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ABSTRACT

In this paper, we consider blind data detection for OFDM
transmission over block fading channels. Specifically, we
show how constant modulus data of an OFDM symbol can
be blindly detected using output symbol and associated cyclic
prefix. Our approach relies on decomposing the OFDM chan-
nel into two subchannels (cyclic and linear) that share the
same input and are characterized by the same channel para-
meters. This fact enables us to estimate the channel parame-
ters from one subchannel and substitute the estimate into the
other, thus obtaining a nonlinear relationship involving the
input and output data only that can be searched for the maxi-
mum likelihood estimate of the input. This shows that OFDM
systems are completely identifiable using output data only, ir-
respective of the channel zeros, as long as the channel delay
spread is less than the length of the cyclic prefix. We also
propose iterative methods to reduce the computational com-
plexity involved in the maximum likelihood search of input.

1. INTRODUCTION

OFDM modulation has attracted considerable attention as it
combines the advantages of high achievable data rates and
relatively easy implementation. This is reflected by the many
standards that considered and adopted OFDM [1]. For proper
operation of an OFDM system, the receiver needs to estimate
the channel and eliminate its effect. Many techniques have
been proposed in the literature for this purpose (see, e.g., [1],
[2], [3], [4], [5], and the references therein). These techniques
fall into three distinct classes: 1) training based, 2) semiblind
and 3) blind methods. Training/pilot based methods trans-
mit symbols which are already known at the receiver (pilots)
to estimate the channel. Blind methods rely only on a pri-
ori constraints for channel estimation and data recovery while
semiblind methods make use of both pilots and additional
channel/input data constraints to perform channel identifica-
tion and equalization.

In this paper, we perform channel identification and equal-
ization from output data only (i.e. OFDM output symbol and
associated cyclic prefix (CP)), without the need for a training
sequence or a priori channel information. The advantage of
our approach is three fold:
1. The method provides a blind estimate of the data from one

output symbol without the need for training or averaging
(contrary to the common practice in blind methods where
averaging over several symbols is required). Thus, the

method lends itself to block fading channels.
2. Data detection is done without any restriction on the chan-

nel (as long as the delay spread is shorter than the (CP)).
In fact, data detection can be performed even in the pres-
ence of zeros on the FFT grid.1

3. The fact that we use two observations (the OFDM symbol
and CP) to recover the input symbol enhances the diver-
sity of the system as can be seen from simulations.

Our approach is based on the transformation of the OFDM
channel into two parallel subchannels due to the presence of a
cyclic prefix at the input. One is a cyclic channel that relates
the input and output OFDM symbols and thus is free of any
intersymbol interference (ISI) effects and is best described in
the frequency domain. The other one is a linear channel that
carries the burden of ISI and that relates the input and out-
put prefixes through linear convolution. This channel is best
studied in the time domain.

It can be shown that the two subchannels are character-
ized by the same set of parameters (or impulse response(IR))
and are driven by the same stream of data. They only differ
in the way in which they operate on the data (i.e. linear vs
circular convolution). This fact enables us to estimate the IR
from one subchannel and eliminate its effect from the other,
thus obtaining a nonlinear least squares relationship that in-
volves the input and output data only. This relationship can
in turn be optimized for the ML data estimate, something that
can be achieved through exhaustive search (in the worst case
scenario).

Exhaustive search is very computationally expensive. We
suggest two approaches to reduce the computational complex-
ity. The first approach is based on approximating the nonlin-
ear least squares problem with a linear one. In the second ap-
proach, we use the Particle Swarm Optimization (PSO) and
the Genetic Algorithm (GA) [6], [7], [8] to directly solve the
nonlinear problem. The estimate obtained by the linear ap-
proximation approach can be used to kick start these search
algorithms.

This paper is organized as follows. After introducing our
notation in the next section, we perform a careful study in
section 3 of the elements of an OFDM channel decompos-
ing it into a cyclic subchannel described in the frequency do-
main and a linear subchannel described in the time domain. In
section 4, we show how this characterization can be used to

1This comes contrary to the common belief that OFDM using CP cannot
be equalized for channels with zeros on the FFT grid [1] and [9]



construct a nonlinear objective function that can be exhaus-
tively searched for the data. In section 5, we describe two
approaches for reducing the computational complexity by lin-
earizing the nonlinear function and by using the PSO and GA.
Simulation results are discussed in section 6 with conclusion
in section 7.

2. NOTATION

We denote scalars with small-case letters, vectors with small-
case boldface letters, and matrices with uppercase boldface
letters. Calligraphic notation (e.g.X ) is reserved for vectors
in the frequency domain. The individual entries of a vector
like h are denoted byh(l). A hat over a variable indicates an
estimate of the variable (e.g.,̂h is an estimate ofh). When
any of these variables become a function of time, the time
indexi appears as a subscript.

Now consider a length-N vectorxi. We deal with three
derivatives associated with this vector. The first two are ob-
tained by partitioningxi into a lower (trailing) partxi (known
as the cyclic prefix) and an upper vectorx̃i. The third deriva-
tive, xi, is created by concatenatingxi with a copy of CP i.e.
xi. Thus, we have

xi =
[

xi
xi

]
=

[
xi
x̃i

xi

]
(1)

Thus, in line with the above notation, a matrixQ havingN
rows will have the natural partitioning

Q =
[

Q̃
Q

]
(2)

where the number of rows iñQ andQ are understood from
the context and when it is not clear, the number of rows will
appear as a subscript.

3. SYSTEM OVERVIEW

In an OFDM system, data is transmitted in symbolsX i of
lengthN each. The symbol undergoes an IFFT operation to
produce the time domain symbolxi, i.e.

xi =
√

NQX i (3)

whereQ is theN ×N IFFT matrix. When juxtaposed, these
symbols result in the sequence{xk}. 2 We assume a non-
ideal channelh of maximum lengthL + 1. To avoid ISI
caused by passing through the channel, a cyclic prefix (CP)
xi (of lengthL) is appended toxi, resulting finally in super-
symbolxi as defined in (1). The concatenation of these sym-
bols produces the underlying sequence{xk}.

When passed through the channelh, the sequence{xk}
produces the output sequence{yk} i.e.

yk = hk ∗ xk + nk (4)

2The time indices in the sequencexi and the underlying sequence{xk}
are dummy variables. Nevertheless, we chose to index the two sequences
differently to avoid any confusion that might arise from choosing identical
indices.

wherenk is the additive white Gaussian noise and∗ stands
for linear convolution. Motivated by the symbol structure of
the input, it is convenient to partition the output into symbols
of lengthM = N + L, i.e.

yi =
[

y
i

yi

]
(5)

This is a natural way to partition the output because the prefix
y

i
actually absorbs all ISI that takes place between the ad-

jacent symbolsxi−1 andxi. Moreover, the remaining part
yi of the symbol depends on theith input OFDM symbolxi

only. These facts allow us to partition the total OFDM chan-
nel described by (4) into two subchannels that we describe
next.

3.1. Circular Convolution (Subchannel)

Due to the presence of the cyclic prefix, the input and output
OFDM symbolsxi andyi are related by circular convolution
(denoted by◦∗), i.e.

yi = hi◦∗xi + ni (6)

wherehi is a length-N zero-padded version ofhi. In the
frequency domain, the cyclic convolution (6) reduces to the
element-by-element operation

Yi = Hi ¯X i + N i (7)

whereHi, X i, N i, andYi, are the DFT’s ofh, xi, ni, and
yi respectively

Hi = Q∗hi, X i =
1√
N

Q∗xi,

N i =
1√
N

Q∗ni, and Yi =
1√
N

Q∗yi

(8)

Sincehi corresponds to the firstL+1 elements ofhi, we can
show that

Hi = Q∗
L+1hi and hi = QL+1Hi (9)

whereQ∗
L+1 consists of the firstL + 1 columns ofQ∗ and

QL+1 consists of firstL + 1 rows ofQ . This allows us to
rewrite (7) as

Yi = diag(X i)Q∗
L+1hi + N i (10)

3.2. Linear Convolution (Subchannel)

From (4), we can also deduce that the cyclic prefixes at the
input and output are related by linear convolution. Specifi-
cally, if we concatenate all cyclic prefixes at the input into a
sequence{xk} and the cyclic prefixes at the output into the
corresponding sequence{y

k
}, then we can show that the two

sequences are related by linear convolution [10]

y
k

= hk ∗ xk + ni (11)



From this we deduce that the cyclic prefix of OFDM sym-
bol yi is related to the input cyclic prefixesxi−1 andxi by

y
i
= Xihi + ni (12)

whereXi is constructed fromxi−1 andxi according to

Xi =

26664
xi(0) xi−1(L− 1) · · · xi−1(0)
xi(1) xi(0) · · · xi−1(1)

...
. . .

. . .
...

xi(L− 1) · · · xi(0) xi−1(L− 1)

37775 (13)

This fact together with the FFT relationship (9) yields the
desired time-frequency form

y
i
= XiQL+1Hi + ni (14)

4. MAXIMUM-LIKELIHOOD ESTIMATION

Consider the frequency domain description of the cyclic sub-
channel (7). To obtain the ML estimate ofHi, we assume that
the sequenceX i is deterministic and perform an element-by-
element division of (7) byX i to get

D−1
X Yi = Hi + N ′

i (15)

where
DX = diag(X i) (16)

andN ′
i is Gaussian distributed with zero mean and autocor-

relation matrix

Rn′ = σ2
nD−1

X D−∗
X = σ2

n|DX |−2 (17)

The maximum-likelihood estimate ofH can now be obtained
by solving the system of equations (15) in the least-squares
(LS) sense subject to the constraint

Q̃N−L−1Hi
∆= Q̃Hi = 0 (18)

We can show that the ML estimate is given by [11]

ĤML

i =

�
I −Rn

′ Q̃
∗ �

Q̃Rn
′ Q̃

∗�−1

Q̃

�
D−1

X Yi

=

�
I − |DX |−2Q̃

∗ �
Q̃|DX |−2Q̃

∗�−1

Q̃

�
D−1

X Yi

(19)

The ML estimate (19) was obtained solely from the circular
convolution subchannel. In the case of constant modulus data,
we have

|DX |−2 =
1

EX
I and D−1

X =
1

EX
D∗
X (20)

whereEX stands for energy of data. Upon substitution, equa-
tion (19) becomes

ĤML

i =
1

EX

�
I − Q̃

∗ �
Q̃Q̃

∗�−1

Q̃

�
D∗
XYi (21)

=
1

EX

h
I − Q̃

∗
Q̃
i
D∗
XYi (22)

where in (22), we used the fact thatQ̃ is a left-inverse of̃Q
∗

- a consequence of the unitary nature ofQ

I = QQ∗ =

�
QL+1

Q̃N−L−1

� �
Q∗

L+1 Q̃
∗
N−L−1

�
(23)

Upon replacingHi that appears in the time-frequency form
(14) (corresponding to the linear subchannel) with its ML es-
timate (22), we obtain

y
i
=

1

EX
XiQL+1

h
I − Q̃

∗
Q̃
i
D∗
XYi + ni (24)

This is an input/output relationship that does not depend on
any channel information whatsoever. Since the data is as-
sumed deterministic, maximum-likelihood estimation is the
optimum way to detect it, i.e. we minimize

X̂ ML

i = arg min
X i

yi
− 1

EX
XiQL+1

h
I − Q̃

∗
Q̃
i
Yi ¯X ∗

i

2

(25)
From (23), we can also deduce that

QL+1Q̃ = QL+1Q̃N−L−1 = 0

So, the ML estimate ofX i, for the constant modulus case, is
obtained by performing the minimization

X̂ ML

i = arg min
X i

yi
− 1

EX
XiQL+1Yi ¯X ∗

i

2

(26)

Notice that the only unknowns in this minimization areXi
andX i, i.e. the input data sequence. This minimization is
nothing but anonlinear least-squaresproblem in the data.
In the worst case scenario, we can obtain the ML estimate
through an exhaustive search.

5. METHODS TO REDUCE COMPUTATIONAL
COMPLEXITY

The search for the optimalX i in (26) is computationally very
complex. In the following, we describe two approaches to
reduce this complexity:

5.1. Linearization Approach
One way to reduce the computational complexity is to trans-
form the nonlinear into a linear least squares problem. To do
so, note first that theXi involved in equation (26) is com-
posed of an upper and lower triangle formed by the CP of
previous (known) and current (unknown) symbol respectively
as shown in equation (13). Thus, we can write,

Xi = XUi−1 + XLi (27)

whereXUi−1 is the upper triangle part ofXi andXLi is its
lower triangular part. Thus equation (26) can be rewritten as

X̂ ML

i = arg min
X i

yi
− 1

EX

�
XUi−1 + XLi

�
QL+1DYX ∗

i

2

= arg min
X i

y
i
− �XUi−1 + XLi

�
AX ∗

i

2

= arg min
X i

y
i
−BX ∗

i −CX ∗
i

2



where

A =
1

EX
QL+1DY , B = XUi−1A

and hence are completely known and where

C = XLiA (28)

Thus, the elements ofC are linear in the inputX i making
CX ∗

i quadratic inX i. In fact, each element ofc = CX ∗
i

can be written as
c(j) = ‖X i‖2W j

(29)

for some weighted matrixW j that is independent from input
X i. Thus, the nonlinear minimizing problem can be written
as

X̂ ML

i = arg min
X i

y
i
−BX ∗

i − c
2

(30)

The linear approximation is obtained by replacing the matrix
W j by its diagonal, i.e.

c (j) = ‖X i‖2W j

' ‖X i‖2diag(W j)

= EX tr (W j)

= z (j)

where the third line follows from the fact that the elements
of X i have constant modulus. The input dependent vectorc
is thus replaced by the constant vectorz, and the objective
function becomes linear inX i

arg minX i

�y
i
− z

�
−BX ∗

i

2

(31)

One way to solve equation (31) is by using least squares

X̂ ∗
i = (B∗B + δI)

−1
B∗
�
y

i
− z

�
(32)

whereδ is a small constant.
This estimated data is fed again into equation (30) and

now the completeW j matrices are used to obtainz (as
opposed to approximating them by their diagonal). Least
squares (32) is used again to estimateX̂ ∗

i . This procedure
is repeated for a desired number of iterations.

5.2. Using Search Algorithms

We can use the search algorithms like Particle Swarm Opti-
mization (PSO) and the Genetic Algorithm (GA) to directly
solve the nonlinear problem (equation (26)). PSO and GA are
widely used algorithms to solve nonlinear problems. PSO and
GA are motivated by the evolution of nature. Depending on
the number of variables in the problem, a population of indi-
viduals is generated. The rule of survival of the fittest is used
to manipulate the population by cooperation and competition
within the individuals in case of PSO, and by using genetic
operators like mutation, crossover and reproduction in case
of GA. The best solution is selected from the generations.

The data estimated by using the linearization approach
can be used to initialize PSO or GA. This initialization, with
close to optimal solution, will help to kick start them for better
results.

6. SIMULATIONS AND RESULTS

We consider an OFDM system withN = 16 and cyclic prefix
of lengthL = 4. The OFDM symbol consists of BPSK or
4-QAM symbols. The channel IR consists of5 iid Rayleigh
fading taps. We compare the BER performance of three meth-
ods:(i) Perfectly known channel,(ii) Channel estimated us-
ing L + 1 pilots and(iii) Blind based estimation using ex-
haustive search.

In Figure 1, we compare the three mentioned approaches
of signal estimation for BPSK modulated data over a Rayleigh
fading channel. As expected, the best performance is
achieved by the perfectly known channel, followed by that
obtained by training based estimated channel.
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Fig. 1. BER vs SNR for BPSK-OFDM over a Rayleigh channel

The same conclusion can be made for the4-QAM input
(see Figure 2). Note however that in the high SNR region, the
BER curve of blind based estimation exhibits steeper slope
(higher diversity) which can be explained from the fact that
the two channels (linear and cyclic) are used to detect the
data in the blind case when only the linear channel is used in
the known data case. The presence of occasional nulls in the
channel also make the blind channel case better. This happens
also in BPSK modulated data (Figure 1) when it is simulated
for high SNR.

In Figure 3, the three approaches are compared for BPSK
modulated data when the channel IR has persistent zeros on
the FFT grid. We note that at high SNR, the BER for perfectly
known channel and that of the estimated channel reach an er-
ror floor. Our blind method does not suffer from this problem
and thus blind case outperforms the other two cases.

The low complexity algorithms proposed in Section 5
(linearization approach, PSO and GA) have been compared in
Figure 4 for BPSK modulated data. We can observe that PSO
and GA, initialized with the data detected by linearization ap-
proach, perform quite close to the blind exhaustive search es-
pecially at low SNR.
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Fig. 2. BER vs SNR for4QAM-OFDM over a Rayleigh channel

7. CONCLUSION

In this paper, we demonstrated how to perform blind ML data
recovery in OFDM transmission. This is done using a single
output OFDM symbol and associated CP. In particular, it was
shown that the ML data estimate is the solution of an integer
nonlinear-least squares problem. This proves that the data
recovery is possible from output data only, irrespective of the
channel zero locations and irrespective of the quality of the
channel estimates or of its exact order. Iterative methods have
been proposed to reduce the exponential complexity entailed
in the algorithm developed in the paper.
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