EE 202 (122) – HW3 – Solution Due Monday March 11, 2013 Dr. Abdallah Al-Ahmari

Question 1:

For the circuit shown in Figure 1, use source transformation to find the current i₀.

Solution:

a) Two source transformations to get:

b) Combine two parallel resistors and one source transformation to get:

c) Combine three resistors and two voltage sources to get:

d) Once source transformation to get:

e) Assign a voltage v as follows:

Apply KCL to get -2 +v/17 +v/12.2 + 1.05 = 0 v = 6.75 V

$$i_o = 6.75 / 17 = 0.397 \text{ A}$$

Question 2:

For the circuit shown in Figure 1, use source transformation to find the power dissipated by the 5 Ω resistor.

Solution:

a) Three source transformations (right, left, and middle) to get:

b) Combine two resistors and one source transformation to get:

c) Mesh analysis

ix = (34+6+6.8)/(17+5+6+1.2) = 1.603 A

 $P_{5_{Ohms}} = 5 (1.603)^2 = 12.848$ W absorbed.

Question 3:

For the circuit shown in Figure 2, use source transformation to find the following:

- a) The voltage v_o.
- b) The power dissipated by the 10 Ω resistor.

Solution:

a) Remove 125 Ω and 25 Ω resistors as follows:

b) Combine two series resistors to get:

c) Combine two parallel resistors to get:

d) One source transformation from the right to get:

ix = (250+400/3)/(25+50/3+10) = 7.42 A vo = -10 ix = -74.2 V P_{10_Ohms}= 10 (7.42)² = 550.564 W

Question 4:

For the circuit shown in Figure 3, find the Thevenin equivalent circuit with respect to the terminals a,b.

Solution:

Start with finding V_{oc}:

The mesh current equations are $-90 + 5(i_2 - i_1) + 25(i_2 - i_3) = 0$ $i_3 - i_1 = 18$ Supermesh around M1&M3: $20 i_1 + 60 i_3 + 10 i_3 + 25(i_3 - i_2) + 5(i_1 - i_2) = 0$

 $V_{oc} = 60 \text{ i}3 = 60(5) = 300 \text{ V}$

Then find R_{Th} as follows

 $R_{Th} = R_{eq} = 60 // (20+10) = 20 \ \Omega$

Question 5:

For the circuit shown in Figure 4,

- a) Find the open circuit voltage V_{oc} with respect to the terminals a, b. Use the meshcurrent method.
- b) Find the short circuit current I_{sc} with respect to the terminals a, b. Use the meshcurrent method.
- c) Use an external current source (1.0 A) to find the Thevenin resistor R_{th} . Use the mesh-current method.
- d) Find the Thevenin equivalent circuit with respect to the terminals a, b.
- e) Find the Norton equivalent circuit with respect to the terminals a, b.

Solution:

a) Start with finding V_{oc} as follows:

The mesh equations are: 35 i_{phi} + 4(i_1 - i_4) + (i_1 - i_3) + 2(i_1 - i_2) = 0 20 i_2 + 2 (i_2 - i_1) + 20 =0 -20 + (i_3 - i_1) + 40(i_3 - i_4) = 0 i_4 = 3.125 v_{delta}

Help equations: $i_{phi} = i_3 - i_4$ $v_{delta} = i_3 - i_1$

 $V_{oc} = 4 \, \left(i_1 - i_4 \right) + 40 (i_3 - i_4) = \texttt{21.08} \ V$

b) Finding I_{sc} as follows:

The mesh equations are: $35 i_{phi} + 4(i_1 - i_4) + (i_1 - i_3) + 2(i_1 - i_2) = 0$ $20 i_2 + 2 (i_2 - i_1) + 20 = 0$ $-20 + (i_3 - i_1) + 40(i_3 - i_4) = 0$ $40(i_4 - i_3) + 4(i_4 - i_1) = 0$ $i_5 = 3.125 v_{delta}$

 $\begin{array}{l} Help \ equations: \\ i_{phi} = i_3 - i_4 \\ v_{delta} = i_3 - i_1 \end{array}$

 $I_{sc} = i_4 - i_5 =$ 13.8 A

c) Finding R_{Th} using an external current source

The mesh equations are: $35 i_{phi} + 4(i_1 - i_4) + (i_1 - i_3) + 2(i_1 - i_2) = 0$ $20 i_2 + 2 (i_2 - i_1) = 0$ $(i_3 - i_1) + 40(i_3 - i_4) = 0$ $i_5 - i_4 = 1$ $i_5 = 3.125 v_{delta}$

Help equations:

$$\begin{split} i_{phi} &= i_3 - i_4 \\ v_{delta} &= i_3 - i_1 \end{split}$$

$$V_{ex} = 4 (i_1 - i_4) + 40(i_3 - i_4) = 1.528 V$$

- $R_{Th}=V_{ex}\!/1.0=\text{1.528}\;\Omega$
- d) Thevenin Equivalent Circuit

e) Norton Equivalent Circuit