## ADDERS, SUBTRACTORS AND MAGNITUDE COMPARATORS

## Objectives:

- To construct and test various adders and subtractor circuits.
- To construct and test a magnitude comparator circuit.


## Apparatus:

- IC type 7486 quad 2-input XOR gates
- IC type 7408 quad 2-input AND gates
- IC type 7404 HEX inverter
- IC type 7483 4-bit binary adder
- IC type 7485 4-bit magnitude comparator.


## Theory:

See Sections 1-5,4-3,5-2,5-4 of your textbook.
a) Addition:

IC type 7483 is a 4-bit binary adder with fast carry. The pin assignment is shown in Fig 1. The two 4-bit input binary numbers are $\mathrm{A}_{1}$ through $\mathrm{A}_{4}$ and $\mathrm{B}_{1}$ through $\mathrm{B}_{4}$. The 4 -bit sum is obtained from $S_{1}$ through $S_{4} . C_{i}$ is the input carry and $C_{0}$ the out carry. This IC can be used as an adder-subtractor as a magnitude comparator.


Fig. 1 IC type 7483 4-bit adder
b) Subtraction:

The subtraction of two binary numbers can be done by taking the 2 's complement of the subtrahend and adding it to the minued. The 2 's complement can be obtained by taking the 1 's complement and adding 1 .

To perform A - B, we complement the four bits of B, add them to the four bits of A , and add 1 to the input carry. This is done as shown in Fig 2.

$M=0$ for add and $M=1$ for subtract
Fig. 2 4-bit adder/subtractor

Four XOR gates complement the bits of B when the mode select $\mathrm{M}=1$ ( because $x \oplus 1=x$ ') and leave the bits of $B$ unchanged when $M=0$ (because $x \oplus 0=x$ ) thus, when the mode select $M$ is equal to 1 , the input carry $C_{i}$ is equal to 1 and the sum output is A plus the 2 's complement of B . When M is equal to 0 , the input carry is equal to 0 and the sum generates $\mathrm{A}+\mathrm{B}$.
c) Magnitude comparison

The comparison of two numbers is an operation that determines whether one number is greater than, equal to, or less than the other number.

The IC 7485 is a 4 bit magnitude comparator. It compares two 4 -Bit binary numbers (labeled as A\&B) generates an output of 1 at one of three outputs labeled $\mathrm{A}>\mathrm{B}, \mathrm{A}<\mathrm{B}, \mathrm{A}=\mathrm{B}$. Three inputs are available for cascading comparators. see Fig.3.


Fig. 3 4-bit magnitude comparator

## Procedure:

a) Design using LogicWorks a half adder circuit using only XOR gates and NAND gates. Then during the Lab construct the circuit and verify its operation.
b) Design using LogicWorks a full adder circuit using only XOR gates and NAND gates. Then during the Lab construct the circuit and verify its operation.
c) Use IC 7483 to add the two 4-bit numbers A and B shown in Table1. In LogicWorks, select the chip 74-83 and use Binary switches for the bits of the two numbers and the input carry and use Binary Probe for the sum and carry out.

Table 1.

| A3 | A2 | A1 | A0 | B3 | B2 | B1 | B0 | Sum |  |  | Carry <br> out |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |  |  |  |  |
| 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 |  |  |  |  |
| 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 |  |  |  |  |

Input carry Ci is taken as logic 0 . Show that if the input carry is 1 , it adds 1 to the output sum.
In the Lab use switches S1-1 to S1-8 for the two numbers and use the SPDT S2 for the input carry Ci. For sum and carry out, use LED-1 to LED-5.
d) Connect the adder-subtractor circuit as shown in Fig 2. Perform the following operations and record the values of the output sum and the output carry $\mathrm{C}_{\mathrm{o}}$.

Table 2.

| Decimal <br> A B | Output sum |  |  | Carry <br> Out C |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $9+5$ |  |  |  |  |  |
| $9-5$ |  |  |  |  |  |
| $9+13$ |  |  |  |  |  |
| $9-9$ |  |  |  |  |  |
| $10+6$ |  |  |  |  |  |
| $6-10$ |  |  |  |  |  |

- Show that $\mathrm{C}_{0}=1$ when sum exceeds 15 .
- Comment on sum and $\mathrm{C}_{0}$ for the subtraction operations when $\mathrm{A}>\mathrm{B}$ and A $<$ B.
e) Use IC7485 to compare the following two 4 bit numbers A and B. Record the outputs in table 3. Note that in LogicWorks you need to connect $(\mathrm{A}=\mathrm{B})$ input to logic 1 (as an indication that previous stages are equal in multi-digit numbers) for correct results while this is not necessary for the hardware.

Table 3.

| A | B | Outputs |
| :---: | :---: | :---: |
| 1001 | 0110 |  |
| 1100 | 1110 |  |
| 0011 | 0101 |  |
| 0101 | 0101 |  |

f) A magnitude comparator can be constructed by using a subtractor as in Fig 2. and an additional combinational circuit. This is done with a combinational circuit which has 5 inputs $S_{1}, S_{2}, S_{3}, S_{4}$, and $C_{0}$, and three outputs $X, Y, Z$ see Fig. 4
$\mathrm{X}=1$ if $\mathrm{A}=\mathrm{B} \quad$ Where $\mathrm{S}=0000$
$\mathrm{Y}=1$ if $\mathrm{A}<\mathrm{B} \quad$ Where $\mathrm{C}_{\mathrm{o}}=0$
$\mathrm{Z}=1$ if $\mathrm{A}>\mathrm{B} \quad$ Where $\mathrm{C}_{\mathrm{o}}=1 \quad \mathrm{~S} \neq 0000$

Design and construct this logic circuit with minimum number of gates. Check the comparator action using Part (e). In the Lab verify your LogicWorks simulation.


Fig. 4 A magnitude comparator using a subtractor

