King Fahd University of Petroleum and Minerals

University Diploma Programs Electronic Equipment Maintenance

EET 029, Introduction to Communication

MAJOR EXAM # 1

Date: 4th November 2003

Instructor: M. Ajmal Khan, Lecturer, EE Dept.

Student's Name : _____ ID # : _____

Time Allowed: 2 Hours

QUESTION #	POINTS	SCORE
1	22	
2	5	
3	3	
4	10	
5	10	
6	10	
7	5	
8	5	
9	10	
Total	80	

Question #1: Circle the correct Answer for each of the following questions:

- I. The SNR is ______ along the length of the channel.
 - a. Increasing
 - b. Constant
 - c. Decreasing
 - d. None of the above.
- II. The signal level ______ and the noise level increases with distance from the transmitter.
 - a. Increases
 - b. Constant
 - c. None of the above.
- III. In ______ systems, there are ways to avoid accumulation of noise and distortion along the path.
 - a. Digital
 - b. Analog
 - c. Combined analog and digital
 - d. None of the above.
- IV. The two primary communication resources are:
 - a. Channel bandwidth and channel noise
 - b. Channel bandwidth and transmitted power
 - c. Transmitted power and noise
 - d. Transmitted power and modulation
- V. The process of Amplitude Modulation shifts the spectrum of the modulating signal to _____ by ω_c .
 - a. Either left or right.
 - b. The left only
 - c. The right only
 - d. The left and the right

- VI. In DSB modulation, the modulated signal spectrum is composed of :
 - a. three parts; USB, LSB and Carrier
 - b. two parts; USB and LSB
 - c. three parts; USB, LSB and reduced carrier.
 - d. None of the above.
- VII. The balanced modulator is used:
 - a. to add full carrier
 - b. to add a reduced carrier
 - c. to suppress carrier.
 - d. None of the above.
- VIII. In a communication systems, noise is most likely to affect the signal:
 - a. At the transmitter
 - b. In the channel
 - c. In the information source
 - d. At the destination
 - IX. C3F modulation is normally used for:
 - a. HF point-to-point communications
 - b. Monaural broadcasting
 - c. TV broadcasting
 - d. Stereo broadcasting.
 - X. If the carrier of a 100 percent modulated AM wave is suppressed, the percentage power saving will be:
 - a. 50
 - b. 150
 - c. 100
 - d. 66.66
 - XI. R3E modulation is sometimes used to:
 - a. Allow the receiver to have a frequency synthesizer
 - b. Simplify the frequency stability problem in reception
 - c. Reduce the power that must be transmitted
 - d. Reduce the bandwidth required for transmission

- XII. To provide two or more voice circuits with the same carrier, it is necessary to use:
 - a. ISB
 - b. Carrier reinsertion
 - c. SSB with pilot carrier
 - d. Lincompex
- XIII. The modulation index of an AM wave is changed from 0 to 1. The transmitted power is:
 - a. Unchanged
 - b. Halved
 - c. Doubled
 - d. Increased by 50 percent
- XIV. Amplitude modulation is used for broadcasting because:
 - a. It is more noise immune than other modulation systems
 - b. Compared with other systems it requires less transmitting power
 - c. Its use avoids receiver complexity
 - d. No other modulation system can provide the necessary bandwidth for high fidelity.
- XV. The most commonly used filters in SSB generation are:
 - a. Mechanical
 - b. RC
 - c. LC
 - d. Low-pass
- XVI. Indicate in which one of the following only one sideband is transmitted:
 - a. H3E
 - b. A3E
 - c. B8E
 - d. C3F
- XVII. One of the following cannot be used to remove the unwanted sideband in SSB:
 - a. Filter system
 - b. Phase-shift method
 - c. Balanced modulator
 - d. Third method.

- XVIII. In the spectrum of a frequency-modulated wave:
 - a. The carrier frequency disappears when the modulation index is large.
 - b. The amplitude of any sidebands depends on the modulation index.
 - c. The total number of sidebands depends on the modulation index.
 - d. The carrier frequency cannot disappear.
 - XIX. The difference between phase and frequency modulation:
 - a. Is purely theoretical because they are the same in practice
 - b. Is too great to make the two systems compatible
 - c. Lies in the poorer audio response of phase modulation
 - d. Lies in the different definitions of the modulation index.
 - XX. A pre-emphasis circuit provides extra noise immunity by:
 - a. Boosting the bass frequencies
 - b. Amplifying the higher audio frequencies
 - c. Preamplifying the whole audio band
 - d. Converting the phase modulation to FM.
 - XXI. When the modulating frequency is doubled, the modulation index is halved, and the modulating voltage remains constant. The modulation system is:
 - a. Amplitude modulation
 - b. Frequency modulation
 - c. Phase modulation
 - d. None of the above.
- XXII. Indicate which one of the following is not an advantage of FM over AM:
 - a. Better noise immunity is provided
 - b. Lower bandwidth is required
 - c. The transmitted power is more useful
 - d. Less modulating power is required.

Question # 2: Circle the correct Answers (Check all that Apply) for each of the following questions:

- I. Channel acts as a filter:
 - a. To add noise in the signal
 - b. To attenuate the signal
 - c. To modulate the input signal
 - d. To demodulate the signal
 - e. To distort the signal's waveform
- II. Noise is undesirable signals, which are:
 - a. Random
 - b. Predictable
 - c. Uniform
 - d. Unpredictable
- III. The performance (accuracy) of analog-to-digital conversion system can be increased.
 - a. By increasing the number of quantization levels.
 - b. At sampling rate less than Nyquist rate.
 - c. By decreasing the number of quantization levels.
 - d. At sampling rate greater than Nyquist rate.
- IV. If the signal power increases then
 - a. The channel bandwidth must increase.
 - b. One may reduce the channel bandwidth
 - c. The effect of channel noise reduces
 - d. The effect of channel noise increases.
 - V. In DSB modulation, which of the following exists:
 - a. a portion that lies above ω_c is known as USB.
 - b. a portion that lies below ω_c is known as LSB.
 - c. a portion that lies below $-\omega_c$ is known as USB.
 - d. a portion that lies above $-\omega_c$ is known as LSB.

Question # 3: Indicate the False statement for each of the following questions:

- I. Modulation is used to:
 - a. Reduce the bandwidth used
 - b. Separate differing transmissions
 - c. Ensure that intelligence may be transmitted over long distances
 - d. Allow the use of practicable antennas
- II. Indicate the false statement regarding the advantages of SSB over double sideband, full carrier AM.
 - a. More channel space is available
 - b. Transmitter circuit must be more stable, giving better reception
 - c. The signal is more noise-resistant
 - d. Much less power is required for the same signal bandwidth
- III. Indicate which one of the following advantages of the phase cancellation method of obtaining SSB over the filter method is false:
 - a. Switching from one sideband to the other is simpler
 - b. It is possible to generate SSB at any frequency
 - c. SSB with lower audio frequencies present can be generated
 - d. There are more balanced modulators; therefore the carrier is suppressed better.

Question # 4: Write the definitions of the following:

I. Sampling Theorem

II. Quantization.

III. Channel Bandwidth.

IV. Synchronous detection (coherent detection)

V. Modulation index

Question # 5: A 25 MHz carrier is modulated by a 400 Hz audio sine wave. If the carrier voltage is 4 V and the maximum deviation is 10 kHz, write the equation of this modulated wave for (a) FM and (b) PM. If the modulating frequency is now changed to 2 kHz, all else remaining constant, write a new equation for (c) FM and (d) PM.

Question # 6: Calculate the percentage power saving in an AM wave modulated to a depth of 50 percent, when (a) the carrier is suppressed and (b) carrier and one of the sidebands are suppressed.

Question # 7: A 1000 kHz carrier is simultaneously modulated with 300 Hz, 800 Hz and 2 kHz audio sine waves. What will be the frequencies present in the output.

Question # 8: A broadcast AM transmitter radiates 50 kW of carrier power. What will be the radiated power at 85 percent modulation?

Question # 9: A 400 W carrier is modulated on a depth of 75 percent, calculate the total power in the modulated wave in the following forms of AM:

- a. Double-sideband with full carrier
- b. Double-sideband, suppressed carrier
- c. Single-sideband suppressed carrier.