Question 1:

Use only source transformation to compute the voltage V in the circuit shown below.

Question 2:

Apply circuit reduction method for the circuit shown below to obtain the following:

- a) The voltage $\mathbf{v}_{\mathbf{x}}$.
- b) The current i_x .
- c) The power <u>supplied</u> by the independent current source.

Question 3:

Use the direct method for the circuit shown below to obtain the $_{3\,\Omega}$ following:

- a) The voltage $\mathbf{v}_{\mathbf{x}}$.
- b) The current i_x .
- c) The power <u>absorbed by</u> the 3 Ω resistor.

Tatal 10 points

$$kVL$$
: $V_x = 4v_x$

$$\Rightarrow v_y = \frac{4v_x}{4} = \frac{4v_x}{4} = v_x$$
 kVL for the outerloop

$$6 = 3(4+v_x) + 4v_x$$

$$\Rightarrow v_x = \frac{6}{10} = -\frac{3}{5}A$$

$$v_x = 4v_x = -\frac{12}{5}V$$

2)

The power absorbed by the 3 Ω resistor: Find the voltage across the 3 Ω resistor which is:

$$V_{3\Omega} = 6 - v_x = 6 + \frac{12}{5} = \frac{42}{5}$$

 $P_{3\Omega} = \frac{V_{3\Omega}^2}{3} = \frac{588}{25} = 23.52 \text{ watt}$

Or find the current passing through the 3 Ω resistor which is:

$$I_{3\Omega} = 4 + 2i_x = 4 - \frac{6}{5} = \frac{14}{5}$$

 $P_{3\Omega} = 3I_{3\Omega}^2 = 3 \times \frac{196}{25} = \frac{588}{25} = 23.52 \text{ watt}$