

8. Geographic Data Modeling

Geographic Information Systems and Science SECOND EDITION

Paul A. Longley, Michael F. Goodchild, David J. Maguire, David W. Rhind © 2005 John Wiley and Sons, Ltd

Outline

Definitions
Data models / modeling
GIS data models
Topology
Example
Water facilities

Definitions

Data model

set of constructs for representing objects and processes in the digital environment

Representation

Focus on conceptual and scientific issues

Role of a Data Model

Levels of Data Model Abstraction

Two representations of San Diego, California: (A) panchromatic SPOT raster satellite image collected in 1990 at 10 m resolution; (B) vector objects digitized from the image.

GIS Data Models & Applications

- CAD
- Graphical
- Image
- Raster/Grid
- Network
- Geo-relational
- TIN
- Object

- Engineering design
- Simple mapping
- Image processing and analysis
- Spatial analysis / modeling
- Network analysis
- nal Geoprocessing geometric features
 - Surface /terrain analysis / modeling
 - Features with behavior

Raster and Vector Models

- Raster implementation of field conceptual model
 - Array of cells used to represent objects
 - Useful as background maps and for spatial analysis
- Vector implementation of discrete object conceptual model
 - Point, line and polygon representations
 - Widely used in cartography, and network analysis

© 2005 John Wiley & Sons, Ltd

Raster – Satellite Imagery

Viewer #1 : seattle_classifications.img (:Layer_1) File Utility View AGL Baster Vector Appointation TerraModel Halp	
The Dunity Year Adv. Taxle Jeron Shinolation Tenamone Teh	
498997.00, 5257505.00 (UTM / Clarke 1866)	

Vector Data Model

Points

+1

+2

	Point number
	1
	2
-3	3
+4	4

1

2

(x,y) coordinates (2,4)(3,2) (5,3) (6,2)

Polyline number	(x,y) coordinates	
1	(1,5) (3,6) (6,5) (7,6	
2	(1,1) (3,3) (6,2) (7,3	

Polygons

2

Polygon number (x,y) coordinates (2,4) (2,5) (3,6) (4,5) (3,4) (2,4)

(3,2) (3,3) (4,3) (5,4) (6,2) (5,1) (4,1) (4,2) (3,2)

© 2005 John Wiley & Sons, Ltd

Topology

- Science and mathematics of geometric relationships
 - Simple features + topological rules
 - Connectivity
 - Adjacency
 - Shared nodes / edges
- Topology uses
 - Data validation
 - Spatial analysis (e.g. network tracing, polygon adjacency)

Topological Polygon Data Layer

Contiguity of Topological Polygons

Left-right topology

Geo-relational Polygon Dataset

^{© 2005} John Wiley & Sons, Ltd

TIN Surface of Death Valley, California

TIN Surface of Death Valley, California

TIN Surface of Death Valley, California

A TIN is a topologic data structure that manages information about the nodes that comprise each triangle and the neighbours to each triangle

Triangle	Node list	Neighbours
А	1, 2, 3	-, B, D
В	2, 4, 3	-, C, A
 C	4, 8, 3	-, G, B
D	1, 3, 5	A, F, E
E	1, 5, 6	D, H, -
F	3, 7, 5	G, H, D
G	3, 8, 7	C, -, F
Н	5, 7, 6	F, -, E

Triangles always have three nodes and usually have three neighbouring triangles. Triangles on the periphery of the TIN can have one or two neighbours.

Three Dimension Landscape of First Turn on Yangtse River in CHINA

Human Settlements Research Center, Tsinghua University

Example of split and merge rules for parcel objects: (A) split; (B) merge

(B)

© 2005 John Wiley & Sons, Ltd

Example Water Facilities Data Model

Start with objects and relationships
 Model as object types and relationships
 Topological network
 Hierarchical 'type of'
 Collection 'composed of'
 Add related attribute tables

Water Distribution system

Water Distribution System

Visio CASE Tool (UML Representation)

Common Mistakes

- Design in abstract without reference to GIS software core data model
- Don't budget right amount of time
 Too much, too little
- Try to be too wide ranging and generic instead of specific and practical
- Design for elegance instead of performance

Conclusions

- Data modeling is an art and a science
- Can't really understand it without practical experience
- Mature tools available to help
 CASE, UML
- Never forget its GIS data modeling