EE 202 (122) - HW3 - Solution

Due Monday March 11, 2013

Dr. Abdallah Al-Ahmari

Question 1:

For the circuit shown in Figure 1, use source transformation to find the current i_{o}.

Figure 1

Solution:

a) Two source transformations to get:

b) Combine two parallel resistors and one source transformation to get:

c) Combine three resistors and two voltage sources to get:

d) Once source transformation to get:

e) Assign a voltage v as follows:

Apply KCL to get
$-2+\mathrm{v} / 17+\mathrm{v} / 12.2+1.05=0$
$\mathrm{v}=6.75 \mathrm{~V}$
$\mathrm{i}_{\mathrm{o}}=6.75 / 17=0.397 \mathrm{~A}$

Question 2:

For the circuit shown in Figure 1, use source transformation to find the power dissipated by the 5Ω resistor.

Solution:

a) Three source transformations (right, left, and middle) to get:

b) Combine two resistors and one source transformation to get:

c) Mesh analysis

$$
\begin{aligned}
& \mathrm{ix}=(34+6+6.8) /(17+5+6+1.2)=1.603 \mathrm{~A} \\
& \mathrm{P}_{5 \text { _Ohms }}=5(1.603)^{2}=12.848 \mathrm{~W} \text { absorbed. }
\end{aligned}
$$

Question 3:

For the circuit shown in Figure 2, use source transformation to find the following:
a) The voltage v_{o}.
b) The power dissipated by the 10Ω resistor.

Figure 2

Solution:

a) Remove 125Ω and 25Ω resistors as follows:

b) Combine two series resistors to get:

c) Combine two parallel resistors to get:

d) One source transformation from the right to get:

e) Mesh analysis:

$$
\begin{aligned}
& \mathrm{ix}=(250+400 / 3) /(25+50 / 3+10)=7.42 \mathrm{~A} \\
& \mathrm{vo}=-10 \mathrm{ix}=-74.2 \mathrm{~V} \\
& \mathrm{P}_{10 _ \text {ohms }}=10(7.42)^{2}=550.564 \mathrm{~W}
\end{aligned}
$$

Question 4:

For the circuit shown in Figure 3, find the Thevenin equivalent circuit with respect to the terminals a, b.

Solution:

Start with finding V_{oc} :

The mesh current equations are
$-90+5\left(\mathrm{i}_{2}-\mathrm{i}_{1}\right)+25\left(\mathrm{i}_{2}-\mathrm{i}_{3}\right)=0$
$\mathrm{i} 3-\mathrm{i} 1=18$
Supermesh around M1\&M3:
$20 \mathrm{i}_{1}+60 \mathrm{i}_{3}+10 \mathrm{i}_{3}+25\left(\mathrm{i}_{3}-\mathrm{i}_{2}\right)+5\left(\mathrm{i}_{1}-\mathrm{i}_{2}\right)=0$
$V_{\text {oc }}=60 \mathrm{i} 3=60(5)=300 \mathrm{~V}$
Then find R_{Th} as follows

$\mathrm{R}_{\mathrm{Th}}=\mathrm{R}_{\mathrm{eq}}=60 / /(20+10)=20 \Omega$

Question 5:

For the circuit shown in Figure 4,
a) Find the open circuit voltage V_{oc} with respect to the terminals a, b. Use the meshcurrent method.
b) Find the short circuit current I_{sc} with respect to the terminals a , b . Use the meshcurrent method.
c) Use an external current source $(1.0 \mathrm{~A})$ to find the Thevenin resistor R_{th}. Use the mesh-current method.
d) Find the Thevenin equivalent circuit with respect to the terminals a, b.
e) Find the Norton equivalent circuit with respect to the terminals a, b.

Figure 4

Solution:

a) Start with finding V_{oc} as follows:

The mesh equations are:
$35 i_{\text {phi }}+4\left(i_{1}-i_{4}\right)+\left(i_{1}-i_{3}\right)+2\left(i_{1}-i_{2}\right)=0$
$20 \mathrm{i}_{2}+2\left(\mathrm{i}_{2}-\mathrm{i}_{1}\right)+20=0$
$-20+\left(\mathrm{i}_{3}-\mathrm{i}_{1}\right)+40\left(\mathrm{i}_{3}-\mathrm{i}_{4}\right)=0$
$\mathrm{i}_{4}=3.125 \mathrm{v}_{\text {delta }}$
Help equations:
$\mathrm{i}_{\text {phi }}=\mathrm{i}_{3}-\mathrm{i}_{4}$
$\mathrm{v}_{\text {delta }}=\mathrm{i}_{3}-\mathrm{i}_{1}$
$\mathrm{V}_{\mathrm{oc}}=4\left(\mathrm{i}_{1}-\mathrm{i}_{4}\right)+40\left(\mathrm{i}_{3}-\mathrm{i}_{4}\right)=21.08 \mathrm{~V}$
b) Finding I_{sc} as follows:

The mesh equations are:
$35 \mathrm{i}_{\text {phi }}+4\left(\mathrm{i}_{1}-\mathrm{i}_{4}\right)+\left(\mathrm{i}_{1}-\mathrm{i}_{3}\right)+2\left(\mathrm{i}_{1}-\mathrm{i}_{2}\right)=0$
$20 i_{2}+2\left(i_{2}-i_{1}\right)+20=0$
$-20+\left(i_{3}-i_{1}\right)+40\left(i_{3}-i_{4}\right)=0$
$40\left(i_{4}-i_{3}\right)+4\left(i_{4}-i_{1}\right)=0$
$\mathrm{i}_{5}=3.125 \mathrm{v}_{\text {delta }}$
Help equations:
$\mathrm{i}_{\text {phi }}=\mathrm{i}_{3}-\mathrm{i}_{4}$
$v_{\text {delta }}=i_{3}-i_{1}$
$\mathrm{I}_{\mathrm{sc}}=\mathrm{i}_{4}-\mathrm{i}_{5}=13.8 \mathrm{~A}$
c) Finding R_{Th} using an external current source

The mesh equations are:
$35 \mathrm{i}_{\text {phi }}+4\left(\mathrm{i}_{1}-\mathrm{i}_{4}\right)+\left(\mathrm{i}_{1}-\mathrm{i}_{3}\right)+2\left(\mathrm{i}_{1}-\mathrm{i}_{2}\right)=0$
$20 \mathrm{i}_{2}+2\left(\mathrm{i}_{2}-\mathrm{i}_{1}\right)=0$
$\left(\mathrm{i}_{3}-\mathrm{i}_{1}\right)+40\left(\mathrm{i}_{3}-\mathrm{i}_{4}\right)=0$
$\mathrm{i}_{5}-\mathrm{i}_{4}=1$
$\mathrm{i}_{5}=3.125 \mathrm{v}_{\text {delta }}$
Help equations:
$\mathrm{i}_{\text {phi }}=\mathrm{i}_{3}-\mathrm{i}_{4}$
$\mathrm{v}_{\text {delta }}=\mathrm{i}_{3}-\mathrm{i}_{1}$
$\mathrm{V}_{\mathrm{ex}}=4\left(\mathrm{i}_{1}-\mathrm{i}_{4}\right)+40\left(\mathrm{i}_{3}-\mathrm{i}_{4}\right)=1.528 \mathrm{~V}$
$\mathrm{R}_{\mathrm{Th}}=\mathrm{V}_{\mathrm{ex}} / 1.0=1.528 \Omega$
d) Thevenin Equivalent Circuit

e) Norton Equivalent Circuit

