sizeµ used in this case was2.5 × 10−4. It can be
seen from the figure that both the proposed algorithms perform
quite well for the case of non-constant modulus data specially
at high SNR.

VII. C ONCLUSIONS

In this paper, we presented two methods for channel es-
timation and data recovery in OFDM transmission. It was
argued in this paper that the transmitted data in OFDM is
Gaussian. Thus the output is also Gaussian and its pdf can
be evaluated easily. The channel can then be estimated by
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maximizing the likelihood function given the output pdf. The
experimental results unfortunately demonstrated that the log
likelihood function does not have a unique maxima when it
is plotted against the channel taps. Therefore, it is difficult to
come up with a convex formulation to pursue a blind approach.
However, a blind channel estimation algorithm using GA was
proposed due to its ability to avoid local minima. A semi-
blind algorithm was also presented using the steepest descent
algorithm initialized by a rough estimate of channel obtained
by using a few of pilots and channel correlation. Simulation
results show the favorable performance of the two proposed
algorithms for constant as well as non-constant modulus data.
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