USE OF GEOGRAPHIC INFORMATION SYSTEM (GIS) IN STUDYING GROUNDWATER CONTAMINATION: AN APPLICATION TO ARSENIC PROBLEM IN BANGLADESH

By

IBRAHIM TAIWO ABDULKADIR
(ID#: 230341)

For

CRP 514: Introduction to GIS
Term 041 – 11th Offer

Course Instructor:
Dr. Baqer Al-Ramadan

INTRODUCTION

- First reported case of arsenic-contaminated groundwater __ 1978 in West Bengal.
- First case of arsenic poisoning __ diagnosed in 1983.
- Same contamination report in the west of Bangladesh in late 1993.
INTRODUCTION (II)

- Analyzing large amounts of groundwater—an overwhelming task.
- ArcView’s ability.
- The wells are predominantly in the shallow aquifer—usually in the range 15-70 m depth.
- Study limitation/constraints.
SOURCE OF ARSENIC

- Arsenic—an ubiquitous element in the atmosphere, soils and rocks, natural waters and organisms.

- Mining activity, combustion of fossil fuels and through the use of arsenic in pesticides, herbicides, crop desiccants and as an additive to animal feed.
PROBLEM STATEMENT

- Displayed of useful hydrogeological analysis on maps.
OBJECTIVES

- Maps showing the regional distribution of arsenic and other elements in the groundwater.

- Estimates of the percentage of wells exceeding various limits for arsenic and other elements on maps.
DATA SOURCE

- Source of data:
 http://www.bgs.ac.uk/arsenic/bangladesh/data download.htm.

- The raw data are in a Microsoft Excel spreadsheet format.
DATA IN EXCEL FORMAT

<table>
<thead>
<tr>
<th>SAMPLE_ID</th>
<th>SAMPLE_FIELD_ID</th>
<th>SAMPLE_DATE</th>
<th>LATITUDE</th>
<th>LONGITUDE</th>
<th>YEAR_CONSTRUCTION</th>
<th>WELL_TYPE</th>
<th>WELL_DEPTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>S98_02454</td>
<td>RIP0020</td>
<td>3/12/1998</td>
<td>23.68°</td>
<td>90.522°</td>
<td>1990</td>
<td>STW</td>
<td>66</td>
</tr>
<tr>
<td>S98_02509</td>
<td>RIP1334</td>
<td>4/21/1998</td>
<td>23.76°</td>
<td>89.256°</td>
<td>1989</td>
<td>STW</td>
<td>39</td>
</tr>
<tr>
<td>S98_02614</td>
<td>RIP3246</td>
<td>5/17/1998</td>
<td>23.03°</td>
<td>91.52°</td>
<td>1988</td>
<td>DTW</td>
<td>244</td>
</tr>
<tr>
<td>S98_02750</td>
<td>RIP0038</td>
<td>3/15/1998</td>
<td>23.88°</td>
<td>90.071°</td>
<td>1996</td>
<td>STW</td>
<td>34</td>
</tr>
<tr>
<td>S98_02752</td>
<td>RIP0040</td>
<td>3/15/1998</td>
<td>23.80°</td>
<td>90.02°</td>
<td>1983</td>
<td>STW</td>
<td>18</td>
</tr>
<tr>
<td>S98_02780</td>
<td>RIP0029</td>
<td>4/21/1998</td>
<td>23.02°</td>
<td>89.120°</td>
<td>1996</td>
<td>STW</td>
<td>57</td>
</tr>
</tbody>
</table>
TOOLS OF STUDY

- ArcView was used to query and analyze data and finally making different maps.

- Presentation of data on maps.
DISTRIBUTION OF SAMPLED WELLS

Figure 1: Distribution of well sites and year sampled.
DISTRIBUTION OF SAMPLED WELLS (II)

Figure 2: Distribution of wells based on the year of construction.
Figure 3: The depth distribution of wells sampled.
GEOGRAPHICAL DISTRIBUTION OF ARSENIC

Figure 4: Concentrations of groundwater arsenic.
Figure 5: Average concentration of arsenic in wells from each of the six administrative divisions.
Figure 6: Concentration of arsenic plotted against well depth for all sampled wells.
ARSENIC VERSUS GEOLOGY

Figure 7: Classification of sampled sites by lithological units.
HYDROGEOCHEMISTRY OF THREE SPECIAL STUDY AREAS

Figure 8: Sketch map of Bangladesh showing the locations of the three Special Study Areas.
Figure 9: Spatial Variation of Sodium.
CONCLUSIONS AND RECOMMENDATIONS

- Arsenic contamination threatens water resources.

- The generated maps show an effective way to help investigate and remedy arsenic contamination in Bangladesh.

- Also help environmental professionals prioritize their limited budgets for groundwater cleanup, develop field investigation strategies and design remedial systems.
CONCLUSIONS AND RECOMMENDATIONS (II)

- The ability to use GIS created data along with data queried from a Excel spreadsheet is beneficial for contamination analysis.

- A larger size of well random samples should be needed if physical and economic constraints are not significant.
CONCLUSIONS AND RECOMMENDATIONS (III)

- Human errors and laboratory uncertainties are also possible factors for prediction errors. These should be considered in the assessment of arsenic contamination.

- Need to license drilling of boreholes by the government and for details of the borehole logs to be logged in a systematic way.