EE 202 (Semester 131)

Homework \# 1 Solution

Problems from the text book (Electric Circuits, James Nilsson and Susan
Riedel, $9^{\text {th }}$ edition, Prentice Hall, 2011)
$1.14,1.26,2.19,2.21,2.24,2.26,2.27,2.30$
P 1.14 Assume we are standing at box A looking toward box B. Then, using the passive sign convention $p=-v i$, since the current i is flowing into the terminal of the voltage v. Now we just substitute the values for v and i into the equation for power. Remember that if the power is positive, B is absorbing power, so the power must be flowing from A to B. If the power is negative, B is generating power so the power must be flowing from B to A.
[a] $\mathrm{p}=-(125)(10)=-1250 \mathrm{~W} 1250 \mathrm{~W}$ from B to A
[b] $\mathrm{p}=-(-240)(5)=1200 \mathrm{~W} 1200 \mathrm{~W}$ from A to B
[c] $\mathrm{p}=-(480)(-12)=5760 \mathrm{~W} 5760 \mathrm{~W}$ from A to B
[d] $\mathrm{p}=-(-660)(-25)=-16,500 \mathrm{~W} 16,500 \mathrm{~W}$ from B to A

P 1.26 We use the passive sign convention to determine whether the power equation is $\mathrm{p}=$ vi or $\mathrm{p}=-$ vi and substitute into the power equation the values for v and i, as shown below:
$\mathrm{p}_{\mathrm{a}}=\mathrm{Vaia}_{\mathrm{a}}=\left(150 \times 10_{3}\right)(0.6 \times 10-3)=90 \mathrm{~W}$
$\mathrm{pb}=\mathrm{vbib}=(150 \times 103)(-1.4 \times 10-3)=-210 \mathrm{~W}$
$\mathrm{p}_{\mathrm{c}}=-\mathrm{vcic}=-(100 \times 103)(-0.8 \times 10-3)=80 \mathrm{~W}$
$\mathrm{p}_{\mathrm{d}}=\mathrm{vdid}=(250 \times 103)(-0.8 \times 10-3)=-200 \mathrm{~W}$
$\mathrm{p}_{\mathrm{e}}=-\mathrm{Veil}_{\mathrm{e}}=-(300 \times 103)(-2 \times 10-3)=600 \mathrm{~W}$
$\mathrm{pf}=\mathrm{vf}$ if $=(-300 \times 103)(1.2 \times 10-3)=-360 \mathrm{~W}$
Remember that if the power is positive, the circuit element is absorbing power, whereas is the power is negative, the circuit element is developing power. We can add the positive powers together and the negative powers together - if the power balances, these powX er sums should be equal:
$\mathrm{P}_{\mathrm{dev}}=210+200+360=770 \mathrm{~W}$; X
Pabs $=90+80+600=770 \mathrm{~W}$
Thus, the power balances and the total power developed in the circuit is 770 W.

P $2.19 \quad[\mathrm{a}]$

$$
\begin{aligned}
20 i_{\mathrm{a}} & =80 i_{\mathrm{b}} \quad i_{g}=i_{\mathrm{a}}+i_{\mathrm{b}}=5 i_{\mathrm{b}} \\
i_{\mathrm{a}} & =4 i_{\mathrm{b}} \\
50 & =4 i_{g}+80 i_{\mathrm{b}}=20 i_{\mathrm{b}}+80 i_{\mathrm{b}}=100 i_{\mathrm{b}} \\
i_{\mathrm{b}} & =0.5 \mathrm{~A}, \text { therefore, } i_{\mathrm{a}}=2 \mathrm{~A} \quad \text { and } i_{g}=2.5 \mathrm{~A}
\end{aligned}
$$

[b] $i_{\mathrm{b}}=0.5 \mathrm{~A}$
[c] $v_{o}=80 i_{\mathrm{b}}=40 \mathrm{~V}$
[d] $\quad p_{4 \Omega}=i_{g}^{2}(4)=6.25(4)=25 \mathrm{~W}$
$p_{20 \Omega}=i_{\mathrm{a}}^{2}(20)=(4)(20)=80 \mathrm{~W}$
$p_{80 \Omega}=i_{\mathrm{b}}^{2}(80)=0.25(80)=20 \mathrm{~W}$
[e] $p_{50 \mathrm{~V}}($ delivered $)=50 i_{g}=125 \mathrm{~W}$
Check:

$$
\begin{aligned}
& \sum P_{\mathrm{dis}}=25+80+20=125 \mathrm{~W} \\
& \sum P_{\mathrm{del}}=125 \mathrm{~W}
\end{aligned}
$$

P $2.21 \quad[\mathrm{a}]$

$$
\begin{aligned}
& v_{2}=180-100=80 \mathrm{~V} \\
& i_{2}=\frac{v_{2}}{8}=10 \mathrm{~A} \\
& i_{3}+4=i_{2}, \quad i_{3}=10-4=6 \mathrm{~A} \\
& v_{1}=10 i_{3}+8 i_{2}=10(6)+8(10)=140 \mathrm{~V} \\
& i_{1}=\frac{v_{1}}{70}=\frac{140}{70}=2 \mathrm{~A}
\end{aligned}
$$

Note also that

$$
\begin{aligned}
& i_{4}=i_{1}+i_{3}=2+6=8 \mathrm{~A} \\
& i_{g}=i_{4}+i_{o}=8+4=12 \mathrm{~A}
\end{aligned}
$$

[b] $\quad p_{5 \Omega}=8^{2}(5)=320 \mathrm{~W}$

$$
p_{25 \Omega}=(4)^{2}(25)=400 \mathrm{~W}
$$

$$
p_{70 \Omega}=2^{2}(70)=280 \mathrm{~W}
$$

$$
p_{10 \Omega}=6^{2}(10)=360 \mathrm{~W}
$$

$$
p_{8 \Omega}=10^{2}(8)=800 \mathrm{~W}
$$

$[c] \sum P_{\text {dis }}=320+400+280+360+800=2160 \mathrm{~W}$

$$
P_{\mathrm{dev}}=180 i_{g}=180(12)=2160 \mathrm{~W}
$$

P 2.24 [a] Start by calculating the voltage drops due to the currents i_{1} and i_{2}. Then use KVL to calculate the voltage drop across and 35Ω resistor, and Ohm's law to find the current in the 35Ω resistor. Finally, KCL at each of the middle three nodes yields the currents in the two sources and the current in the middle 2Ω resistor. These calculations are summarized in the figure below:

$$
\begin{aligned}
p_{147 \text { (top) }} & =-(147)(28)=-4116 \mathrm{~W} \\
p_{147 \text { (bottom) }} & =-(147)(21)=-3087 \mathrm{~W}
\end{aligned}
$$

[b]

$$
\begin{aligned}
\sum P_{\mathrm{dis}} & =(28)^{2}(1)+(7)^{2}(2)+(21)^{2}(1)+(21)^{2}(5)+(14)^{2}(10)+(7)^{2}(35) \\
& =784+98+441+2205+1960+1715=7203 \mathrm{~W} \\
\sum P_{\text {sup }} & =4116+3087=7203 \mathrm{~W}
\end{aligned}
$$

Therefore, $\sum P_{\text {dis }}=\sum P_{\text {sup }}=7203 \mathrm{~W}$

P $2.26 \quad[\mathrm{a}]$

$$
\begin{aligned}
& v_{2}=100+4(15)=160 \mathrm{~V} ; \quad v_{1}=160-(9+11+10)(2)=100 \mathrm{~V} \\
& i_{1}=\frac{v_{1}}{4+16}=\frac{100}{20}=5 \mathrm{~A} ; \quad i_{3}=i_{1}-2=5-2=3 \mathrm{~A} \\
& v_{g}=v_{1}+30 i_{3}=100+30(3)=190 \mathrm{~V} \\
& i_{4}=2+4=6 \mathrm{~A}
\end{aligned}
$$

$$
i_{g}=-i_{4}-i_{3}=-6-3=-9 \mathrm{~A}
$$

[b] Calculate power using the formula $p=R i^{2}$:

$$
\begin{array}{lc}
p_{9 \Omega}=(9)(2)^{2}=36 \mathrm{~W} ; & p_{11 \Omega}=(11)(2)^{2}=44 \mathrm{~W} \\
p_{10 \Omega}=(10)(2)^{2}=40 \mathrm{~W} ; & p_{5 \Omega}=(5)(6)^{2}=180 \mathrm{~W} \\
p_{30 \Omega}=(30)(3)^{2}=270 \mathrm{~W} ; & p_{4 \Omega}=(4)(5)^{2}=100 \mathrm{~W} \\
p_{16 \Omega}=(16)(5)^{2}=400 \mathrm{~W} ; & p_{15 \Omega}=(15)(4)^{2}=240 \mathrm{~W}
\end{array}
$$

[c] $v_{g}=190 \mathrm{~V}$
[d] Sum the power dissipated by the resistors:

$$
\sum p_{\text {diss }}=36+44+40+180+270+100+400+240=1310 \mathrm{~W}
$$

The power associated with the sources is

$$
\begin{aligned}
& p_{\text {volt-source }}=(100)(4)=400 \mathrm{~W} \\
& p_{\text {curr-source }}=v_{g} i_{g}=(190)(-9)=-1710 \mathrm{~W}
\end{aligned}
$$

Thus the total power dissipated is $1310+400=1710 \mathrm{~W}$ and the total power developed is 1710 W , so the power balances.

P 2.27 First note that we know the current through all elements in the circuit except the 200Ω resistor (the current in the three elements to the left of the 200Ω resistor is i_{β}; the current in the three elements to the right of the 200Ω resistor is $29 i_{\beta}$). To find the current in the 200Ω resistor, write a KCL equation at the top node:
$i_{\beta}+29 i_{\beta}=i_{200 \Omega}=30 i_{\beta}$
We can then use Ohm's law to find the voltages across each resistor in terms of i_{β}. The results are shown in the figure below:

[a] To find i_{β}, write a KVL equation around the left-hand loop, summing voltages in a clockwise direction starting below the 15.2 V source:
$-15.2 \mathrm{~V}+10,000 i_{1}-0.8 \mathrm{~V}+6000 i_{\beta}=0$
Solving for i_{β}
$10,000 i_{\beta}+6000 i_{\beta}=16 \mathrm{~V} \quad$ so $\quad 16,000 i_{\beta}=16 \mathrm{~V}$
Thus,
$i_{\beta}=\frac{16}{16,000}=1 \mathrm{~mA}$
Now that we have the value of i_{β}, we can calculate the voltage for each component except the dependent source. Then we can write a KVL equation for the right-hand loop to find the voltage v_{y} of the dependent source. Sum the voltages in the clockwise direction, starting to the left of the dependent source:

$$
-v_{y}-14,500 i_{\beta}+25 \mathrm{~V}-6000 i_{\beta}=0
$$

Thus,

$$
v_{y}=25 \mathrm{~V}-20,500 i_{\beta}=25 \mathrm{~V}-20,500\left(10^{-3}\right)=25 \mathrm{~V}-20.5 \mathrm{~V}=4.5 \mathrm{~V}
$$

[b] We now know the values of voltage and current for every circuit element. Let's construct a power table:

Element	Current (mA)	Voltage (V)	Power Equation	Power (mW)
15.2 V	1	15.2	$p=-v i$	-15.2
$10 \mathrm{k} \Omega$	1	10	$p=R i^{2}$	10
0.8 V	1	0.8	$p=-v i$	-0.8
200Ω	30	6	$p=R i^{2}$	180
Dep. source	29	4.5	$p=v i$	130.5
500Ω	29	14.5	$p=R i^{2}$	420.5
25 V	29	25	$p=-v i$	-725

The total power generated in the circuit is the sum of the negative power values in the power table:
$-15.2 \mathrm{~mW}+-0.8 \mathrm{~mW}+-725 \mathrm{~mW}=-741 \mathrm{~mW}$
Thus, the total power generated in the circuit is 741 mW . The total power absorbed in the circuit is the sum of the positive power values in the power table:
$10 \mathrm{~mW}+180 \mathrm{~mW}+130.5 \mathrm{~mW}+420.5 \mathrm{~mW}=741 \mathrm{~mW}$
Thus, the total power absorbed in the circuit is 741 mW and the power in the circuit balances.

P $2.30 \quad[\mathrm{a}] 100-20 i_{\sigma}+18 i_{\Delta}=0$

$$
-18 i_{\Delta}+5 i_{\sigma}+40 i_{\sigma}=0 \quad \text { so } \quad 18 i_{\Delta}=45 i_{\sigma}
$$

Therefore, $\quad-100-20 i_{\sigma}+45 i_{\sigma}=0, \quad$ so $\quad i_{\sigma}=4 \mathrm{~A}$

$$
\begin{aligned}
& 18 i_{\Delta}=45 i_{\sigma}=180 ; \text { so } i_{\Delta}=10 \mathrm{~A} \\
& v_{o}=40 i_{\sigma}=160 \mathrm{~V}
\end{aligned}
$$

[b] $i_{g}=$ current out of the positive terminal of the 100 V source $v_{\mathrm{d}}=$ voltage drop across the $8 i_{\Delta}$ source
$i_{g}=i_{\Delta}+i_{\sigma}+8 i_{\Delta}=9 i_{\Delta}+i_{\sigma}=94 \mathrm{~A}$
$v_{d}=160-20=140 \mathrm{~V}$

$$
\begin{aligned}
\sum P_{\mathrm{gen}} & =100 i_{g}+20 i_{\sigma} i_{g}=100(94)+20(4)(94)=16,920 \mathrm{~W} \\
\sum P_{\mathrm{diss}} & =18 i_{\Delta}^{2}+5 i_{\sigma}\left(i_{g}-i_{\Delta}\right)+40 i_{\sigma}^{2}+8 i_{\Delta} v_{d}+8 i_{\Delta}(20) \\
& =(18)(100)+20(94-10)+16(40)+80(140)+80(20) \\
& =16,920 \mathrm{~W} ; \text { Therefore } \\
\sum P_{\text {gen }} & =\sum P_{\text {diss }}=16,920 \mathrm{~W}
\end{aligned}
$$

