
DIGITAL CIRCUIT DESIGN THROUGH
SIMULATED EVOLUTION

by

UTHMAN SALEM AL-SAIARI

A Thesis Presented to the
DEANSHIP OF GRADUATE STUDIES

In Partial Fulfillment of the Requirements
for the Degree of

MASTER OF SCIENCE

IN

COMPUTER ENGINEERING

KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

Dhahran, Saudi Arabia

November 2003

KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

DHAHRAN 31261, SAUDI ARABIA

DEANSHIP OF GRADUATE STUDIES

This thesis, written by

UTHMAN SALEM AL-SAIARI

under the direction of his Thesis Advisor and approved by his Thesis Committee,

has been presented to and accepted by the Dean of Graduate Studies, in partial

fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER ENGINEERING

Thesis Committee

Prof. Sadiq M. Sait (Chairman)

Prof. Mostafa Abd − El − Barr (Co − Chairman)

Dr. Mohammed Farouk Khan (Member)

Prof. Sadiq M. Sait
Department Chairman

Prof. Osama A. Jannadi
Dean of Graduate Studies

Date

To my father, God’s blessings be upon his grave

To my mother for her prayers all nights

To my dear wife for her love and patience.

iii

Acknowledgements
First of all, all sincere praises and thanks are due to our God, Allah (SWT), who

created us and guided us to this great religion, i.e., the Islam. No one can thank

God as he deserves because of his limitless blessings on us. May God’s peace and

blessings be upon his prophet Mohammad who said1 : The person who does not

thank people, does not thank God as well.

Thanks to my advisor, Dr. Sadiq M. Sait, who was very helpful during all the

phases of this work. This thesis is never possible without the support, encouragement

and the valuable time spent by my advisor in bringing this work into existence.

Also, thanks to Dr. Mostafa Abd-El-Barr, my co-advisor, for his help during the

course of this thesis. Thanks are also due to our great department, Computer

Engineering, and our great university, KFUPM, for the valuable support. Also,

I would like to express my deepest thanks to every instructor who contributed in

building my knowledge and experience. Thanks are also due to my colleagues,

especially Mr. Sarif Bambang, who did not hesitate in providing me with any kind

of help I needed. I would also to acknowledge the help of Dr. Carlos A. Coello for

his valuable discussion during the course of this thesis. Also, I want to thank Syed

Sanaullah for his help in the arrangement and finalizing the copying and printing of

this thesis.

1This is only a translation of the meaning of what he said. He originally said so in Arabic. May
peace and blessings be upon him.

iv

I also thank my great parents who provided and supported me all the way.

Thanks to them and may God bless them. Last but not least, thanks to my great

dear wife who supported me with love and patience. She was really very patient

during my work and she always inspired me to finish my work as quickly as possible.

Thanks to her very much. Finally, thanks to everybody who contributed to this

achievement in a direct or an indirect way.

v

Contents

Acknowledgements iv

List of Tables xiii

List of Figures xiv

Abstract (English) xviii

Abstract (Arabic) xix

1 Introduction 1

1.1 Logic Design . 2

1.2 Problem Definition . 6

1.3 Related Work . 7

1.4 Motivation . 8

1.5 Thesis Organization . 10

2 Background 11

vi

2.1 Conventional Logic Design (CLD) . 11

2.1.1 Two-level Boolean Functions 13

2.1.2 Multilevel Boolean Functions 13

2.1.3 Reed-Muller and Exclusive-OR Logic 15

2.2 Logic Design Optimization . 15

2.3 Multi-objective Optimization . 16

2.4 Fuzzy Logic . 18

2.4.1 Fuzzy Set Theory . 19

2.4.2 Multi-objective Optimization Using Fuzzy Logic 22

2.5 Concluding Remarks . 24

3 Evolutionary Logic Design (ELD) 25

3.1 Introduction . 25

3.2 Genetic Algorithm . 28

3.3 Exploring the Space of all Representations 29

3.4 Survey on Evolutionary Logic Design (ELD) 32

3.4.1 The Circuit Encoding . 32

3.4.2 The Cost Function . 35

3.5 Observations . 37

3.6 Concluding Remarks . 38

4 Simulated Evolution (SimE) Algorithm 39

vii

4.1 Introduction . 39

4.2 SimE Algorithm: Evaluation, Selection and Allocation 40

4.2.1 Evaluation . 43

4.2.2 Selection . 44

4.2.3 Allocation . 44

4.2.4 Initialization Phase . 46

4.3 Comparison of Simulated Evolution and Genetic Algorithm (GA) . . 47

4.4 Concluding Remarks . 48

5 Simulated Evolution Algorithm (SimE) for Logic Design 49

5.1 Introduction . 50

5.2 Circuit Encoding . 51

5.3 Proposed SimE Algorithm: Parameters and Operators 54

5.3.1 Initialization Phase and Parameters 55

5.3.2 Selection Operator . 56

5.3.3 Allocation Operator . 57

5.3.4 Evaluation Function . 59

5.4 Hybrid SimE Using Tabu Search (TS) 60

5.4.1 Tabu Search (TS) . 60

5.4.2 Tabu Search for Logic Design 61

5.4.3 Hybrid SimE Algorithm . 63

viii

5.5 Concluding Remarks . 64

6 Goodness Measurements 65

6.1 Proposed Goodness Measures . 65

6.1.1 Pattern Based Goodness . 66

6.1.2 Multilevel Logic Based Goodness 68

6.2 Optimization Goodness Measure . 75

6.2.1 Area Estimation . 76

6.2.2 Delay Estimation . 77

6.2.3 Power Consumption Estimation 79

6.3 Weighted Sum Fitness Function Calculation 81

6.3.1 Functional Fitness . 81

6.3.2 Objective Fitness . 81

6.4 Fuzzy Fitness Function Calculation 83

6.4.1 Functional Fitness . 83

6.4.2 Objective Fitness . 84

6.5 Concluding Remarks . 91

7 Experiments and Results 92

7.1 Experimental Setup . 92

7.2 Performance of Different Goodness Measures 94

7.3 Effect of Hybrid SimE on the Quality of Solution 98

ix

7.4 Effect of Different Optimization Objectives 100

7.5 Concluding Remarks . 109

8 Comparison with Existing Techniques 110

8.1 Comparison with Existing ELD Techniques 110

8.2 Comparison with Existing Conventional Techniques 112

8.3 Comparison with Other Techniques 120

8.3.1 Comparison with Tabu Search 120

8.3.2 Comparison with ACO . 122

8.4 Concluding Remarks . 128

9 Conclusion and Future Directions 129

9.1 Conclusion . 130

9.2 Future Directions . 131

APPENDICES 132

A File Format and Circuit Used as Test Cases 132

A.1 Library File Format . 132

A.2 Input File Format . 133

A.3 Randomly Generated Circuits . 135

A.4 Benchmark Circuits . 135

BIBLIOGRAPHY 137

x

List of Tables

3.1 Possible cell functions in Miller [28, 29]. 34

5.1 All gate types used by SimE. 54

7.1 Summary of circuits used for the experiments. 93

7.2 Results comparison between SimE-G1 and SimE-G2. 97

7.3 Improvements in execution time in SimE-G2 over SimE-G1. 98

7.4 Results comparison between SimE-G2 and Hybrid SimE-G2. 99

7.5 Improvements in execution time in SimE-G2 over Hybrid SimE-G2. . 100

7.6 Area for selected circuits using SimE-G1 with the four set of experi-

ments. 101

7.7 Area for selected circuits using SimE-G2 with the four set of experi-

ments. 102

7.8 Delay for selected circuits using SimE-G1 with the four set of exper-

iments. 104

xi

7.9 Delay for selected circuits using SimE-G2 with the four set of exper-

iments. 104

7.10 Power for selected circuits using SimE-G1 with the four set of exper-

iments. 108

7.11 Power for selected circuits using SimE-G2 with the four set of exper-

iments. 108

8.1 Comparison with Coello [8] technique in terms of area, delay and power.111

8.2 Comparison with Coello’s GA algorithm in terms of execution time [7].112

8.3 Comparison of SimE-G1 and SIS in area optimization for single out-

put circuits. 113

8.4 Comparison of SimE-G1 and SIS in area optimization for multiple

output circuits. 114

8.5 Comparison of SimE-G2 and SIS in area optimization for single out-

put circuits. 116

8.6 Comparison of SimE-G2 and SIS in area optimization for multiple

output circuits. 117

8.7 Comparison of SimE-G2 and SIS in delay optimization for single out-

put circuits. 118

8.8 Comparison of SimE-G2 and SIS in delay optimization for multiple

output circuits. 118

xii

8.9 Comparison of TS and SimE-G2 in area and power optimization with

delay constraint. 121

8.10 Comparison with TS in terms of execution time. 123

8.11 Comparison of ACO and SimE-G2 considering area optimization. . . 125

8.12 Comparison of ACO and SimE-G2 considering delay optimization. . . 126

8.13 Comparison of ACO and SimE-G2 considering power optimization. . 127

xiii

List of Figures

1.1 Block diagram of a combinational circuit. 2

1.2 Conventional and evolutionary design methodology. 4

1.3 Evolutionary design process [28]. 5

2.1 Representation of a boolean function in (a) in two-level logic (b) in

multi-level logic. 14

3.1 Conventional design versus evolutionary design with assemble-and-test. 30

3.2 How “assemble-and-test” reaches the unknown regions of the space

of all representations. 31

3.3 Chromosome representation in Hounsell [20]. 33

3.4 Macro blocks and its genotype representation in Hounsell [20]. 33

3.5 Chromosome representation in Miller [28, 29]. 33

3.6 Example of genotype-phenotype mapping in Miller [28, 29]. 35

3.7 Representation of gene in chromosome in Coello [7, 8]. 35

xiv

4.1 Simulated Evolution algorithm [21, 34]. 42

4.2 Evaluation. 44

4.3 Selection. 44

4.4 Selection in the SimE of Figure 4.1. 45

4.5 Allocation. 45

5.1 Representation of the digital logic design problem in SimE. 51

5.2 The matrix representation of a circuit. 52

5.3 An example of a 4 input circuit. 52

5.4 Representation of individual in matrix. 54

5.5 Selection in the SimE. 57

5.6 Allocation function in SimE. 58

5.7 Evaluation function in SimE. 59

5.8 Flow chart of the tabu search algorithm [34]. 61

5.9 Tabu Search algorithm (TS). 62

5.10 Hybrid Simulated Evolution algorithm. 63

6.1 Extrinsic functional pattern based goodness. 67

6.2 An example on the pattern based goodness measure. 69

6.3 Multilevel logic goodness assumption. 71

6.4 An example on the multilevel goodness measure first step. 74

xv

6.5 An example on the multilevel goodness measure after adjusting the

number of columns. 74

6.6 Global optimization goodness cost function. 76

6.7 Membership function for area. 86

6.8 Membership function for delay. 87

6.9 Membership function for power. 89

7.1 Fitness function for SimE-G1 and SimE-G2 for 4 inputs circuit (cir-

cuit2). 95

7.2 Fitness function for SimE-G1 and SimE-G2 for mul3. 96

7.3 Normalized area and power of SimE-G2 to the area and power of

SimE-G1. 97

7.4 Normalized area of SimE-G1 (DOAPC, POADC, APODC) to the

area of SimE-G1 considering area optimization (AODPC). 103

7.5 Normalized area of SimE-G2 (DOAPC, POADC, APODC) to the

area of SimE-G2 considering area optimization (AODPC). 103

7.6 Normalized delay of SimE-G1 to the delay of SimE-G1 considering

delay optimization. 105

7.7 Normalized delay of SimE-G2 to the delay of SimE-G2 considering

delay optimization. 106

xvi

7.8 Normalized power of SimE-G1 to the power of SimE-G1 considering

power optimization. 107

7.9 Normalized power of SimE-G2 to the power of SimE-G2 considering

power optimization. 107

8.1 Results of SimE-G1 with AODPC for single output functions, nor-

malized to SIS. 114

8.2 Results of SimE-G1 with AODPC for multiple outputs functions, nor-

malized to SIS. 115

8.3 Results of SimE-G2 with AODPC for single output functions, nor-

malized to SIS. 116

8.4 Results of SimE-G2 with AODPC for multiple outputs functions, nor-

malized to SIS. 117

8.5 Results of SimE-G2 with DOAPC for single outputs functions, nor-

malized to SIS. 119

8.6 Results of SimE-G2 with DOAPC for multiple outputs functions, nor-

malized to SIS. 119

8.7 Results of SimE-G2 with APODC normalized to TS. 122

xvii

THESIS ABSTRACT

Name: Uthman Salem Muhammed Al-Saiari

Title: DIGITAL CIRCUIT DESIGN THROUGH SIMULATED EVOLUTION

Major Field: COMPUTER ENGINEERING

Date of Degree: November 2003

Evolutionary computation presents a new paradigm shift in hardware design and

synthesis. The new paradigm is expected to radically change the design procedure

such that new possibilities for discovering novel designs and/or more efficient cir-

cuits can emerge. In this thesis, Simulated Evolution algorithm is used for combi-

national logic design. SimE algorithm consists of three steps: evaluation, selection

and allocation. Two goodness measures are designed to guide the selection and allo-

cation operations of SimE. Area, power and delay are considered in the optimization

of circuits. The performance of the proposed algorithm is evaluated using selected

ISCAS’85 benchmark and randomly generated circuits. The results obtained are

compared to other techniques.

Keywords: Evolutionary Circuit Design, Logic Synthesis, Simulated Evolution,

Combinatorial Optimization, Multiobjective Optimization, Fuzzy Logic.

MASTER OF SCIENCE DEGREE

King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia

November 2003

xviii

	�� ا������

�	ن
	�� ا�����ي : ا����

�ر ا���	آ� �� ا������ا��و����� ا�� :��
ان ا��را��ّ�� "!ل ا�ّ

 ا)�'ه%�
$ ا��	
: ا����

�*�(� : ا����ج ��ر��+ ٢٠٠٣

�ل ا�>2ري ا�>��0
�;�� 30�9$ ا������ ا��. ا������ا��و����� ا�� 30ّ�م ا��6	ب ا4ر�3	�ّ' ��ّ�ل 21ريّ 0�1ً�ا *'�
��=�� �
�Cدى ا�� اآ�@	ف ��	��� *��0< واآ 	�� ���	D�EFوا�� ا��=� .��	
�ر ا���	آ� , *' ه2< ا�����ارزم ا�"

���	D�EFا��وا�� ا� ����� '* I��J�
�ات وه' ا�����3. ا��ر ا���	آ� �� M!ث "���ن "�ارزم ا�F�, ا4"��	ر, �
#�����ارزم *' ��=�$ ا4"��	ر وا�����# �.وا�J< ا���	د< ��6�<=� ��
ا��	�� ا��6��F=E وا���I , ا��6	O$. � ا���اح ��3	

���	D�EFر *' ��=�� ����6 ����� ا��وا�� ا�)���Jام �>���� �� . ا"2ت *' ��� ا�4
PD �O���ارزم ا��3Jت ا��)�ا"
 ��
�ا�ّ�$آD�E	��� ا"���ت ودوا�� (ISCAS’85)ا��وا��ا�D�EF	��� ا��3	@� $30��D .+ر	3� �� 	ق آ���$ ا�%�	�R� S ا�

>�1�� .ا4"�ى ا��

����ت ا�������ر ا���TT	آ� , ��آ�TT# ا��%��TT=� , UTTوا����TT��� ا4ر�TT3	�'ّ ا� :TT���@TT	آW ا����TTّ�دة ا�,ا��%�UTT ا���E)TT , ا�
 اXه�اف

	 �� ا����م�� در� ا���

 �� ����	ول و ���دنا���� � ا������

��	ان - ��
� ا����د� ا������ ا��	

	����! ٢٠٠٣

xix

Chapter 1

Introduction

Logic circuit for digital systems may be combinational or sequential. A combina-

tional circuit consists of logic gates whose outputs at any time are determined by

combining the values of the applied inputs using logic operations. A combinational

circuit performs an operation that can be specified logically by a set of Boolean

expressions. In contrast, sequential circuits employ elements that store bit values.

Sequential circuit outputs are function of the inputs and the bit values in the stor-

age elements. These values, in turn, are a function of previously applied inputs

and stored values. As a consequence, the outputs of a sequential circuit depend not

only on the presently applied values of the inputs, but also on past inputs, and the

behavior of the circuit must be specified by a sequence in time of inputs and internal

stored bit values. This thesis deals with combinational logic circuits [35].

A combinational circuit consists of input variables, output variables, logic gates,

1

2

Combinational Circuit m outputsn inputs

Figure 1.1: Block diagram of a combinational circuit.

and interconnections. The interconnected logic gates accept signals from the inputs

and generate signals at the outputs. A block diagram of a combinational circuit

is shown in Figure 1.1. The n input variables come from the environment of the

circuit, and the m output variables are available for use by the environment. Each

input and output variable exists physically as a binary signal that represents logic

1 or logic 0 [11].

For n input variables, there are 2n possible binary input combinations. For each

binary combination of the input variables, there is one possible binary value on each

output. Thus, a combinational circuit can be specified by a truth table that lists the

output values for each combination of the input variables. A combinational circuit

can also be described as a function of the n input variables.

1.1 Logic Design

Design of digital circuits requires knowledge of large collections of domain-specific

rules. The process of implementing a digital circuit in hardware involves transform-

ing the original logical specification into a form suitable for the target technology,

3

optimizing the representation with respect to a number of user defined constraints

(i.e., timing, fan-in/out, power, etc.), and finally carrying out technology mapping

onto the target technology [28].

In designing a complex system, circuit designers usually have to tradeoff one

design objective for another. For example, often a designer tries to find a possibly

faster circuit compared to a given previously designed one. However, the number of

gates used and power dissipation are strongly related to delay. Thus, in seeking a

faster circuit, one may end up having a complex system or a system that has higher

power dissipation. Logic synthesis attempts to provide an answer to this problem.

The purpose of logic synthesis tools is to aid circuit designers in reaching an optimal

tradeoff. Several logic synthesis algorithms are found in the literature [3, 4, 5, 6, 36].

Circuit designers use logic synthesis tools to create digital systems of arbitrary

complexity. By using a top-down approach they tend to work in a space of lower

dimensionality in which they are experts. However, this method of working is some-

what constrained both by the training and experience of the designer and by the

amount of domain-specific knowledge known to the designer. On the other hand,

iterative heuristics may allow designers to define the search space of circuit design in

a way that is natural to both the problem and the implementation. These heuristics

have a tendency to search for a solution to the circuit design problem in a much

larger, and often richer, design space beyond the realms of the traditional hardware

design space. Heuristics can thus help explore the search space regions needed to

4

Circuit
Evaluation

Domain Specific
Knowledge and

Human Expertise
Specification Working circuit

Automated
EvolutionSpecification

(a)

(b)

Figure 1.2: Conventional and evolutionary design methodology.

reach designs that are beyond the scope of conventional methods. It may therefore

be possible to use iterative heuristics to obtain novel designs that are difficult to

discover by conventional heuristics. Figure 1.2 shows the difference between the

conventional and the evolutionary methods for circuit design.

Furthermore, evolutionary design approaches do not assume a prior knowledge of

any particular design domain. They can be used in domains where little knowledge

is available or where such knowledge is costly to obtain. It is often possible to evolve

hardware that is too complex in its structure and/or dynamics for human to design.

In conventional logic design, circuit designers begin with a precise specification in

the form of truth tables or Boolean expressions. These expressions are manipulated

by applying logic synthesis algorithms. The outcome of the logic synthesis algo-

rithms will always be in the space of all logically correct representations as shown

in Figure 1.3. On the contrary, the evolutionary algorithms work on a larger space

that may not represent the desired function, but gradually pulls the specification of

the circuit towards the target function.

5

Canonical
boolean
space

OR

NOT

AND

R-M space

Space of all
logically correct
representations

The space of all
representations

n or less
variables

Evolutionary
Algorithms

Assemble
and test

Appying
R-M rules

Applying
cannonical

rules

The space of all
truth tables of n
or less variables

Figure 1.3: Evolutionary design process [28].

It is well-known that many optimization problems arising in computer science,

engineering, management, administration or other fields cannot be solved exactly

within reasonable time limits, at least not for problem sizes of practical interest.

For this reason, heuristics have been introduced to find high quality solutions for

these problems in reasonable time. Some heuristics are not restricted to specific

problem types, but may be applied, with suitable modifications, to a broad class of

optimization problems.

Heuristic algorithms, when properly exploited, will quickly enable the develop-

ment of acceptable solutions. A heuristic algorithm will only search inside a subspace

of the total search space for a good rather than the best solution which satisfies de-

sign constraints. Therefore, the time requirement of a heuristic is small compared

6

to that of full enumerative algorithms.

It is possible to classify heuristics into iterative heuristics and constructive heuris-

tic. In constructive heuristics, a solution is generated from scratch by successive

addition of certain elements or components, with or without backtracking (that is,

removal of components that have been added at an earlier step). An example of

constructive heuristics is the greedy heuristic [34]. On the other hand, iterative

heuristics start with a complete feasible solution and refine this solution in order

to improve the objective function value. One of the well known iterative heuris-

tics is the local search algorithm. All modern iterative heuristics such as simulated

annealing, tabu search, or genetic algorithms, are generalization of the local search

heuristic. Readers are refereed to [34] for a detailed description of these algorithms.

1.2 Problem Definition

The problem under consideration can be defined as follows:

Given the truth table of a function f and a target technology to work

within, design a combinational logic circuit that performs the function f

subject to constraints using Simulated Evolution Algorithm (SimE).

This problem is referred to as Evolutionary Logic Design through Simulated Evolu-

tion (SimE) algorithm.

7

1.3 Related Work

Evolutionary logic design has received increasing attention in the last decade. Mo-

tivated by de Garris’s idea [10] back in 1993, Higuchi et al., [19] obtained an evolved

circuit to solve the 6-multiplexer problem [24]. Later, in 1995, Thompson [37] man-

aged to evolve a tone discriminator circuit in XC6200 FPGA. Thompson used the

1800-bits FPGA’s configuration string as the genotype representation of the circuit.

Thompson showed that Evolutionary Algorithms (EAs) can explore much richer de-

sign space [38] . Using EAs, he was able to produce circuits that are better than

those produced by conventional methods in term of number of gates.

Koza et al. employed genetic programming [23] and pioneered the evolution of

analog circuits. Using a SPICE simulator, they automatically generated circuits

which are competitive with those obtained using human designs and showed that

it is possible to produce designs for quite complex analog circuits, namely: low-

distortion op-amp, low-pass filter, and band-pass filters [22]. Genetic Programming

is also used as intrinsic evolution of analog circuits [48]. A functional level evolution

was proposed by Higuchi [18]. A complete review and taxonomy of the field is

described in [14, 45, 32].

In a recent development, much attention is given to the evolutionary design of

arithmetic circuits as they provide the essential building blocks needed for larger

DSP applications. Such effort has resulted in the development of arithmetic circuits

8

that range from a simple sequential adder structure to the more complex 3-bit

multiplier design. Fogarty and Miller build some arithmetic circuits that cannot be

produced by human designer’s conventional methods [15, 27]. Both of these used

Genetic Algorithms. Miller improved his findings by using Evolutionary Strategies

to evolve arithmetic circuits [28]. Coello et al. proposed a similar approach to evolve

a circuit using Genetic Algorithm (GA) [7, 8].

1.4 Motivation

Design is usually considered to be an activity requiring considerable human creativ-

ity and knowledge. Even the definition of the term design itself is quite elusive,

since it can be interpreted in several different ways depending on the task to be

performed.

The definition of design that fulfills the purposes of our thesis is the process of

deriving, from a specified input/output behavior, a structure (in our case a certain

combination of logic gates) that is functional (produces all the outputs desired for

all the inputs specified) within a certain set of specified constraint and objectives.

Furthermore, we want this design to be optimum in terms of certain structural

features (e.g., the number of gates used). The design process is a very tedious and

error prone task that usually requires considerable human expertise.

Several techniques in evolutionary design of digital circuits have been studied.

9

Most of the work being done in evolutionary logic synthesis is just random search

where the evolutionary algorithm will blindly evolve the circuit according to a given

set of objectives without using rules and techniques of the conventional logic synthe-

sis. It is believed that incorporating logic synthesis rules and guidelines combined

with the idea of assemble-and-test could lead to better results. The motivation of

our thesis is to develop a computer-based tool that can make the design process less

tedious for the human designer without sacrificing quality of the designs produced.

In this thesis, we limit our focus to combinational logic circuits, which contains no

memory elements and no feedback paths. The use of Simulated Evolution algorithm

is considered.

Simulated Evolution (SimE) algorithm showed better result in most of the other

optimization problems when compared to other evolutionary algorithm [34]. This

is due to the nature of the algorithm and its converging aspects. Also, SimE uses

only one solution (chromosome) resulting in less memory requirement. Moreover,

SimE algorithm uses goodness measure to guide the algorithm in the search space.

The more knowledge about the problem incorporated into the goodness measure,

the better the performance of SimE algorithm in terms of CPU time and quality of

solution. Therefore, using the Simulated Evolution algorithm as our evolutionary

algorithm should provide a good solution for the required automated synthesis tool.

10

1.5 Thesis Organization

This thesis is organized as follows. In Chapter 2, some basic background material

about conventional logic design (CLD) and logic design optimization is covered. In

Chapter 3, evolutionary logic design (ELD) is presented. Detailed discussion on

Simulated Evolution Algorithm (SimE) is in Chapter 4. In Chapter 5 and 6, the

proposed implementation of the Simulated Evolution Algorithm (SimE) for Logic

Design is presented and the proposed goodness measures are explained. Experimen-

tal results of the proposed techniques is given in Chapter 7. Comparison with Tabu

Search (TS), Genetic Algorithm (GA) [7], Ant Colony Algorithm (ACO) [9] and

SIS [36] are given in Chapter 8. Finally, the thesis ends by some conclusions and

future directions in Chapter 9.

Chapter 2

Background

This chapter provides some necessary background information. The first section

discusses the conventional logic design techniques and definitions. Next, logic design

optimization is presented and the difference between optimization for objectives or

using constraint optimization is explained. This is followed with a section on multi-

objective optimization. Following this, fuzzy logic for multi-objectives optimization

is presented.

2.1 Conventional Logic Design (CLD)

The dramatic increase in designer productivity over the past decade in the area of

VLSI circuit design is a direct result of the development of sophisticated computer-

aided design tools. Logic synthesis techniques speed up the design cycle and reduce

11

12

the human effort. Synthesis algorithms work on a model of the circuit, not the

circuit itself. Circuit representation is therefore important to understand. Reader

should refer to any logic design book such as [26] for more elaborate background

material.

Logic synthesis area is usually divided into two-level synthesis (PLA) and multi-

level synthesis. Because of the architecture inherent to PLAs, optimization methods

focus almost exclusively on minimizing the number of PLA product terms, which

in turn minimizes the PLA area. The area of two-level combinational logic mini-

mization has already matured. One can routinely find a minimum or near-minimum

sum-of-product form for a logic function. These functions can be multiple output,

incompletely specified, and functions with multiple-valued input variables. Func-

tions with hundreds of inputs and outputs are within the realm of the algorithms.

The optimization can also be done in a reasonable amount of computing time [5].

The other method for implementing logic is multilevel logic. Because of the

increased potential for reusing sublogic, there are more degrees of freedom in the

solution representation than in the PLA case. Consequently, it has been much more

difficult to synthesize this type of logic using manual synthesis. In the following

subsection, a survey of the existing conventional logic synthesis methodologies is

given.

13

2.1.1 Two-level Boolean Functions

Logic function can be represented in a variety of ways. One can use a two-level

representation in which literals are combined with a single operator (AND operator)

and then these terms are combined with a second operator (OR operator) which is

SOP form. When a logic function is expressed in terms of product terms, which

involve all input variables and all true output products are present, the expression

is referred to as a canonical Boolean expression. Usually the goal of logic synthesis is

to represent a logic function in the simplest way by reducing the number of product

terms and literals [28].

2.1.2 Multilevel Boolean Functions

The two-level logic provides the minimum logic required to implement any arbi-

trary Boolean function. However, there exist some Boolean functions that are very

inefficiently represented in two-level logic. On the contrary, multilevel logic rep-

resentation of a logic function allows the use of factoring and decomposition into

sub-functions. Consider, for example, the following logic function.

F = a · e + a · f + b · c · e + b · c · f + b · d · e + b · d · f

The function can also be expressed as follows:

14

a

e

a

f

b

e
c

b

f
c

b

e
d

b

f
d

d
c

b

a

f
e

(b)

(a)

F

F

Figure 2.1: Representation of a boolean function in (a) in two-level logic (b) in
multi-level logic.

F = (a + b · (c + d)) · (e + f)

It is easy to notice that the first representation of the function f has 16 literals,

while the second has only 6. Thus, the multilevel logic representation will reduce

the area requirement of a Boolean function, as shown in Figure 2.1.

The starting point for multilevel minimization is the minimum two-level canon-

ical form. Sophisticated heuristic-based minimization algorithms have been written

which try to reduce the literal counts in Boolean multilevel expressions [5, 6, 28].

15

2.1.3 Reed-Muller and Exclusive-OR Logic

It is well known that many Boolean functions which can be easily implemented us-

ing XOR gates are very inefficiently represented in canonical Boolean logic. The

most extreme case of this being the n-bit parity functions which can be realized

with n - 1 XOR gates but if AND-OR logic is used, it requires 2n−1 − 1 OR gates

and a large number of AND gates. When a Boolean logic function is expressed

using XOR gates and uncomplemented variables it is called a Reed-Muller (RM)

canonical form [16]. If any particular variable is allowed to be complemented or un-

complemented throughout the expansion then the representation is known as a fixed

polarity RM form. Finding a good polarity is a difficult problem and evolutionary

algorithm have been used for this purpose. Work has been done on minimizing the

less restricted XOR sum-of-products representation [37].

2.2 Logic Design Optimization

Logic circuit optimization is often performed in conjunction with synthesis. Opti-

mization is motivated not only by the desire of maximizing the circuit quality, but

also by the fact that synthesis without optimization would yield noncompetitive

circuits, and therefore its value would be marginal. In this thesis, the optimization

objectives considered are area, power and delay [2, 13, 26]

Circuit area is measured by the sum of the areas of the circuit components and

16

therefore it can be computed from a structural view of a circuit, once the areas of

the components are known. The area computation can be performed hierarchically.

Usually, the fundamental components of digital circuits are logic gates and registers,

whose area is known a priori. The wiring area has a minor effect and can be

neglected [25, 26, 31].

However, circuit power and delay are not additive, and therefore computation

for power and delay as objectives require analyzing the structure and often the

behavior of the circuit. Often simplifying assumptions for the computations of power

consumption and timing (delay) are made assuming that all inputs are available at

the same time. Also, another simplifying assumption is to use a model for the power

and delay measurements. These model can simplify the computation of the power

and delay at the expense of accuracy. For timing performance, the delay of the

most critical path of the circuit is considered. More details on area, power and

delay computations are given later.

2.3 Multi-objective Optimization

Multi-objective optimization (also called multi-criteria optimization, multi-performance

or vector optimization) can be defined as the problem of finding a vector of decision

variables which satisfies constraints and optimizes a vector function whose elements

represent the objective functions. These functions form a mathematical description

17

of performance criteria which are usually in conflict with each other. Formally, we

can state the general multi-objective optimization problem (MOP) as follows:

Definition 1 (General MOP): Find the vector �x∗ = [x∗
1, x

∗
2, ..., x

∗
n]T which will

satisfy the m inequality constraints:

gi(�x) ≥ 0 i = 1, 2, ..., m (2.1)

the p equality constraints

hi(�x) = 0 i = 1, 2, ..., p (2.2)

and optimizes the vector function
�f(�x) = [f1(�x), f2(�x), ..., fk(�x)]T (2.3)

where �x∗ = [x∗
1, x

∗
2, ..., x

∗
n]T is the vector of decision variables.

In other words, we wish to determine from among the set F of all numbers which

satisfy 2.1 and 2.2 the particular set x∗
1, x

∗
2, ..., x

∗
n which yields the optimum values

of all the k objectives of the problem [26].

The idea of using multi-objective optimization techniques to handle constraints

is not new. Some researchers have proposed to redefine the single-objective opti-

mization of f(�x) as a multi-objective optimization problem in which we will have

m + 1 objectives, where m is the number of constraints. Then, we can apply any

multi-objective optimization technique to the new vector �v = (f(�x), f1(�x), ..., fm(�x)),

where f1(�x), ..., fm(�x) are the original constraints of the problem. An ideal solution

18

�x would thus have fi(�x) = 0 for 1 ≤ i ≤ m and f(�x) ≤ f(�y) for all feasible �y (assum-

ing minimization) [8, 39, 40, 41]. In many cases, it is not clear how one can balance

different objectives by a weight function especially when the various objectives are

defined over different domains. Also, it is not always possible to have a crisp ranking

of the individual objectives. Another difficulty is that the outcome of such ranking

is not always predictable especially when some of the criteria are correlated. Fuzzy

logic provides a convenient framework for solving this problem. It allows one to

map values of different criteria into linguistic values, which characterize the level of

satisfaction of the designer with the numerical values of objectives. Each linguistic

value is then defined by a membership function which maps numerical values of the

corresponding objective criterion into the interval [0, 1]. The desires of the decision

maker are conveniently expressed in terms of fuzzy logic rules and fuzzy preference

rules. The executing/firing of such rules produces numerical values that are used to

decide a solution goodness. In practice, this approach has been proven very powerful

for finding compromise solutions in different areas of science and engineering [34].

2.4 Fuzzy Logic

Fuzzy logic deals with approximate rather than precise modes of reasoning. There-

fore, fuzzy logic is capable of handling the uncertainty of data. Also, natural lan-

guage, which is the basis of fuzzy logic, is more convenient for expressing engineering

19

problems. In general, fuzzy logic can be viewed as a nonlinear mapping of an in-

put data vector into a scalar output. However, the flexibility of fuzzy logic may

create lots of different mappings for a single problem instance. Therefore, a good

understanding of the fuzzy set theory, fuzzy reasoning and fuzzy rules is needed.

2.4.1 Fuzzy Set Theory

An element in fuzzy logic may partially belong to a fuzzy set by a certain degree

compared to classical (crisp) set in which each element can either belong to the set

or not.

A fuzzy set A of universe of discourse X is defined as A = {(x, µA(x)) | all x ∈

X}, where X is a space point and µA(x) is a membership function of x being an

element of A. A membership function µA(x) is a mapping of x in A that maps X

to the membership space M . The range of the membership function is a subset of

the non-negative real numbers whose boundaries are finite [49]. Elements with zero

degree of membership are normally not listed.

Fuzzy Reasoning

Unlike classical reasoning in which propositions are whether true of false, fuzzy logic

establishes approximate truth value of propositions based on linguistic variables and

inference rules [46]. A linguistic variable is a variable whose values are words or

sentences in natural or artificial language. It is concerned with the use of fuzzy

20

values that captures the meaning of words, human reasoning and decision-making.

An example of linguistic variable is circuit’s area. This variable can be expressed by

linguistic values like very small, small, average, large and very large circuit, rather

than 20 µm2, 30 µm2, 50 µm2, 75 µm2, and 100 µm2.

A linguistic variable carries the concept of fuzzy set qualifiers, called hedges.

Hedges are terms that modify the shape of fuzzy sets. They include adverbs such as

very, somewhat, quite, more or less, and slightly. They are used as modifiers, truth-

values, probabilities, quantifiers and/or possibilities of a certain linguistic variable.

Formally, a linguistic variable comprises of five elements [47]:

1. The variable name

2. The primary term set

3. The universe of discourse U

4. A set of syntactical rules that allows composition of the primary terms and

hedges to generate the term set

5. A set of semantic rules that assigns each element in the set a linguistic meaning.

Fuzzy Operators

There are two basic types of fuzzy operators. The operators for the intersection,

interpreted as the logical “and”, and the operators for the union, interpreted as the

21

logical “or” of fuzzy sets. The intersection operators are known as triangular norms

(t-norms), and union operator as triangular co-norms (t-co-norms or s-norms) [49].

Some examples of s-norm operators are given below, (where A and B are the fuzzy

sets of universe of discourse X).

1. Maximum. [µA
⋃

B(x) = max{µA(x), µB(x)}].

2. Algebric sum. [µA
⋃

B(x) = µA(x) + µB(x) − µA(x)µB(x)].

3. Bounded sum. [µA
⋃

B(x) = min(1, µA(x) + µB(x))].

4. Drastic sum. [µA
⋃

B(x) = µA(x) if µB(x) = 0, µB(x) if µA(x) = 0, 1 if

µA(x), µB(x) > 0].

An s-norm operator satisfies commutativity, monotonicity, associativity and µA
⋃

0(x) =

µA(x) properties.

Following are some examples of t-norm operators.

1. Minimum. [µA
⋂

B(x) = min{µA(x), µB(x)}].

2. Algebraic product. [µA
⋂

B(x) = µA(x)µB(x)].

3. Bounded product. [µA
⋂

B(x) = max(0, µA(x) + µB(x) − 1)].

4. Drastic product. [µA
⋂

B(x) = µA(x) if µB(x) = 1, µB(x) if µA(x) = 1, 0 if

µA(x), µB(x) < 1].

22

Like s-norm, t-norms also satisfy commutativity, monotonicity, associativity and

µA
⋂

1(x) = µA(x). Also, the fuzzy complementation operator is defined as follows.

µ̄B(x) = 1 − µB(x) (2.4)

2.4.2 Multi-objective Optimization Using Fuzzy Logic

Approximate reasoning can be made based on linguistic variables and their values.

Rules can be generated based on previous experience. The rules are expressed as

If ... Then statements. Connectives such as AND and OR can be used in approx-

imate reasoning to join two or more linguistic values. The If part (antecedent) is a

fuzzy predicate defined in terms of linguistic values and fuzzy operators (AND and

OR). The Then part is called the consequent.

In optimization problems, the linguistic value used in the consequent part iden-

tifies the fuzzy subset of good solutions. Therefore, the result of evaluation of the

antecedent part identifies the degree of membership in the fuzzy subset of good solu-

tions according to the fuzzy rule in question. If more than one rule is used to perform

decision-making, each rule can be evaluated to generate a numerical value. Then,

these numerical values from various evaluations of different rules can be combined

to generate a crisp value on a higher level of hierarchy.

Consider the circuit design problem with minimization of area, delay, and power

consumption. Three linguistic variables area, delay and power introduced. Then

23

good solutions can be characterized by the following fuzzy rule.

If the circuit has (small area) and (less delay) and (less power consump-

tion) then it is a good solution.

In the traditional fuzzy logic, the minmax operators are used to build the above

fuzzy rule. However, it was shown in [44] that these operators can lead to undesirable

behavior. This behavior has led to the development of other fuzzy operators such

as the Ordered Weighted Averaging (OWA) operator explained below.

Ordered Weighted Averaging (OWA) Operator

Generally, the formulation of multi criterion decision functions neither desires the

pure “AND-ing” of t-norm nor the pure “OR-ing” of s-norm. The reason for this is

the complete lack of compensation of t-norm for any partial fulfillment and complete

submission of s-norm to fulfillment of any criteria. Also the indifference to the

individual criterion of each of these two forms of operators led to the development

of Ordered Weighted Averaging (OWA) operators [42, 43]. This operator allows easy

adjustment of the degree of “AND-ing” and “OR-ing” embedded in the aggregation.

According to [42, 43], “OR-like” and “AND-like” OWA for two fuzzy sets A and B

are implemented as given in Equations 2.5 and 2.6 respectively.

µA∪B(x) = β × max(µA, µB) + (1 − β) × 1

2
(µA + µB) (2.5)

24

µA∩B(x) = β × min(µA, µB) + (1 − β) × 1

2
(µA + µB) (2.6)

where β is a constant parameter in the range [0,1]. It represents the degree to which

OWA operator resembles a pure “OR” or pure “AND” respectively.

2.5 Concluding Remarks

In this chapter, some basic background information were reviewed including the con-

ventional logic design (CLD) and logic design optimization. Then, multi-objectives

optimization was presented. Also, fuzzy logic and multi-objectives optimization

using fuzzy logic is discussed.

Chapter 3

Evolutionary Logic Design (ELD)

3.1 Introduction

Evolutionary logic design considers a new concept for automatic design of digital

systems: instead of using human conceived models, abstractions, and techniques,

it employs search algorithms to develop good designs. This idea is summarized in

Thompson [37]:

Imagine a design space where each point in that space represents the

design of a digital circuit. All possible digital circuits are there, given

the component types available to electronics engineer, and the techno-

logical restrictions on how many components there can be and how they

can interact. In this metaphor, we loosely visualize the circuits to be

arranged in the design space so that ‘similar’ circuits are close to each

25

26

other.

Evolutionary logic design deals with a huge search space, requiring, therefore,

powerful search techniques to handle the task. Naturally, when the search space is

very large, random search has little chance to succeed. Hence, this new approach

to circuit design does not resume choosing a design problem and applying a search

techniques. Instead, some procedures have to be followed:

• The search space sampled by the algorithm must have its size limited. Al-

though it is important to allow the sampling of a wide variety of topologies,

some criteria should be chosen to control the number of possible solutions.

• It is usually necessary to adapt the search techniques to the particularities of

the design problem.

The search space size is a very subtle issue: it should be large enough to include

a good variety of novel circuit topologies; nevertheless, if the design space increases

without restriction, the chances to find a good solution are very small. This is a very

important issue for the search techniques applied in this thesis. These algorithms

suit well to sample large design spaces, performing better than standard optimization

techniques. Nonetheless, for very large search spaces, even evolutionary algorithms

have their limitations.

Another important issue is the inclusion of special techniques into the search

tool in order to successfully find a circuit that conforms with all specifications such

27

as the inclusion of some kind of previous knowledge on the circuit design.

After this discussion one may think: Why would we be interested in using search

algorithms to perform logic design? Is not the size of the search space to be sampled

a drawback that we would not have to face using conventional techniques? The

following points will summarize the answer to this question:

• Potential to find novel circuits.

• The possibility to find new design rules from the novel circuits obtained.

• Evolutionary methods can contemplate a larger set of design specifications

compared to human design techniques (area, delay, power).

• Evolutionary systems have been able to achieve competitive circuits when

compared with the state of the art in electronics.

• The constant increase in the microprocessors’ speed will partially alleviate the

drawback of the design space size.

In this chapter, a brief description about evolutionary algorithms will given.

Then, the concept of assemble and test and exploring the search space will be

discussed. A survey on the work being done on evolutionary logic design and some

observations on them will be presented.

28

3.2 Genetic Algorithm

Genetic algorithm operates on a population (or set) of individual(s) (or solution(s))

encoded as strings or matrices. These strings represent points in the search space.

In each iteration, referred to as a generation, a new set of strings that represent

solution(s) (called offsprings) is created by using some evolutionary operation such

as mutation or crossover on the current generation. The encoding of the strings or

matrices (chromosomes) is a very critical aspect for the efficiency of the algorithm.

Therefore, an efficient encoding of digital circuits into chromosomes is important

for the evolutionary logic design techniques. In the case of genetic algorithms,

encoding represents the genotype-phenotype mapping between the circuit and the

chromosomes. In order to preserve the validity of the circuit being evolved due to

the evolution process, some constraints need to be set on the chromosome encoding.

In addition to the chromosome encoding, each chromosome is associated with a

fitness value (cost function) to evaluate the goodness (quality) of the solution. The

fittest the chromosome, the greater chance a chromosome will survive in the following

generation. Therefore, the choice of the fitness (cost) function will affect the behavior

of the evolutionary algorithm in the quality of the solution being produced.

The evolution process starts by creating an initial population. This initial pop-

ulation can be random or constructive, depending on the objective of the design.

Miller et al. initialized the population with the chromosome of a given circuit and

29

its mutated copies [41]. The objective was to focus the evolution process on finding

more efficient circuits. It is however noticed that many researchers prefer random

initialization since it allows exploring more regions in the design space.

3.3 Exploring the Space of all Representations

The survivability of an organism can be seen as a process of assembling a larger

system from a number of component parts and then testing the organism in the

environment in which it finds itself (assemble-and-test). Figure 3.1 illustrates this

concept in the general space of designs. The top-down rule-based space of designs

is shown in gray as a small sub-region in the much larger space of all possible

designs. Occasionally by a process of human inspiration or accidental discovery this

space is widened as new concepts and principles are developed. Generally speaking,

restrictive assumptions have to be made about the range of parts which can be used

within this space. This is imposed by the constraints of a tractable system of rules.

On the other hand, it is argued here that by employing the simple idea of assemble-

and-test together with an evolutionary algorithm one can explore the entire design

space and use a much larger collection of parts precisely because of the absence of

imposed rules of design [28].

The concept of assemble-and-test together with an evolutionary algorithm to

gradually improve the quality of a design has largely been adopted in the field of

30

Space of all designs

Human design
space

Inspiration

Apply rules
Design

Algorithm
Assemble
and test

Evolutionary
Algorithm

Small box of
parts

Big box of
parts

Figure 3.1: Conventional design versus evolutionary design with assemble-and-test.

Evolvable Hardware where the task is to build an electronic circuit. These electronic

circuits are encoded in a chromosome. The complete set of chromosomes is called

a genotype. The resulting circuit which can be constructed from a chromosome or

genotype is called phenotypes. Research in Evolvable Hardware can be sub-divided

into two main categories: intrinsic evolution and extrinsic evolution. The former

refers to an evolutionary process in which each phenotype is built in electronic

hardware and tested. The latter uses a model of the hardware and thus evaluates

the phenotypes in software. Each of these categories can be further sub-divided into

analogue or digital domains. Intrinsic evolution in the analogue domain has recently

become possible because of the availability of reconfigurable analogue devices. In

the introduction, it was shown how the use of an evolutionary algorithm combined

with assemble-and-test could be used to explore a much larger area of design space

31

Canonical
boolean
space

OR

NOT

AND

R-M space

Space of all
logically correct
representations

The space of all
representations

n or less
variables

Evolutionary
Algorithms

Assemble
and test

Appying
R-M rules

Appying
cannonical

rules

The space of all
truth tables of n
or less variables

Figure 3.2: How “assemble-and-test” reaches the unknown regions of the space of
all representations.

than using a top-down rule based design algorithm. Figure 3.2 shows a particular

case of this for the problem of finding efficient representations of Boolean functions

and it illustrates one of the fundamental concepts of this proposal. In conventional

logic design one begins with a precise specification in the form of a truth table,

binary decision diagram, symbolic expression etc. The expression is manipulated by

applying canonical Boolean rules or Reed-Muller algebraic rules. One never escapes

from the space of logically correct representations. The methods though powerful in

that they can handle large numbers of input variables, yet they are not adaptable

to new logical building blocks and require a great deal of analytical work to produce

small optimizations in the representation. Assembling a function from a number of

component parts begins in the space of all representations and maps it into the space

of all the truth tables with m input variables (m ≤ n). The evolutionary algorithm

32

then gradually pulls the specification of the circuit towards the target truth table

(shown as a small shaded box). Thus the algorithm works in a much larger space of

functions many of which do not represent the desired function.

3.4 Survey on Evolutionary Logic Design (ELD)

In the following subsections, the previous work on the evolutionary logic synthesis

will be addressed in two aspects: the circuit encoding and the cost function.

3.4.1 The Circuit Encoding

A fixed length chromosome for circuit representation is used by Hounsell [20]. The

first part of the chromosome is used for describing the inputs of the circuit while

the last part is used for describing the outputs of the circuit. The position of each

logic element is referenced within the chromosome. Figure 3.3 displays the relative

location of each encoded section. Within the chromosome, a specific location is

allocated for each logic element in the circuit. Interconnection between cells is

not restricted to its nearest positional neighbor. Also, cells are free to connect to

other cells at higher position within the chromosome. Feedback connections are not

permitted. Figure 3.4 demonstrates the encoding of a macro block (full-adder) with

its connectivity within the chromosome.

Another representation made by Miller who suggested that the chromosome rep-

33

.... Positional
element

Main circuit description Output sectionInput section

Input 1 Input n Output 1 Output k

Figure 3.3: Chromosome representation in Hounsell [20].

FULL
ADDER

In1

In 0Out 1

Out 0

In1

In 0
Full Adder
Macro ID

Position
of adder

Out 0
Position
of NAND

In 0 In 1
Position
of NOR

In 0

Position within
Chromosome

Position of cell to which
first I/O pin is connected

ID from library
of components

First I/O pin
of full adder

I/P pin of
connected cell

Figure 3.4: Macro blocks and its genotype representation in Hounsell [20].

resentation should match the hardware’s geometry configuration [29]. A matrix of

n × m array of logic cells is used as the phenotype representation in the case of

FPGA. The interconnections together with gate level functionality for the cells are

defined by the genotype (chromosome). This genotype-phenotype mapping is shown

in Figure 3.5.

Y1 Y2...... Yn

logic function

cells

......

input connections
Outputs

11C 12C nmC

11C

21C

n1C

12C

22C

n2C

1mC

2mC

nmC

X1

X2

X3

Xn

Inputs Outputs
Internal

connectionCells

Y3

Y2

Yn

Y1

Figure 3.5: Chromosome representation in Miller [28, 29].

Any function that can be realized by an FPGA can be assigned to any gene of

34

Alphabet Function Alphabet Function
0 0 10 a ⊕ b

1 1 11 a ⊕ b̄

2 a 12 a + b

3 b 13 a + b̄

4 ā 14 ā + b

5 b̄ 15 ā + b̄

6 a · b 16 a · c̄ + b · c
7 a · b̄ 17 a · c̄ + b̄ · c
8 ā · b 18 ā · c̄ + b · c
9 ā · b̄ 19 ā · c̄ + b̄ · c

Table 3.1: Possible cell functions in Miller [28, 29].

the chromosome. Table 3.1 lists all the possible functions.

Each gene is a sequence of integers representing the target interconnection of

gate’s inputs and the gate type. Consider, for example, the case shown in Figure 3.6.

The first quadruplet of the chromosome is 0-1-0-10, which means that the first input

of the cell is connected to pin number 0, the second input to pin number 1, and the

third input to pin number 0 respectively. The gate type is 10, which is a two input

XOR (the third input is not used). The interconnection between cells is restricted by

the levels-back parameter, which denotes the number of previous column in the array

that a cell can be connected to. If the levels-back parameter is one, then each cell

must be connected to its immediate neighbor in the previous column. Cells within

any particular column cannot be connected together, and feedback connections are

not allowed.

The third representation by Coello et al. [7, 8], used the same chromosome rep-

resentation of circuits as those by Miller [28, 29]. However, the organization of the

35

6

AND

10

XOR

16

MUX

B

10

XOR

4

3 3
2
1

0
2
3

0
1
0

0
0
2

6

5
A

Cin

0

1

2 S

Cout5

6

0 1 0 6 510 0 0 2 6 0 2 3 163 2 1 10

Figure 3.6: Example of genotype-phenotype mapping in Miller [28, 29].

Input 1 Input 2 Gate type

Figure 3.7: Representation of gene in chromosome in Coello [7, 8].

chromosome is different. Each cell is a gate of the type of AND, NOT, OR, XOR or

WIRE. Each of them is encoded in a triplet of inputs and gate type, as illustrated

in Figure 3.7.

Miller represented each cell as different integers [28, 29]. This approach is im-

practical for large circuit. On the other hand, Coello et al. represented a gate at

position (i, j) can only be connected to the one at ((i− 1), j) [7, 8]. This restriction

reduces the cardinality of alphabet needed to represent the chromosome, since the

integer number to represent each cell increases only column wise.

3.4.2 The Cost Function

The cost function (fitness) used by Hounsell is represented by a percentage of circuit

functionality generated by the evolutionary algorithm [20]. Correctness is calculated

by summing the total number of correct bits produced by the circuit solution under

evaluation and comparing this to the desired output response. Fitness is expressed

36

mathematically as follows:

Rb = 2I × O

Fitness = Eb/Rb

Where Rb is the total number of bits comprising the desired output vectors, Eb is

the actual number of bits matched with the desired output vectors during evaluation,

O is the number of output pins and I is the number of input pins. Evaluation of the

circuit (solution) is achieved through interaction with a HDL (Hardware Description

Language).

Since all functions are specified by a truth table, Miller’s cost function (fitness)

of a genotype is based on the number of correct output bits specified by the truth

table [29, 28]. For a one-bit adder with carry, there are 8 input cases and 2 outputs,

this results in 16 output bits. A fully correct circuit would have fitness 16.

Colleo’s cost function (fitness) evaluation works in two stages. At the beginning

of the search, only validity of the circuit outputs is taken into account [7, 8] . Once

a functional solution appears, then the fitness function is modified such that any

valid designs produced are rewarded for each WIRE gate that they include, so that

the algorithm tries to find a correctly functional circuit with the maximum number

of WIREs.

37

3.5 Observations

It is interesting to note that non-deterministic iterative heuristics tend to favor the

use of XOR gates, since this gate allows producing, in many cases, solutions with a

shorter symbolic representation. These solutions, are however not entirely obvious

for human designers. Iterative heuristics tend to use multi-level XORs gates to

produce the same effect as that a human designer would achieve using a combination

of logic gates.

Although it has been shown that iterative heuristics can in fact produce fully

functional circuits, or even efficient ones (in terms of the number of logic gates used),

there is some concern about the process of producing a circuit. We have seen that in

the evolutionary design approach, one considers the problem of designing a circuit

as building a black box whose inputs and outputs are the inputs and outputs of

the desired circuit. The details of the circuit itself are encoded in the form of a

chromosome. Evolutionary algorithms will then blindly evolve circuits according to

a given set of objectives.

Another point to consider is redundancy in the evolving circuit. It has been

shown that some forms of redundancy could be useful for the evolution process [17].

However, if the genotype representation and genetic operators are not well imple-

mented, we may end up with circuits having many redundancies. This redundancy

may in turn spoil the evolution, making iterative heuristics to explore regions where

38

there are no acceptable solutions at all.

Some of the key points observed after studying the above mentioned approaches

are summarized below.

1. Instead of blindly evolving a circuit, we need some procedures to guide the

evolution process. These procedures should help iterative heuristics to find

an optimal solution. We believe that integrating some rules in logic synthesis

is the answer to this problem. These can be used to direct the search. One

easy example of these rules is putting an inverter at the output of (sub-)circuit

built to toggle the fitness of the current solution.

2. We can view the problem of circuit design as a problem of assembling logic

blocks to implement a desired functionality. Almost similar to the growing

circuits approach used by Miller [30], we shall constructively build a circuit by

assembling all the required logic and/or sub-functions through the evolution

process.

3.6 Concluding Remarks

In this chapter, we have introduced evolutionary logic design in the first section

followed by some discussion on evolutionary algorithms. Then, a survey on pervious

work of evolutionary logic design has been presented. This is followed by some

observations on these implementations.

Chapter 4

Simulated Evolution (SimE)

Algorithm

4.1 Introduction

Simulated Evolution (SimE) which was proposed by Kling and Banerjee in 1987 is

based on an analogy with the principles of natural selection thought to be followed

by various species in their biological environments [21]. During the process of bi-

ological evolution, organisms tend to develop features that allow them to adapt to

the peculiarities of their environment. The more an organism adapts to its envi-

ronment, the better are its chances of survival. In other words, by adapting, an

organism optimizes its chances of surviving in its environment. Hence, adaptation

is seen as a form of optimization. This similarity has given rise to a new class of

39

40

randomized iterative algorithms which consists of Genetic Algorithms, Simu-

lated Evolution, and Stochastic Evolution. All three algorithms of this class

are general randomized search heuristics that are based on concepts learned from

biological evolution. For all three algorithms, the cost function is an estimation of

the degree of adaption of a particular solution to the target objective. For a max-

imization problem, the higher the value of the objective function is, the more that

particular solution is adapted to its environment. Simulated Evolution will be the

subject of this chapter [21, 34].

In this chapter, SimE algorithm is introduced. Also, a detailed analysis of the

SimE algorithm and operators are addressed afterward. This is followed by a qual-

itative comparison of SimE and Genetic Algorithm (GA).

4.2 SimE Algorithm: Evaluation, Selection and

Allocation

Combinatorial optimization problems seek to find a global optimum of some real

valued cost functions cost : Ω → R defined over a discrete set Ω. The Set Ω is called

the state space and its elements are referred to as states. A state space Ω together

with an underlying neighborhood structure (the way one state can be reached from

another state) form the solution space.

The Simulated Evolution (SimE) algorithm is a general search strategy for solv-

41

ing a variety of combinatorial optimization problems [21]. The SimE algorithm

starts from an initial assignment, and then, following an evolution-based approach,

it seeks to reach better assignments from one generation to the next. SimE assumes

that there exists a population P of a set M of k elements. In addition, there is a

cost function Cost that is used to associate with each assignment of an element m

a cost Cm. The cost Cm is used to compute the goodness (fitness) gm of element m,

for each m ∈ M . Furthermore, there are usually additional constraints that must be

satisfied by the population as a whole or by particular elements. A general outline

of the SimE algorithm is given in Figure 4.1.

SimE algorithm proceeds as follows. Initially, a population1 is created at ran-

dom from all populations satisfying the environmental constraints of the problem.

The algorithm has one main loop consisting of three basic steps, Evaluation, Selec-

tion, and Allocation. The three steps are executed in sequence until the population

average goodness reaches a maximum value, or no noticeable improvement to the

population goodness is observed after a number of iterations. Another possible stop-

ping criterion could be to run the algorithm for a prefixed number of iterations (see

Figure 4.1).

Combinatorial optimization problems can be modeled in a number of ways. A

generic formulation is the following: Given a finite set M of distinct movable ele-

1In SimE terminology, a population refers to a single solution. Individuals of the population
are components of the solution; they are the movable elements.

42

ALGORITHM Simulated Evolution(E, ,L, Stopping-Criteria);
INITIALIZATION ;
Repeat

EV ALUATION :
ForEach m ∈ M Do gm = Om

Cm
EndForEach;

SELECTION :
ForEach m ∈ M Do

If Random ≤ Min(1 − gm + B; 1)
Then Ps = Ps ∪ {m};

Else Pr = Pr ∪ {m};
EndIf;

EndForEach;
Sort the elements of Ps;
ALLOCATION :

ForEach m ∈ Ps Do Fa(m) EndForEach;
Until Stopping-criteria are met;
Return (BestSolution);
End Simulated Evolution.

Figure 4.1: Simulated Evolution algorithm [21, 34].

ments and a finite set L of locations, a state is defined as an assignment function

S : M → L satisfying certain constraints.

Many of the combinatorial problems can be formulated according to this generic

model. Below is an example on Quadratic Assignment Problem (QAP):

Example 1 Quadratic Assignment Problem(QAP)

Problem: Given a set M of n modules and a set L of |L| locations. |L|

≥ n. Let ci,j be the number of connections between elements i and j,

and dk,l be the distance between locations k and l.

Objective: Assign each module to a distinct location so as to minimize

43

the wire length needed to interconnect the modules. To formulate QAP

in terms of the above state model, choose M = {1, 2, . . . , | M |} and

L = {1, 2, . . . , | L |}. Then a state is defined as the onto function

S : M = {1, 2, . . . , | M |} → {1, 2, . . . , | L |}. In this case,

one additional constraint is required, which can be stated as S(i) �=

S(j) ∀ i �= j, i.e., no two elements are assigned to the same location.

The cost of a state, Cost(S) is the wire length required to interconnect

all the elements in their present locations. That is,

Cost(S) =
n∑

i=1

n∑
j=1

ci,jdS(i),S(j)

4.2.1 Evaluation

The Evaluation step consists of evaluating the goodness of each individual i of the

population P (see Figure 4.2). The goodness measure must be a single number

expressible in the range [0,1]. Goodness is defined as follows:

gi = Oi/Ci

where Oi is an estimate of the optimal cost of individual i, and Ci is the actual cost

of i in its current location.

44

P={i} Evaluation {i,gi}

Figure 4.2: Evaluation.

Selection{i,gi}

Pr

Ps

Figure 4.3: Selection.

4.2.2 Selection

The second step of the SimE algorithm is Selection. Selection takes as input the

population P together with the estimated goodness of each individual, and partitions

P into two disjoint sets, a selection set Ps and a set Pr of the remaining members of

the population (see Figure 4.3). The decision whether to assign individual i to the set

Ps or set Pr is based solely on its goodness gi. The Selection operator uses a selection

function Selection (see Figure 4.4). The selection operator has a nondeterministic

nature. An individual with a high goodness still has a non zero probability of being

assigned to the selected set Ps. It is this element of nondeterminism that gives SimE

the capability of escaping local minima.

4.2.3 Allocation

Allocation is the SimE operator that has most impact on the quality of solution.

Allocation takes as input the two sets Ps and Pr and generates a new population P ′

45

Function Selection(m, B);
/* m: is a particular movable element; */
/* B: Selection bias;*/

If Random ≤ 1 − gm + B Then Return True
Else Return False

EndIf
EndSelection;

Figure 4.4: Selection in the SimE of Figure 4.1.

Allocation P’={i}

Pr

P
s

Figure 4.5: Allocation.

which contains all the members of the previous population P , with the elements of

Ps mutated according to an allocation function Allocation (see Figure 4.5) [34].

The choice of a suitable Allocation function is problem specific. The decision of

the Allocation strategy usually requires more ingenuity on the part of the designer

than the Selection scheme. The Allocation function may be a nondeterministic

function which involves a choice among a number of possible mutations (moves)

for each element of Ps. Usually, a number of trial-mutations are performed and

rated with respect to their goodnesses. Based on the resulting goodnesses, a final

configuration of the population P ′ is decided. The goal of Allocation is to favor

improvements over the previous generation, without begin too greedy.

46

Allocation functions can be local or global. With local Allocation, a selected

individual is altered on the basis of local information so that only local alterna-

tions within the immediate neighborhood of that individual are allowed. On the

other hand, global Allocation uses global information about all the individuals of

the population so that it may affect any of the individuals in the entire population.

Allocation alters (mutates) all the elements in the selected set Ps one after the other

in a predetermined order. The order as well as the type of mutation are problem

specific. For each individual ei of the selected set Ps, W distinct trial alternations

are attempted. The trial that leads to the best configuration (population) with

respect to the objective being optimized is accepted and made permanent.

4.2.4 Initialization Phase

This step precedes the iterative phase. In this step, the various parameters of

the algorithm are set to their desired values, namely, the maximum number of

iterations required to run the main loop, the selection bias B, and the number of

trial alternations W per individual. Furthermore, like any iterative algorithm, SimE

requires that an initial solution be given. The convergence aspects of SimE are not

affected by the quality of the initial solution.

47

4.3 Comparison of Simulated Evolution and Ge-

netic Algorithm (GA)

In this section, we look at the main differences between SimE and GA. GA is another

evolution based randomized iterative algorithm. GA and SimE follow a similar

strategy in exploiting evolution to move from one generation to the next. However,

there are significant differences between the two algorithms:

1. SimE works with a single solution called population. The constituents of a

solution are called individuals or elements. On the other hand, GA works with

a set of solutions. A single solution is an individual (also called a chromosome),

and an individual (solution) is made up of genes.

2. GA relies on genetic reproduction. The population of next generation is se-

lected among individuals of current generation and their offsprings. Fitter

individuals have higher probabilities of surviving to the next generation. Off-

springs are reproduced using crossover between selected pairs of parent indi-

viduals of current population. Also, a small fraction of the individuals may

undergo mutation. In contrast, SimE maintains a single individual through-

out the generations. Evolution from one generation to the next uses genetic

mutation only whereby some elements of current solution are altered. SimE

has no crossover since this operator requires two individuals.

48

3. In SimE, an individual is evaluated by estimating the fitness of each one of

its genes. The single individual of the next generation is obtained by proba-

bilistically altering some of the genes of the current individual (single parent

of current generation). Genes with lower fitnesses have higher probabilities of

getting altered. On the other hand, GA computes the fitness of complete solu-

tions. In general, solutions with higher fitnesses have higher probabilities for

mating. Usually, the fittest among the parents and their offsprings survive to

the next generation. Therefore, though both SimE and GA perform a stochas-

tic evolutionary-based search of the state space, SimE is more greedy, and thus

usually requires fewer iterations to converge toward desirable solutions.

Overall, SimE algorithm usually runs much faster than GA algorithm. The

reason is that the concept of fitness helps the algorithm converge quickly to a near

optimal solution. Furthermore, since a single solution is maintained at all times, it

has much less time and space requirements than GA [34].

4.4 Concluding Remarks

In this chapter, Simulated Evolution (SimE) Algorithm is introduced. Also, a de-

tailed explanation about SimE and its different operators is presented. Finally, a

comparison between SimE algorithm and Genetic Algorithm (GA) is shown.

Chapter 5

Simulated Evolution Algorithm

(SimE) for Logic Design

In this chapter, the proposed use of Simulated Evolution Algorithm (SimE) in the

design of logic circuits is discussed. The data structure being used in the implemen-

tation of the algorithm is presented first. Then, SimE operators being implemented

in the proposed algorithm are explained in detail. Also, the proposed implemen-

tation of Tabu search algorithm is discussed and the incorporation of Tabu Search

with SimE is given.

49

50

5.1 Introduction

A generic formulation of combinatorial optimization problems is the following: Given

a finite set M of distinct movable elements and a finite set L of locations, a state

is defined as an assignment function S : M → L satisfying certain constraints.

Many of the combinatorial problems can be formulated according to this generic

model. The design of logic circuit problem can be formulated using this generic

model as follows:

Problem: Given a set M of k modules consisting of all types of logic gates and

wires with all different input configurations and a set L of |L| locations. |L| ≤ k.

Objective: Selecting some of the modules from M to allocate them into the L

distinct locations. The objective of this selection and allocation is to produce a

required logic function given by its truth table and to have this allocation to be

minimal according to some cost function (power, area and delay).

To formulate digital logic design in terms of the above state model, choose

M = {1, 2, . . . , k} and L = {1, 2, . . . , |L|}. Then a state is defined as the onto

function S : m = {1, 2, . . . , k′} → {1, 2, . . . , |L|} where m ⊆ M . Figure 5.1 is a rep-

resentation of the digital logic design problem addressed in this context. In this case

one additional constraint is required, which can be stated as S(i) �= S(j) ∀i �= j,

i.e., no two elements are assigned to the same location. The cost of a state, Cost(S)

is a compound cost considering the correctness of the outputs of the solution circuit

51

1 2 n

n+1 2n

L

L locations

1 n2

2nn+1

k

Set of Logic gates (M)
consist of k elements

1 2 k

K+1 2k

L2k

Assign k’ elements selected from M
to L locations

Figure 5.1: Representation of the digital logic design problem in SimE.

matching the required function truth table and other metrics such as power, delay

and area. A detailed explanation on the Cost(S) function proposed is given later in

this chapter.

5.2 Circuit Encoding

In order to represent a logic circuit, a 2 dimensional matrix is used. This represen-

tation has been adopted by Coello [7]. This type of data structure is similar to the

structure of digital circuit. Therefore, the genotype-phenotype mapping is an easy

52

AND

XOR

Figure 5.2: The matrix representation of a circuit.

A

B

C

D

Figure 5.3: An example of a 4 input circuit.

task. Figure 5.2 shows an instance of the data structure being used in the proposed

algorithm. Also, Figure 5.3 shows an example of a complete circuit with 4 inputs.

The size of the matrix is variable and it is relative to n where n is number of

inputs of the required circuit. An initial value for the size of the matrix is given,

which is equal to n. This value is variable during run time where columns and/or

rows can be added. However, adding more columns and rows that are unneeded will

53

increase the size of the search space. Therefore, the performance of the algorithm

will degrade. Certain measure has to be taken in order to add more columns and/or

rows such as number of iteration and/or the goodness of the best fit solution. If

the change in the goodness after a large number of iterations is relatively small, an

increase in the number of columns and/or rows might help the algorithm to explore

larger search space. On the other hand, columns and/or rows can be removed from

the matrix in order to reduce the size of the search space. This case can happen

if the algorithm were able to reach a high goodness value for a circuit in a smaller

number of cells of the matrix. Therefore, reducing the number of columns and/or

rows could help the algorithm to converge faster.

Each cell of the matrix is considered to be an individual. The collection of all

individual of the matrix represents a solution. Each cell of the circuit matrix is

encoded in a triplet of inputs and gate type, as illustrated in Figure 5.4. The first

two number are for the inputs (input1, input2) and the third indicates the gate

type. The value of input1 and input2 indicates the row from which the current cell

is getting its input. The value of the gate type indicates the type of the gate being

assigned to that cell from a predetermined set of gate types. A gate at position

(i, j), where i is the column number and j is the row number, can only be connected

to the one at ((i − 1), j′) and j′ is any row in the previous column.

Table 5.1 list different type of gates with its code for the gene encoding. All of

the results reported in this thesis may use any gate type as our building blocks.

54

Input 1 Input 2 Gate type

Figure 5.4: Representation of individual in matrix.

Code Type Function(F)
0 WIRE a
1 NOT a′

2 OR a + b
3 AND a · b
4 XOR a ⊕ b
5 NOR (a + b)′

6 NAND (a · b)′
7 XNOR (a ⊕ b)′

Table 5.1: All gate types used by SimE.

In addition to inputs and gate type, each cell of the matrix will have a field for the

goodness of the gate at that cell. Additional information such as gate capacitance,

size and delay are included in each cell in order to be used for the cost function

computation.

5.3 Proposed SimE Algorithm: Parameters and

Operators

SimE Algorithm consists of three steps: evaluation, selection and allocation. Fig-

ure 4.1 shows an outline of the algorithm. More detail about the parameters used

and each step of the SimE algorithm is given in this section. The parameters used

by the SimE algorithm are:

55

1. Selection Bias (B)

2. The number of iterations (W)

3. Population Size

The above parameters will be discussed in the initialization phase subsection. The

operators used by the SimE algorithm are:

1. Selection operator

2. Allocation operator

Selection operator and allocation operator are considered individually.

5.3.1 Initialization Phase and Parameters

This step proceeds the iterative phase of the SimE algorithm. In this step, an initial

value is given to each Selection Bias (B) and the number of iteration (W). Also, an

initial solution is generated randomly.

The Selection Bias (B) is initialized to B = −0.05 in order to increase the

number of cells being selected. However, if the size of the circuit being investigated

is large, it is recommended to use B = 0 to have a smaller selection set.

Since the number of trial alternations W (moves) per individual is problem spe-

cific, W is initialized to a value that is relative to the number of gate types being

used as building blocks and the size of the matrix. If the number of gate types used

56

is m and the size of the matrix is n × n where n is the number of the inputs of the

circuit, then W is initialized as follows:

W = m
n!

2! (n − 2)!

where m is the number of gate types, 2 is the number of inputs for each gate and n

is the number of inputs of the required logic circuit.

5.3.2 Selection Operator

The selection step is the second step in the SimE algorithm. It scans all cells of

the population P . Based on the cell’s goodness value, some cells is selected for

reallocation in the Allocation function. The goodness of each cell is computed at

the evaluation step. For every celli, there is a goodness value gi associated with it.

If randomly generated number between [0,1], with normal distribution, is less than

or equal to 1 − gi + B, element i will be selected. This step is shown in Figure 5.5.

Therefore, if B = −0.05, then each element i has a probability pi = min(1 −

gi − 0.05, 0.95) of getting selected for alteration. Therefore, when gi = 1, pi = 0.

Also, when gi = 0, pi = 0.95.

57

Function Selection(m, B);
/* m: is a particular movable element; */
/* B: Selection bias;*/

If Random ≤ 1 − gm + B Then Return True
Else Return False

EndIf
EndSelection;

Figure 5.5: Selection in the SimE.

5.3.3 Allocation Operator

Allocation step is the third step in the SimE algorithm. It takes all the cells that

have been selected by the selection step and reallocate them after mutation. After

allocation, a new population P ′ is generated.

In our case, the allocation function will allocate each element ei from the selection

set Ps and mutates it with W trial. If there is any improvement in the goodness, it

will make the move permanent.

The allocation function implemented is hybrid (global and local). When allo-

cating the elements after mutation, it will consider the individual goodness (cell

goodness) change. If the goodness improves, it will accept the move. However,

after allocating all of the elements in the selection set Ps, it will check the global

goodness and if it improves, the solution will be made as a current solution. If it

did not improve, it will keep the old solution as current solution. A pseudo code of

the allocation function implemented in our proposed SimE algorithm is outlined in

Figure 5.6.

58

Allocation:
/* m: a cell from the matrix either selected or not */
/* m′: mutated cell */
/* Pr: set of all remaining cells (unselected) */
/* Ps: set of selected cells */
/* W : number of trial */
/* P : current solution */
/* P ′: new solution */

ForEach m ∈ Pr Do
Allocate m in P ′ in the same cell location in P

EndForEach
ForEach m ∈ Ps Do

For i = 0 to W Do /* W trial mutations */
Mutate(m) /* Change randomly gate type and/or inputs */
Place m′ in the original selected cell location
Evaluate (m′) /* local allocation */
If goodness (m′) > goodness (m) then

Accept move
Exit ForLoop /* Exit W trial */

EndIf
EndFor /* End for W trial */

EndForEach
If Evaluate(P ′) > Evaluate(P) then /* global allocation */

P = P ′

Exit ForLoop /* Exit W trial */
Else

P = P /* keep original */
EndIf

Figure 5.6: Allocation function in SimE.

59

EVALUATION(∗p)
/* ∗p: a pointer to either a cell (individual) or a solution (population P) */
/* Oi: estimate of optimal cost of i individual */
/* Ci: actual cost of i individual */
/* gi: goodness of i individual */
/* m: a cell from the matrix */

If ∗p is an individual then
g∗p = O∗p/C∗p

ElseIf ∗p is a solution then
ForEach m ∈ ∗p Do

gm = Om/Cm

EndForEach
Cost(∗p) /* the cost of the whole population (power, area, delay) */

EndIf

Figure 5.7: Evaluation function in SimE.

5.3.4 Evaluation Function

As discussed in Chapter 4, the Evaluation step consists of evaluating the goodness

of each individual i of the population P . The goodness measure must be a single

number expressible in the range [0,1].

In our case, the Evaluation step will also evaluate the goodness of the whole

solution P in order to count for other cost functions such as power, area and delay.

An outline of the proposed evaluation function in the SimE algorithm is shown in

Figure 5.7.

60

5.4 Hybrid SimE Using Tabu Search (TS)

In this section a proposed hybrid SimE algorithm for the deign of digital logic circuits

is presented. First, tabu search (TS) is discussed in general. Next, a proposed

implementation of tabu search for logic design is introduced. Finally, a hybrid SimE

algorithm for logic design using tabu search is proposed.

5.4.1 Tabu Search (TS)

Tabu search is a form of local neighborhood search. Each solution S ∈ Ω has an

associated set of neighbors ℵ(S) ⊆ ⊗. A solution S ′ ∈ ℵ(S) can be reached from

S by an operation called a move to S ′. Normally, the neighborhood relation is

assumed symmetric. That is, if S ′ is a neighbor of S then S is a neighbor of S ′ [34].

At each step, the local neighborhood of the current solution is explored and the

best solution in that neighborhood is selected as the new current solution. Tabu

search continues the search from the best solution in the neighborhood even if it is

worse than the current solution. To prevent cycling, information pertaining to the

most recently visited solution are inserted in a list called tabu list. Move to tabu

solution are not allowed. The tabu status of a solution is overridden when certain

criteria (aspiration criteria) are satisfied. One example of an aspiration criterion

is when the cost of the selected solution is better than the best seen so far, which

is an indication that the search is actually not cycling back, but rather moving to

61

Best
Solution

Current
Solution

Move 1

Move n

New
Solution

New
Solution

} “Best”

Tabu?

Aspiration
Criteria

Passed?

Current
Solution

Current
Solution

Regenerate
Moves

No

Yes

Yes

No

Figure 5.8: Flow chart of the tabu search algorithm [34].

a new solution not encountered before. A flow chart illustrating the basic tabu

search algorithm is given in Figure 5.8. Also, an algorithmic description of a simple

implementation of the tabu search is given in Figure 5.9.

5.4.2 Tabu Search for Logic Design

In the context of combinational logic circuits design, tabu search (TS) algorithm is

implemented. The same circuit encoding used in SimE is used in TS. Also, the same

cost function proposed in SimE have been used in TS.

The size of the tabu list used in the implementation for logic design is variable

and it is between 5 and 7. Also, the attributes that are considered in the tabu

62

ALGORITHM Tabu Search();
/* Ω: Set of feasible solutions */
/* S: Current solution and S∗: Best admissible solution */
/* Cost: Objective function */
/* ℵ(S): Neighborhood of S ∈ Ω. */
/* V∗: Sample of neighborhood solutions. */
/* T: Tabu list. */
/* AL: Aspiration Level */

INITIALIZATION (initial solution S ∈ Ω, initialize T and AL);
For fixed number of iterations Do

Generate neighbor solution V∗ ⊂ ℵ(S).
Find best S∗ ∈ V∗.
If move S to S∗ is not in T Then

Accept move, Update(S, T, AL), increment iteration
Else

If Cost(S∗) < AL Then
Accept move, Update(S, T, AL), increment iteration

EndIf
EndIf

EndFor

Figure 5.9: Tabu Search algorithm (TS).

list is the type of the gate being changed in the move and the inputs connections

(row numbers). Moreover, the size of the samples of neighborhood solutions (V∗) is

adjusted to n where n is the number of inputs in the required circuit. Unlike SimE,

each new solution generated contains only a single move of a cell where a change of

one of the cells in a matrix is considered. In addition, the AL is considered to be

as the best solution seen so far in the global optimization cost function where both

functional correct circuit (functional fitness) and optimization fitness have to be the

best seen so far.

63

ALGORITHM Hybrid Simulated Evolution()
INITIALIZATION
Repeat

EVALUATION
SELECTION
ALLOCATION
TABU SEARCH /* intensifying the search and escape some local optima */

Until Stopping-criteria are met
TABU SEARCH /* intensifying the search */
Return (BestSolution)

End Hybrid Simulated Evolution

Figure 5.10: Hybrid Simulated Evolution algorithm.

5.4.3 Hybrid SimE Algorithm

The investigation in TS lead to the proposal of a hybrid SimE where a combination

of both SimE and TS is considered in the design of combinational logic circuit.

The proposed hybrid algorithm uses SimE in order to diversify the search in the

search space since each iteration in SimE is evaluating a compound moves (allocation

of selection set). Moreover, hybrid SimE uses TS in order to intensify the search

whenever SimE converges into some optima. TS will try to search for better solution

in the neighboring solutions since it is using only single moves and evaluating each

move. Also, it might help SimE to escape some local optima. Figure 5.10 shows

pseudo code of the proposed hybrid SimE.

64

5.5 Concluding Remarks

In this chapter, a proposed implementation of the Simulated Evolution Algorithm

(SimE) in the design of logic circuits is presented. Also, a detailed explanation about

SimE operators is given. Finally, Tabu Search (TS) in logic design is presented and

a discussion on the proposed hybrid SimE is given.

Chapter 6

Goodness Measurements

In this part, two goodness measures are proposed for the problem of evolutionary

logic design. Then, the inclusion of power, area, delay in the cost function is pro-

posed. Also, the use of fuzzy logic in the cost function is presented.

6.1 Proposed Goodness Measures

As pointed out in Chapter 4, the goodness measure has a great impact on the

performance of the SimE algorithm and the quality of the solution obtained. In

this part, two proposed goodness measures will be discussed in detail. The first

goodness measure is based on the output pattern of the required circuit (Pattern

Based Goodness). The second proposed goodness measure is based on the multilevel

logic synthesis (Multilevel Logic Based Goodness). The values that these goodness

65

66

measures take is between 0 and 1 [0,1]. Each goodness measure will be explained in

detail.

Both of the above goodnesses are categorized as functional goodness measures

where the correctness of the obtained logic circuit should match the input truth

table of the required function in order to get a goodness of 1. The other category

of goodness measure is the optimization goodness measure where the extent of the

optimality of the logic circuit synthesized is taken into consideration. Such measures

of optimality are power, delay and area. The later category is presented in the

objectives optimization subsection.

Two functional goodness measures are proposed and these are: pattern based

goodness and multilevel logic based goodness.

6.1.1 Pattern Based Goodness

The pattern based goodness measure relies on the truth table of the required function

to be implemented. Each cell i in the solution matrix is evaluated based on the

number of correct outputs being generated compared to the required truth table.

However, there are some cases where a cell i with high goodness might have its

input cells to have low goodness. As a result, the input cells might get selected

for reallocation due to its low goodness which will disturb the goodness of cell i.

Therefore, some measures has to be taken to avoid such problems.

In order to solve the above case, pattern based goodness measure is divided into

67

two: intrinsic goodness measure denoted by gi and extrinsic goodness measure de-

noted by Gi. The intrinsic goodness measure is related to the goodness of cell i

based on the number of correct output patterns produced by cell i and matching

the objective truth table. The extrinsic goodness measure is related to the effect on

other cells inputs of cell i. The following is a formulation of the Pattern Based

Goodness Measure:

gi = Oi/Ci

ρi = # of matching output patterns of the ith cell

n = # of inputs in the circuit

gi = ρi/2n Intrinsic Functional Pattern Based Goodness Measure

while the Extrinsic Functional Pattern Based Goodness is done as in Figure 6.1. An

Extrinsic Functional Pattern Based Goodness Evaluation
/* gi: Intrinsic Functional Pattern Based Goodness of cell i */
/* gj : Intrinsic Functional Pattern Based Goodness of one of the input cells of cell i */
/* Gi: Extrinsic Functional Pattern Based Goodness of cell i */

For i = n2 downto 1 Do
If gi > gj of any of its inputs cells or Gi > gj of any of its inputs cells then

Gj = (gi + gj)/2 for the input cell with gj less than gi

or Gj = (Gi + gj)/2 for the input cell with gj less than Gi

EndIf
If gate type of i is inverter then

gj = gi and Gj = Gi

EndIf
EndFor

Figure 6.1: Extrinsic functional pattern based goodness.

68

example on the usage of the previous goodness measure is shown in Figure 6.2. In

this example, the required function F is 11001100.

Both Selection Function and Allocation Function will use this goodness measure

in order to guide the algorithm to reach to an optimal circuit. The selection function

considers the extrinsic goodness measure during selection procedure of cells. On

the other hand, the allocation function considers the intrinsic goodness measure

in evaluating the mutated cells after allocation in order to accept a certain move.

This goodness measure has been used to implement a version of the SimE algorithm

denoted by SimE-G1.

6.1.2 Multilevel Logic Based Goodness

The Multilevel Logic Based goodness is based on the multilevel logic synthesis. It

assumes that if a logic gate is located at higher level in the circuit, a larger portion

of the required truth table minterms is covered. The higher the level of a gate in a

multilevel logic circuit, the more minterms assumed to be covered at the output of

the gate. Therefore, the goodness of a gate is affected by number of minterms covered

at its output and the level where the gate is. Figure 6.3 illustrates this assumption.

In the figure, the size of the circuit is 4 so there are 16 minterms should be generated

at the output correctly. Initially, these 16 minterms are distributed among the levels

of the circuit evenly and progressively. Also, it is assumed that the initial number

of levels is 4 since there are 4 columns in the search matrix. Therefore, a good

69

D

A

B

C

L

K

E

F

F = 11001100

D = 00111100

E = 01110111

K = 01111111

L = 00110011

D

A

B

C

L

K

E

F

F = 11001100

D = 00111100

E = 01110111

K = 01111111

L = 00110011

g(F) = 1

g(L) = 0

g(K) = 3/8

g(E) = 2/8

g(D) = 4/8

Extrinsic Functional Pattern Based Goodness

G(F) = 1
G(K) = 11/16

G(L) = 1/2

G(D) = 19/32

G(E) = 3/8

Intrinsic Functional Pattern Based Goodness

Figure 6.2: An example on the pattern based goodness measure.

70

logic gate located at the second level should preferably cover at most 8 minterms

while a good logic gate located at the first level should preferably cover at most 4

minterms. In general, if a gate at level i and the required logic circuit has n inputs

(2n minterms), then to have a goodness of 1 at the output of that gate, there should

be �(2n/n)i� correct minterms at the output of that gate. Then, the multilevel logic

goodness measure is formulated as follows:

gi =
ρ

�2n/n�j

where gi is the goodness of cell i, j is the level number or column number, n is the

number of inputs of the required circuit and ρ is the number matching minterms

at the output of the cell i compared to the required logic function. The value of

gi should be between 0 and 1 [0,1]. There are several scenarios resulting from this

assumption and these are:

• If a cell i at level j produces more than ((2n/n)j).

• If no gate at cell i located at level j produces ((2n/n)j) or no gate at level n

produces 2n minterms.

• Intrinsic and Extrinsic complication.

Each of the above items will be addressed individually.

71

Number of Minterms covered increases

16 Minterms should be
covered for a 4 inputs circuit

4
Minterms

8
Minterms

12
Minterms

16
Minterms

Figure 6.3: Multilevel logic goodness assumption.

First, if a cell i at level j produces more than ((2n/n)j) means ρi > ((2n/n)j) ⇒

gi > 1. The number of levels that the SimE algorithm is searching at should be

decreased by a factor relative to the number of minterms produced by the cell i.

The new number of levels is l = �(2n/ρi)�. Also, the ranges of number of minterms

at each level will change accordingly. At level j of cell i, the new maximum number

of minterms should be covered is ρi + 1. At j + 1 level, the new maximum number

of minterms is

(ρi + 2) + �2n − (ρi + 1)

l
�

72

Then, the maximum number of minterms at level i > j is

((ρi + 2) + �2n − (ρi + 1)

l
�(i − j)

Eventually, our goodness measure also should be changed and it is

gi = ρ/m

where m is the new maximum number of minterms that gate i should get at level j.

On the other hand, if no gate at cell i located at level j can produce ((2n/n)j)

or no gate at level n can produce 2n minterms which is the second case. This case

means that the number of possible levels at which the SimE algorithm is searching

is not enough. This number of levels has to be increased unlike the previous case

where the number of levels has to be decreased. This will increase the probability of

getting a correct solution for the required function at the expense of increase in the

size of the search space and computation time, but there is no free pie. However,

this step should not be taken unless a certain number of trials to get a solution using

the initial number of levels. This number of trial is taken to be Wn, where W is

the number of trial moves discussed in allocation and n is number of columns of the

matrix (number of inputs). The choice of Wn is to allow the SimE algorithm to do

an approximate of W trial moves at each of the n columns before going to a larger

73

search space. Also, the ranges of the maximum number of minterms will change if

the number of levels increased. The increase in number of levels is done gradually,

i.e., one by one. If l is the new number of levels, then the ranges of the number of

minterms for each level is �2n/l�. Therefore, the goodness measure for cell i located

at level j will change as follows:

gi =
ρ

�2n/l�j if j < l

gi =
ρ

2n
if j = l

where l is the new number of levels.

The third complication is similar to the one in the first goodness measure, which

is, a cell i with high goodness might have its input cells to have low goodness.

The same approach as in the previous one in computing the intrinsic and extrinsic

goodnesses is considered.

Similarly, in order to solve the above case, multilevel logic based goodness measure

is divided into two: intrinsic goodness measure denoted by gi and extrinsic goodness

measure denoted by Gi. The intrinsic goodness measure is related to the goodness

of cell i. The extrinsic goodness measure is related to the effect on other cells inputs

of cell i.

In this case the intrinsic goodness measure is computed by using the multilevel

logic based goodness measure equations for gi.

74

An example on the usage of the previous goodness measure is shown in Figure 6.4

and Figure 6.5. In this example, the required function F is 11001100. After the first

run, the number of levels changed from 3 to 2. Also, after several runs, the heuristic

will find that it can be implemented using one level only.

D

A

B

C

L

K

E

F

F = 11001100

D = 00111100

E = 01110111

K = 01111111

L = 00110011

g(F) = 1

g(L) = 0

g(K) = 1/2

g(E) = 2/3

g(D) = 4/3

Level 1
3 minterms

Level 2
6 minterms

Level 3
8 minterms

Figure 6.4: An example on the multilevel goodness measure first step.

D

A

B

C

L

K

E

F = 11001100

D = 00111100

E = 01110111

K = 01111111

L = 00110011

g(F) = 1

g(L) = 0

g(K) = 3/8

g(E) = 2/5

g(D) = 4/5

Level 1
5 minterms

Level 2
8 minterms

Selection

Figure 6.5: An example on the multilevel goodness measure after adjusting the
number of columns.

75

Both Selection Function and Allocation Function will use this goodness measure

in order to guide the algorithm to an optimal circuit. The selection function con-

siders the extrinsic goodness measure while the allocation function considers the

intrinsic goodness measure. This goodness measure have been used to implement a

version of the SimE algorithm denoted by SimE-G2.

The results for both versions of the SimE algorithm will be discussed in the

following chapter.

6.2 Optimization Goodness Measure

In this part, the inclusion of power, delay and area in the objective cost function

will be presented. The computation of each of the above measures will be presented

individually. In order to include the above objectives, a working circuit has to be

obtained. This means that the functional goodness measure should be equal to 1.

Whenever the functional goodness measure is 1, it is possible to optimize the circuit

for other measures.

In order to optimize the circuit for other measures such as power, delay and area,

a global optimization goodness cost function is proposed. This is done during the

evaluation step and after allocation when the algorithm measures the improvement

of global cost function to make the new allocation as permanent. It is denoted by

GO and it is computed as in Figure 6.6. The cost functions for optimizing area,

76

delay and power are explained next.

Global Optimization Goodness Cost Function
/* gi: Intrinsic Functional Goodness of cell i */
/* GO: Global Optimization Goodness of P */
/* P : the current population (solution) */
/* k: number of objectives for optimization */
/* gj : the goodness of the solution considering the jth objective [0,1]*/
/* gj = 1

1+δ
*/

/* δ = N
Nmax

*/

/* N is the current cost of the objective function (power, area or delay) */
/* Nmax is the maximum acceptable value for the given constraint */
/* Wi: a wight for functional goodness */
/* Wj : a wight for optimization goodness */

If gi < 1 then
GO = Wigi [0, Wi]

ElseIf gi = 1 then
GO = Wigi +

∑k
j=1 Wjgj [Wi,1]

EndIf

Figure 6.6: Global optimization goodness cost function.

6.2.1 Area Estimation

The size of a VLSI circuit consists of the area for logic gates (blocks) and the inter-

connection wires. With the advanced technology used for implementing VLSI cir-

cuits, the size of transistors become smaller and smaller. Thus, the area requirement

for interconnection wire becomes significant. However, the length of interconnection

wires in VLSI circuits is determined by routing algorithms. Therefore, in this thesis,

only area from logic gates is used to estimate the overall size of the circuit. The size

77

of these gates is obtained from a VLSI design library. Formally, the cost for area of

VLSI circuits can be stated as follows.

Costarea =
∑

i∈G, i�=WIRES

A(gi) (6.1)

Where A(gi) is the area of gate gi and gi ∈ G.

6.2.2 Delay Estimation

The overall performance of a VLSI circuit depends upon how fast it can process

signals, i.e., its clock speed. The propagation delay of signals in VLSI circuits

consists of two elements: switching delay of gates and interconnect delay. Due to

improved technology, libraries with considerably low switching delay are available.

This fact and the increased gate density on the chip make the interconnect delay a

prominent factor in the overall circuit delay.

If a path π consists of nets {v1, v2, ..., vn}, then, the delay Tπ along π is expressed

by the following Equation.

Tπ =
n−1∑
i=1

(CDi + IDi) (6.2)

Where CDi is the switching delay of the cell driving gate vi and IDi is the inter-

connect delay of net vi.

78

Using the RC delay model, IDi depends on the load factor, interconnect resis-

tance and load capacitance, as shown in Equation 6.3.

IDi = (LFi + Ri) × Ci (6.3)

Where LFi is the load factor of the driving block (which is independent of the

layout), Ri is the interconnect resistance of net vi, and Ci is the load capacitance of

cell i.

The load capacitance Ci of gate i comprises the interconnect capacitance at the

output node of gate i and the sum of the capacitances of the input nodes of the

gates driven by gate i.

Ci = Cr
i +

∑
j∈Mi

Cg
j (6.4)

Where Cg
j is the capacitance of the input node of a gate j driven by gate i and Cr

i

represents the interconnect capacitance at the output node of cell i.

The overall circuit delay is determined by the delay along the longest path (the

most critical path) in the layout. If the most critical path is denoted by πc then,

the cost function for the circuit delay can be given as follows.

Costdelay = Tπc = max
j

{Tπj
} ∀j ∈ {1, 2, . . . , K} (6.5)

Where K represents the total number of critical paths determined by a timing

79

analysis program.

6.2.3 Power Consumption Estimation

In standard CMOS circuit, the total power consumption can be given by the follow-

ing Equation:

Pt =
∑
i∈M

(
1

2
· Ci · V 2

DD · f · Si · β) +
∑
i∈V

QSCi
· VDD · f · Si + Ileak · VDD (6.6)

In Equation 6.6, Pt is the total power consumption, VDD is the supply voltage, Si is

the switching probability at the output node of cell i, i.e., the number of transitions

per clock cycle at the output of gate i and f is the clock frequency.

The first term in the above equation gives the dynamic power consumption during

charging or discharging of a node in the circuit. Here, M is the set of all nodes in

the circuit, Ci denotes the total capacitance of node i whereas β is a technology

dependent constant. The second term in Equation 6.6 gives the power consumption

due to the short circuit current. Here, V is the set of all wires connecting VDD

to ground during output transition, QSCi
represents the charge carried by the short

circuit current per transition. The third term represents the static power dissipation

due to leakage current Ileak.

In VLSI circuits with well designed logic gates, the dynamic power consumption

contributes about 90% to the total power consumption [12]. Hence, most of the

80

reported work is focused on minimizing the dynamic power consumption. Also, in

case of standard-cell placement, the cells are obtained from the technology library

and nothing can be done to reduce the power consumption due to the second and

the third term in Equation 6.6. Due to this fact, the emphasis in this work is

on optimizing the dynamic power consumption. Since the first term is dominant,

Equation 6.6 can be approximated as follows.

Pt �
∑
i∈M

1

2
· Ci · V 2

DD · f · Si · β (6.7)

Assuming the clock frequency and input voltage to be fixed, the total power con-

sumption of the circuit becomes a function of the total capacitance and the switching

probabilities as shown below.

Pt �
∑
i∈M

Ci · Si (6.8)

Thus, the cost of the overall power consumption in VLSI circuits can be approx-

imated as follows.

Costpower =
∑
i∈M

Si · Ci (6.9)

81

6.3 Weighted Sum Fitness Function Calculation

6.3.1 Functional Fitness

Several functional fitness formulations are reported in the literature [33]. The com-

monly used one is the ratio of the number of correct hits to the length of the truth

table. If FF denotes the functional fitness, then the formulation below is applied.

FF =
Number of hits

Length of the truth table
(6.10)

The solution has to be ‘inverted’ if the value of FF is less than 0.5. Therefore, the

formulation of normalized FF (FFn) below is applied.

FFn = Max{FF, 1 − FF} (6.11)

6.3.2 Objective Fitness

The objective fitness (OF (i)) is a measure of the quality of solution in terms of

optimization objectives such as area, delay, and power consumption. It consider

two aspects: constraints satisfaction and multi-objective optimization. In order to

indicate whether a solution is satisfying a certain constraint, objective fitness is

82

formulated as follow.

OF (i) =
Cost(i)

Cost(i) + Constraint(i)
(6.12)

For example, objective fitness of the solution in terms of area is:

OF (area) =
Cost(area)

Cost(area) + Constraint(area)
(6.13)

With this formulation, a circuit satisfying the constraint in terms of area will

have OF (area) greater than or equal to 0.5. Any solution that has OF (area) less

than 0.5 will not be considered. The constraint values are given by the user. It

states the upper bound for specific optimization objectives. Since there are four

attributes to optimize, there is objective fitness for each of these attributes. These

are computed using Equation 6.12.

The weights assigned to each attributes, wi, indicate the emphasis of the op-

timization process. For example, for area optimization, warea can be set equal to

three while other weights are set to one, each. It is also possible to have more than

one optimization objectives. For example, if we want to build a circuit with less

area and less delay, warea and wdelay can be set equal to k while wgc and wpower are

set equal to l, k > l, k > 1, l ≥ 0. Note that some other weighting scheme can be

applied.

83

The weighted sum objective fitness function calculation can be expressed as

follows.

OF =

∑
i∈obj Wi · OF (i)∑

i∈obj Wi

(6.14)

Where obj represents the set of optimization objectives.

6.4 Fuzzy Fitness Function Calculation

In this section a fuzzy-based fitness function is formulated. Similar to the weighted

sum approach, the overall fitness of a solution consists of two parts: functional

fitness and objective fitness. In this approach membership functions are used and

these membership functions will be aggregated into a single function using a fuzzy

operator.

6.4.1 Functional Fitness

Using Equation 6.11, the value of functional fitness lies in the range [0.5, 1]. Thus the

membership function for functional fitness is trivial. It is shown in Equation 6.15.

µfunc(x) =

x if 0.5 ≤ x ≤ 1

0 otherwise

(6.15)

84

6.4.2 Objective Fitness

In order to build the membership function for all objectives, estimated value for

lower bound and/or upper bound of the objective is required.

Each characteristic of the circuit (area, delay and power consumption) can be

used either as constraint or objective. The membership function for each case (ob-

jective or constraint) will be different. This will be discussed next.

Area as Optimization Objective

The lower bound on area can be estimated by referring to the VLSI circuit design

and logic synthesis principles. For any n-input single-output circuit, the minimum

area for the given circuit is equal to the area of n − 1 2-input gates representing

binary tree structure. Since any circuit can be implemented using NAND gates and

NAND gates happen to be the smallest among other gate (except NOT gate), then

the minimum area is:

minarea = (n − 1) × Area(NAND gate)

In order to guide the search intelligently, the maximum value must be carefully

estimated. For this purpose, SIS tools [36] are used to obtain circuits with minimum

area. In this context, rugged.script is used to generate the circuits’ netlist files. These

files are then fed to our own tool to obtain the estimated value for area, delay and

85

power consumption. The reason behind this is twofold. Firstly because the delay

optimization in SIS does not consider switching delay (see Equation 6.3). Secondly,

SIS does not consider power optimization.

Since we want to obtain circuits better than SIS, these values (area, delay, and

power) are used as the target values. In the case of area as optimization objectives,

the target area is equal to the area of circuits obtained by SIS and denoted as tgarea1

(see Figure 6.7). Thus, the membership function for area as optimization objectives

is:

µarea obj =

1 0 ≤ area ≤ minarea

1 − (area−minarea)
tgarea1−minarea

minarea ≤ area ≤ tgarea1

0 otherwise

(6.16)

The shape of the membership function is depicted as the bold line shown in

Figure 6.7.

Area as Constraint

In this case, the area of circuit obtained from SIS is used as target value. For

this purpose, the maxarea and tgarea2 should be defined. The following settings are

applied, tgarea2 = k1 × tgarea1 and maxarea = k2 × tgarea1, k1, k2 ∈ �, 0 < k1 ≤

86

µ

Figure 6.7: Membership function for area.

1, k2 ≥ 1. The membership function is then:

µarea con =

1 0 ≤ area ≤ tgarea1

1 − area−k1

maxarea−k1
1 ≤ area ≤ maxarea

0 otherwise

(6.17)

The shape of the membership function is depicted as dashed line shown in Fig-

ure 6.7.

Delay as Optimization Objective

The minimum delay (mindelay) is estimated as the delay of two-level logic consisting

of NAND gates without considering the switching delay. The tgdelay1 is estimated

from circuit generated by SIS with delay.script executed. The membership function

87

for delay as optimization objectives is:

µdelay obj =

1 0 ≤ delay ≤ mindelay

1 − delay−mindelay

tgdelay1−mindelay
mindelay ≤ delay ≤ tgdelay1

0 otherwise

(6.18)

The shape of the membership function is depicted as bold line shown in Fig-

ure 6.8.

µ

Figure 6.8: Membership function for delay.

Delay as Constraint

In this case, the following settings are applied, tgdelay2 = k1 × tgdelay1 and

maxdelay = k2 × tgdelay1, k1, k2 ∈ �, 0 < k1 ≤ 1, k2 ≥ 1. The membership

88

function is then

µdelay con =

1 0 ≤ delay ≤ tgdelay1

1 − delay−k1

maxdelay−k1
1 ≤ delay ≤ maxdelay

0 otherwise

(6.19)

The shape of the membership function is depicted as dashed line shown in Fig-

ure 6.8.

Power as Optimization Objective

The minimum power (minpower) is estimated as the power consumption of minimum

area circuit in which each gate has the least switching activity (see Equation 6.6).

It is assumed that for a given truth table, the output of each gate will be ‘1’ only

once. Thus the minimum power consumption (switching activity) can be estimated

as follows.

minpower = 2 · length of truth table − 1

(length of truth table)2
· capacitance(NAND)

The tgpower1 is estimated from minimum area circuit generated by SIS. The

89

membership function for power as optimization objectives is:

µpower obj =

1 0 ≤ power ≤ minpower

1 − power−minpower

tgpower1−minpower
minpower ≤ power ≤ tgpower1

0 otherwise

(6.20)

The shape of the membership function is depicted as bold line shown in Fig-

ure 6.9.

µ

Figure 6.9: Membership function for power.

90

Power as Constraint

The following settings are applied, tgpower2 = k1 × tgarea1 and maxpower = k2 ×

tgpower1, k1, k2 ∈ �, 0 < k1 ≤ 1, k2 ≥ 1. The membership function is:

µpower con =

1 0 ≤ power ≤ tgpower1

1 − power−k1

maxpower−k1
1 ≤ power ≤ maxpower

0 otherwise

(6.21)

The shape of the membership function is depicted as dashed line shown in Fig-

ure 6.9.

OWA operator is used to aggregate the above membership functions to calculate

the objective fitness. The choice of which type of membership function used (either

objective or constraint) depends on the course of the current action. For example,

for minimization of area with delay and power as constraint, the µarea obj , µdelay con

and µpower con are considered. The objective fitness is then calculated as

µobj(x) = β × min(µarea obj , µdelay con, µpower con)

+(1 − β) × 1
3
(µarea obj + µdelay con + µpower con)

(6.22)

91

6.5 Concluding Remarks

In this chapter, the cost function formulation for the proposed algorithm was dis-

cussed. Two goodness measures were proposed for the SimE algorithm. These

goodness measures were discussed in detail. These goodness measures have a major

role on the performance of the SimE algorithm. Moreover, the use of weighted sum

and fuzzy logic for targeting multi-objective functions were presented.

Chapter 7

Experiments and Results

Chapters 7 and 8 are dedicated for experiments and results of the solution ap-

proach. This chapter concentrates on the performance evaluation of different pos-

sible scheme, while next chapter will have some comparison with the existing tech-

niques.

7.1 Experimental Setup

The following is the setup that is needed for conducting the experiments. This

includes the setting of inputs, tools and parameters.

Input: In order to perform the experiment, some benchmark circuits are used as

test cases. The benchmark consists of twenty randomly generated truth tables of dif-

ferent complexity in addition to twelve circuits obtained from ISCAS’85 benchmark.

92

93

All circuits are in PLA format. Detail of these circuits is given in the appendix.

Technology parameters used in the experiments is obtained from MOSIS .25 µ

library [1]. These parameters are written into a text file with a certain format. This

can be seen in the appendix as well. Table 7.1 shows a summary of these circuits.

Single Output Multiple OutputCircuits
Number of

Specification
Number of

Specification
Notesused

circuits circuits

Random 20
Number of

- - -inputs: 2 - 6
Number of Number of arithmetic circuits:
inputs: 3 - 7 inputs: 3 - 7 majority, parity,ISCAS’85 3 9

Number of adder and multiplier
outputs: 2 - 10

Table 7.1: Summary of circuits used for the experiments.

Tools: SIS tool is used for the purpose of comparison with the existing tools.

Parameters for the Algorithm: Performance of iterative heuristics depends on

the fine-tuning of its parameters. If it is not mentioned explicitly, these parameters

are used as general parameters for the experiments. Note that n is the number of

variables for a specific circuit. More details about the initial values of the solution

approach can be found in Chapter 5.

1. Parameters for SimE algorithm

• Selection Bias B = 0.0

• The number of alteration trial W = m n!
2!(n−2)!

• Population Size = 1

94

• Number of iteration (stopping criteria) = 250 * n

2. Parameters for the solution approach

• Number of runs = 30

• Minimum size of the matrix = n × n

• Maximum size of the matrix = (4 · n) × (3 · n)

Three types of experiments are carried out to measure the performance of the solu-

tion approach. These include experiments for different goodness measures, effect of

hybrid SimE on the quality of solution and effect of different optimization objectives.

7.2 Performance of Different Goodness Measures

The objective of this experiment is to know which goodness measures works best

for the solution approach.

From the previous chapter, we have two proposed goodness measures, namely,

the pattern based goodness measure and the multilevel based goodness measure. To

evaluate the two goodness measures, we need to look at how the fitness function

will behave during the execution time and how the quality of the solution will be in

order to compare them. In the following case, area and power were objectives and

delay a constraint.

In order to compare both goodness measures, the behavior of the average fitness

95

Fitness Function

0

0.2

0.4

0.6

0.8

1

1.2

1 101 201 301 401 501 601 701 801 901

iteration

SimE G1

SimE G2

Figure 7.1: Fitness function for SimE-G1 and SimE-G2 for 4 inputs circuit (circuit2).

function in the SimE algorithm using each goodness measure is compared. The

averages of 30 runs of a 4 inputs circuit (circuit2) and mul3 circuit (a large circuit)

are shown in Figure 7.1 and 7.2. The behavior of the fitness measures in Figure 7.1

shows that the SimE-G2 is better than SimE-G1 slightly in time since the fitness

function for SimE-G2 converges to 1 earlier than SimE-G1 fitness function. In fact,

this is due to the ability of the multilevel goodness measure to resize the matrix

solution dynamically. However, the difference between SimE-G1 and SimE-G2 can

be considered minor for smaller circuits due to the randomness of the SimE algorithm

which might not guarantee the results to be consistent. The behavior of the fitness

measures in Figure 7.2 indicates that the SimE-G2 is better than SimE-G1 by 50%

in time since the fitness function for SimE-G2 converges to 1 earlier than SimE-G1

fitness function. This behavior was noticed clearly in all large circuits where the

size of the search space has a major effect on the performance of the algorithm.

96

Fitness Function

0

0.2

0.4

0.6

0.8

1

1.2

1 201 401 601 801 1001 1201 1401 1601 1801

Iteration

SimE G1
SimE G2

Figure 7.2: Fitness function for SimE-G1 and SimE-G2 for mul3.

In addition, the quality of the solution generated by using both goodness mea-

sures is compared. The results of the experiments for some selected circuits is shown

in Table 7.2. Notice that the experiments conducted were area and power as objec-

tives and delay as constraint. In most of the cases, the average area and power of

the SimE-G2 is better than the area and power of SimE-G1. Therefore, the quality

of the solution using SimE-G2 is better than the quality of the solution of SimE-G1.

A graphical representation of the normalized area and power for SimE-G2 to the

area and power of SimE-G1 is shown in Figure 7.3. Notice that 1 in the graph is

the area and power of SimE-G1.

Table 7.3 shows the improvements in execution time of SimE-G2 compared to

SimE-G1 for the same circuits. In all cases, SimE-G2 has less execution time than

SimE-G1. The modification of matrix size dynamically results in changing the size

of the search space. In most of the cases, the size of the matrix is reduced which

97

Circuit
SimE-G1 SimE-G2 % Improvement

area delay power area delay power % area % power
circuit1 13290.40 4.08 5.20 12910.42 3.87 4.99 2.94 4.21
circuit2 13170.54 5.23 5.37 13170.76 5.17 5.29 0.00 1.51
circuit3 10822.45 3.82 3.89 10783.84 3.79 3.73 0.36 4.29
circuit4 1458.00 0.005 0.66 1458.00 0.005 0.66 0.00 0.00
circuit5 13977.62 3.99 5.91 13903.92 3.87 5.85 0.53 1.03
circuit6 11023.00 3.54 3.91 10988.36 3.33 3.84 0.32 1.82
circuit7 12452.87 5.62 4.57 12400.26 5.10 4.39 0.42 4.10
circuit8 7776.00 5.22 2.73 7776.00 5.22 2.73 0.00 0.00
mul2 14229.69 4.23 4.76 13887.54 4.60 4.36 2.46 9.17
mul3 77230.56 15.12 22.77 74456.42 13.00 21.66 3.73 5.12
cm42a 41092.17 8.91 14.01 40982.44 8.89 13.67 0.27 2.49
cm82a 25489.41 12.82 10.64 25109.93 11.90 9.27 1.51 14.78
b1 12264.93 3.44 3.07 11342.86 2.90 2.79 8.13 10.04
c17 11439.26 5.82 3.51 11008.74 5.24 3.41 3.91 2.93
con1 30709.48 7.03 14.58 30351.12 6.92 14.24 1.18 2.39
majority 13976.50 4.67 5.22 13908.33 4.55 5.08 0.49 2.76

Table 7.2: Results comparison between SimE-G1 and SimE-G2.

Normalized area and power of SimE-G2 to the results of SimE-G1

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

cir
cu

it1

cir
cu

it2

cir
cu

it3

cir
cu

it4

cir
cu

it5

cir
cu

it6

cir
cu

it7

cir
cu

it8
m

ul2
m

ul3

cm
42

a

cm
82

a b1 c1
7

co
n1

m
ajo

rit
y

Area

Power

Figure 7.3: Normalized area and power of SimE-G2 to the area and power of SimE-
G1.

98

Circuit SimE-G1 Time (s) SimE-G2 Time (s) % Improvement
circuit1 5.68 3.12 45.07
circuit2 4.67 3.77 19.27
circuit3 6.55 4.57 30.23
circuit4 1.20 0.48 60.00
circuit5 17.34 6.51 62.46
circuit6 12.65 6.02 52.41
circuit7 13.62 7.44 45.37
circuit8 12.51 5.02 59.87
mul2 55.21 25.72 53.41
mul3 304.20 150.40 50.56
cm42a 239.10 123.68 48.27
cm82a 70.25 35.81 49.02
b1 56.96 25.93 54.48
c17 82.09 42.11 48.70
con1 459.51 160.00 65.18
majority 35.87 15.32 57.29

Table 7.3: Improvements in execution time in SimE-G2 over SimE-G1.

results in reducing the size of the search space. As a result, less time is required to

arrive at a better solution.

7.3 Effect of Hybrid SimE on the Quality of So-

lution

In Chapter 6, the use of Tabu search in digital logic design was introduced in order

to compare it with SimE since both algorithms belong to the same family of non-

deterministic iterative algorithm. Also, the hybrid SimE where Tabu Search is

incorporated into SimE is discussed in Chapter 6. In this section, the effect of

incorporating Tabu Search into SimE for the logic design is analyzed.

99

Hybrid SimE is compared to the original proposed SimE algorithm in terms of

execution time and quality of solution. The second goodness measure, which is the

multilevel based goodness measure, is used with Tabu Search in order to implement

the hybrid SimE. The choice of the second goodness measure is due to the previous

results presented which shows that SimE-G2 is better than SimE-G1 in execution

time and quality of solution. The experiments conducted on the circuits are for area

and power optimization as objectives and delay as constraints.

The results of the experiments of some selected circuits are shown in Table 7.4

and Table 7.5.

Circuit
SimE-G1 Hybrid SimE-G2 % Improvement

area delay power area delay power % area % power
circuit5 13903.92 3.87 5.85 6.51 13870.00 3.90 0.24 0.86
circuit6 10988.36 3.33 3.84 6.02 10935.00 3.34 0.49 0.58
circuit7 12400.26 5.10 4.39 7.44 12393.00 5.05 0.06 0.23
circuit8 7776.00 5.22 2.73 5.02 7776.00 5.22 0.00 0.00
circuit9 14988.65 5.19 4.92 8.22 14970.00 5.20 0.12 0.20
mul2 13887.54 4.60 4.36 25.72 13650.00 4.67 1.74 0.46
mul3 74456.42 13.00 21.66 150.40 74377.39 13.12 0.11 0.05
cm42a 40982.44 8.89 13.67 123.68 40866.43 8.87 0.28 0.15
cm82a 25109.93 11.90 9.27 35.81 25055.81 11.86 0.22 0.22
b1 11342.86 2.90 2.79 25.93 11206.00 2.91 1.22 0.36

Table 7.4: Results comparison between SimE-G2 and Hybrid SimE-G2.

Table 7.4 shows that the Hybrid SimE-G2 has better quality of solution than

SimE-G2. The Hybrid SimE-G2 were able to converge to better solutions because of

the local search done by the tabu algorithm. Tabu Search will intensify the search

resulting in better solutions by searching the neighborhood of the current solution.

100

Circuit SimE-G2 Time (s) Hybrid SimE-G2 Time (s) % Improvement
circuit5 5.80 7.01 -17.26
circuit6 3.82 6.13 -37.72
circuit7 4.38 7.51 -41.68
circuit8 2.73 5.05 -45.94
circuit9 4.91 8.98 -45.32
mul2 4.34 27.62 -84.29
mul3 21.65 160.36 -86.50
cm42a 13.65 127.92 -89.33
cm82a 9.25 37.95 -75.63
b1 2.78 28.36 -90.20

Table 7.5: Improvements in execution time in SimE-G2 over Hybrid SimE-G2.

On the other hand, the increase in solution quality resulted in an increase in time.

Also, the time consumed by the additional processing of tabu search in order to

explore the neighboring solution increased the overall algorithm execution time. In

multiple output circuits, tabu search will consume more time exploring neighboring

solution because multiple output circuits has common subexpression, a modification

in one of the cells (gate type) can disturb other outputs.

7.4 Effect of Different Optimization Objectives

The cost function considered in this work includes area, delay and power consump-

tion of the circuits. Thus, there exist four sets of experiment:

1. Area optimization with delay and power as constraints (AODPC)

2. Delay optimization with area and power as constraints (DOAPC)

3. Power optimization with area and delay as constraints (POADC)

101

4. Area and power optimization with delay as constraints (APODC)

In this section, the area obtained for different circuits where area optimization

with delay and power as constraints (AODPC) using SimE-G1 and SimE-G2 is

compared to the area obtained in other sets of experiments (DOAPC, POADC,

APODC) in order to see the effect of area optimization as objective. Table 7.6 and

Table 7.7 show the area of some selected circuits using AODPC compared to the

other 3 cases (DOAPC, POADC, APODC) for SimE-G1 and SimE-G2 respectively.

Circuit AODPC DOAPC POADC APODC
circuit1 14094 15360 14094 12879
circuit2 14823 16870 14823 13122
circuit3 10692 11907 10752 10752
circuit8 7290 7290 7776 7776
circuit9 17454 17689 17689 14970
b1 11206 12745 13220 11206
c17 9963 11087 10923 10923
con1 30233 30233 40632 30233
majority 13851 17821 17821 13851
xor8 20655 20655 20655 20655
xor9 23328 27216 23814 23814
rd53 38073 40201 40231 40231

Table 7.6: Area for selected circuits using SimE-G1 with the four set of experiments.

A graphical representation of the normalized area of the above selected circuits

using SimE-G1 considering DOAPC, POADC and APODC to the area results of

SimE-G1 considering AODPC is shown in Figure 7.4. The result of the area using

SimE-G1 considering area optimization (AODPC) as 1 in the figure. It is clear that

in most cases SimE-G1 considering area optimization will produce better results

102

Circuit AODPC DOAPC POADC APODC
circuit1 12879 15360 12879 12879
circuit2 13122 16870 13122 13122
circuit3 10692 11907 10752 10752
circuit10 9963 13771 9963 9963
circuit11 16354 23785 16354 16354
add2 24300 35270 24317 24300
add3 40265 53703 40265 40265
cm82a 25029 55872 25029 25029
b1 11206 12745 13220 11206
c17 9963 11087 10923 10923
con1 30233 30233 40632 30233
majority 13851 17821 17821 13851

Table 7.7: Area for selected circuits using SimE-G2 with the four set of experiments.

when considering other objectives. Also, it is noticed that in most of the cases opti-

mizing for power will also produce good results in term of area. Moreover, consider-

ing area and power as objectives for optimization will help the SimE-G1 algorithm

in producing better results in term of area and power compared to optimizing for

area or power alone.

A graphical representation of the normalized area of the above selected circuits

using SimE-G2 considering DOAPC, POADC and APODC to the area results of

SimE-G2 considering AODPC is shown in Figure 7.5. Also, it is clear that in

most cases SimE-G2 considering area optimization will produce better results when

considering other objectives. Moreover, similar conclusion can be drawn as above

considering power and area optimization can help in producing better circuits in

term of area and power rather than considering area or power individually.

103

Normalized Area using SimE-G1 considering AODPC

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

circuit1 circuit2 circuit3 circuit8 circuit9 b1 c17 con1 majority xor8 xor9 rd53

DOAPC POADC APODC

Figure 7.4: Normalized area of SimE-G1 (DOAPC, POADC, APODC) to the area
of SimE-G1 considering area optimization (AODPC).

Normalized Area using SimE-G2 considering AODPC

0.00

0.50

1.00

1.50

2.00

2.50

cir
cu

it1

cir
cu

it2

cir
cu

it3

cir
cu

it1
0

cir
cu

it1
1

ad
d2

ad
d3

cm
82

a b1 c1
7

co
n1

m
ajo

rit
y

DOAPC POADC APODC

Figure 7.5: Normalized area of SimE-G2 (DOAPC, POADC, APODC) to the area
of SimE-G2 considering area optimization (AODPC).

104

In addition, the delay obtained for different circuits where delay optimization

with area and power as constraints (DOAPC) using SimE-G1 and SimE-G2 is com-

pared to the delay obtained in other sets of experiments in order to see the effect

of delay optimization as objective. Table 7.8 and Table 7.9 show the delay of some

selected circuits using DOAPC compared to the other 3 cases for SimE-G1 and

SimE-G2 respectively.

Circuit DOAPC AODPC POADC APODC
circuit9 5.66 6.65 5.66 5.20
circuit10 5.50 6.42 6.42 6.42
circuit11 5.50 7.07 6.40 6.40
circuit12 13.42 16.55 16.55 16.55
circuit13 8.68 8.85 8.93 9.77
add2 9.37 11.48 14.73 11.48
add3 12.98 24.99 26.73 26.73
mul2 2.96 3.56 4.67 4.67
mul3 13.14 13.14 13.14 13.14
cm42a 5.19 8.86 9.44 8.86

Table 7.8: Delay for selected circuits using SimE-G1 with the four set of experiments.

Circuit DOAPC AODPC POADC APODC
circuit5 3.90 5.57 4.89 3.90
circuit6 2.68 3.34 3.85 3.34
circuit7 5.05 5.05 5.60 5.05
circuit8 2.96 2.96 5.22 5.22
circuit10 5.50 6.42 6.42 6.42
add2 9.37 11.48 14.73 11.48
add3 12.98 26.73 26.73 26.73
mul2 2.96 3.56 4.67 4.67
mul3 13.14 13.14 13.14 13.14
cm42a 5.19 9.44 9.44 8.86

Table 7.9: Delay for selected circuits using SimE-G2 with the four set of experiments.

105

Normalized Delay using SimE-G1 considering DOAPC

0

0.5

1

1.5

2

2.5

circuit9 circuit10 circuit11 circuit12 circuit13 add2 add3 mul2 mul3 cm42a

AODPC POADC APODC

Figure 7.6: Normalized delay of SimE-G1 to the delay of SimE-G1 considering delay
optimization.

A graphical representation of the normalized delay of the above selected circuits

using SimE-G1 to the delay results of DOAPC is shown in Figure 7.6. In 95%

of the cases, SimE-G1 considering delay optimization will produce better results

compared to others. This is due to the contradiction between delay compared to

area and power. In most of the cases, a decrease in the delay will increase the

area and power. For example, a function implemented in two level will have less

delay compared to the implementation of multilevel. However, power and area will

increase due to this kind of implementation.

A graphical representation of the normalized delay of the above selected circuits

using SimE-G2 to the delay results of DOAPC is shown in Figure 7.7. Similar

conclusion can be drawn as above considering power and area optimization will

produce circuits with high delay compared to delay optimization.

106

Normalized Delay using SimE-G2 considering DOAPC

0.00

0.50

1.00

1.50

2.00

2.50

circuit5 circuit6 circuit7 circuit8 circuit10 add2 add3 mul2 mul3 cm42a

AODPC POADC APODC

Figure 7.7: Normalized delay of SimE-G2 to the delay of SimE-G2 considering delay
optimization.

Moreover, the power obtained for different circuits where power optimization

with area and delay as constraints (POADC) using SimE-G1 and SimE-G2 is com-

pared to the power obtained in other sets of experiments in order to see the effect

of power optimization as objective. Table 7.10 and Table 7.11 show the power of

some selected circuits using POADC compared to the other 3 cases for SimE-G1

and SimE-G2 respectively.

A graphical representation of the normalized power of the above selected cir-

cuits using SimE-G1 and SimE-G1 to the power results of POADC are shown in

Figures 7.8 and 7.9 respectively.

Considering Figures 7.8 and 7.9, it can be concluded that power and area opti-

mization are related in many cases. A circuit that has less area, will have less power

consumption. However, delay is the opposite. A circuit with less delay will be high

107

Normalized Power using SimE-G1 considering POADC

0

0.5

1

1.5

2

2.5

circuit10 circuit11 circuit12 circuit13 circuit14 cm42a cm82a b1 c17 con1

AODPC DOAPC APODC

Figure 7.8: Normalized power of SimE-G1 to the power of SimE-G1 considering
power optimization.

Normalized Power using SimE-G2 considering POADC

0.00

0.50

1.00

1.50

2.00

2.50

cir
cu

it1
0

cir
cu

it1
1

cir
cu

it1
2

cir
cu

it1
3

cir
cu

it1
4

m
ul2

m
ul3

cm
42

a

cm
82

a b1 c1
7

AODPC DOAPC APODC

Figure 7.9: Normalized power of SimE-G2 to the power of SimE-G2 considering
power optimization.

108

Circuit POADC AODPC DOAPC APODC
circuit10 3.33 3.33 4.77 3.33
circuit11 5.75 6.01 10.65 5.75
circuit12 18.94 18.94 29.55 18.94
circuit13 8.40 8.88 10.72 7.80
circuit14 9.20 9.20 9.20 9.20
cm42a 12.60 13.64 15.02 13.64
cm82a 9.24 9.10 18.56 9.24
b1 3.04 2.78 7.05 2.78
c17 3.42 3.64 3.98 3.42
con1 10.04 14.23 14.23 14.23

Table 7.10: Power for selected circuits using SimE-G1 with the four set of experi-
ments.

Circuit POADC AODPC DOAPC APODC
circuit10 3.33 3.33 4.77 3.33
circuit11 5.75 5.75 10.65 5.75
circuit12 18.94 18.94 29.55 18.94
circuit13 8.40 7.80 10.72 7.80
circuit14 9.20 9.20 9.20 9.20
mul2 4.34 4.66 5.99 4.34
mul3 21.65 21.65 21.65 21.65
cm42a 12.60 12.60 15.02 13.64
cm82a 9.24 9.24 18.56 9.24
b1 3.04 2.78 7.05 2.78
c17 3.42 3.64 3.98 3.42

Table 7.11: Power for selected circuits using SimE-G2 with the four set of experi-
ments.

in power consumption. In most of the cases, the implementation that can be got for

better delay is in 2 level implementation, this results in larger area and power.

From the three sets of experiments, it was observed that the performance of

DOAPC is the worst using SimE-G1 and SimE-G2. The reason behind that is SimE

tries to allocate the selected cells in new location where it will give better goodness.

Delay optimization should consider the worst path which is not applicable to SimE

109

during allocation because it does not know all possible paths. However, it can

measure the delay according to the provided estimation after allocation. Therefore,

optimizing for delay will be difficult unlike optimizing for area where the algorithm

knows the current cost of area during allocation.

7.5 Concluding Remarks

In this chapter, results obtained from the solution approach was discussed. It started

from the results of different fitness function calculation. Then, the results of different

set of experiments were also presented. Comparison of the solution approach with

the existing technique will be presented in the next chapter.

Chapter 8

Comparison with Existing

Techniques

8.1 Comparison with Existing ELD Techniques

In this section the results of our experiments are contrasted to the results obtained

from the existing technique in GA-based ELD proposed by Coello [8]. Since this

technique tries to minimize the use of gate count only, the comparison is performed

with the results of AODPC of the solution approach SimE-G1 and SimE-G2. This

includes comparison in terms of area, delay and power. In the following, the results

of GA will be compared with the average results of SimE-G1 and SimE-G2.

Table 8.1 shows the quality of solutions in terms of area, delay and power for both

techniques. The table shows that except for circuit4 that contains a single gate only,

110

111

Circuit
Coello [8] SimE-G1 SimE-G2

Area Delay Power Area Delay Power Area Delay Power
circuit1 12393.00 5.05 4.38 12393.00 5.05 4.38 12393.00 5.05 4.38
circuit2 21870.00 6.18 6.61 15451.60 5.26 6.77 13150.93 5.21 5.32
circuit3 19926.00 4.34 5.15 10843.10 3.00 4.35 10745.45 3.12 3.96
circuit4 1458.00 0.005 0.66 1458.00 0.005 0.66 1458.00 0.005 0.66
circuit5 27945.00 8.76 7.89 13412.44 6.67 6.29 11723.95 5.61 5.14
majority 21141.00 7.53 6.07 14029.51 4.88 4.41 13977.51 4.50 5.12
xor8 32805.00 9.53 11.64 20880.23 6.02 9.78 20655.00 5.90 9.32
xor9 35266.00 11.34 13.79 23814.00 9.57 10.65 23814.00 9.57 10.65

Table 8.1: Comparison with Coello [8] technique in terms of area, delay and power.

there are significant improvements in terms of area for all cases. The comparison of

execution time for both techniques is provided. The experiments were carried out

in P4 2GHz CPU, 512 MB RAM. Although the execution time depends on some

variables such as the number of iterations, the size of the matrix and the number of

gate types used, the comparison is required in order to see the performance of both

techniques.

Table 8.2 shows the average execution time for the given test cases. It is obvious

that Coello’s approach is slower compared to SimE-G1 and SimE-G2 in time and

quality of solution. Moreover, Coello’s approach suffers a lot in multiple output

circuits.

112

Circuit Coello [7](s) SimE-G1 (s) SimE-G2 (s)
circuit1 91.66 12.52 10.85
circuit2 102.32 15.09 11.01
circuit3 155.78 20.14 14.07
circuit4 275.10 20.50 13.10
circuit5 266.36 21.25 15.87
majority 6290.32 224.71 119.62
xor8 7430.01 221.10 120.34
xor9 10856.55 320.92 273.63

Table 8.2: Comparison with Coello’s GA algorithm in terms of execution time [7].

8.2 Comparison with Existing Conventional Tech-

niques

In this section, the comparison of the proposed algorithm with existing conventional

technique is given. For this purpose, SIS tools [36] were required to provide the

results. However, since SIS does not consider capacitance load in their delay calcu-

lation and does not do power optimization, the result from SIS was the netlists for

optimized area and delay circuits. These netlists were later given to the cost func-

tion calculation procedure of the solution approach in order to generate the area,

delay and power.

Area Optimization:

In order to compare the performance of solution approach for area optimization,

the AODPC experiment was used. The results from SIS were the area optimized

circuits using rugged.script, mapped for area minimization. SimE and SIS use the

113

same gate library.

Table 8.3 shows the results for single output circuits for SimE-G1 and SIS. The

table shows SimE-G1 provides circuits with less area as compared to SIS. The highest

improvements were observed for the circuit5. Figure 8.1 shows the graphical view

of the results from SimE-G1. Note that these results are normalized to SIS.

SIS SimE-G1 % ImprovementCircuit
Area Delay Power Area Delay Power Area Delay Power

circuit5 20169 8.17 7.57 11664 5.57 5.08 72.92 46.74 49.05
circuit6 15066 5.09 5.66 10935 3.34 3.82 37.78 52.31 48.26
circuit7 14580 6.79 4.75 12393 5.05 4.38 17.65 34.51 8.44
circuit8 7776 5.23 2.74 7290 2.96 3.16 6.67 76.77 -13.43
circuit9 20412 7.46 7.12 17454 6.65 7.01 16.95 12.19 1.54
circuit10 9963 6.42 3.34 9963 6.42 3.33 0.00 0.01 0.27
circuit11 17496 7.08 6.01 17496 7.07 6.01 0.00 0.13 0.04
circuit12 52731 17.34 19.11 48655 16.55 18.94 8.38 4.77 0.92
circuit13 24543 11.02 9.72 22599 8.85 8.88 8.60 24.55 9.45
circuit14 31347 10.03 11.55 24786 7.25 9.20 26.47 38.30 25.46
circuit15 24057 8.80 7.99 20898 6.61 6.37 15.12 33.22 25.64
circuit16 9720 8.50 3.45 9720 8.50 4.30 0.00 0.10 -19.69
circuit17 12636 6.38 4.76 11565 3.89 5.34 9.26 64.13 -10.87

Table 8.3: Comparison of SimE-G1 and SIS in area optimization for single output
circuits.

The results of multiple outputs circuits for area optimization is shown in Table 8.4

using SimE-G1 with AODPC. The improvement in area varied where the highest

improvements observed for multiplier circuits (mul2 and mul3) and cm82a circuit.

However, SimE-G1 failed to deliver better circuits in terms of area for b1 and this

due to the excessive utilization of subexpressions in b1 using SIS. Also, SimE-G1

uses multi-objective optimization, the result generated for b1 is better than SIS in

term of delay and power.

114

Normalized Results of AODPC SimE-G1 to SIS

0

0.2

0.4

0.6

0.8

1

1.2

1.4

cir
cu

it5

cir
cu

it6

cir
cu

it7

cir
cu

it8

cir
cu

it9

cir
cu

it1
0

cir
cu

it1
1

cir
cu

it1
2

cir
cu

it1
3

cir
cu

it1
4

cir
cu

it1
5

cir
cu

it1
6

cir
cu

it1
7

Area Delay Power

Figure 8.1: Results of SimE-G1 with AODPC for single output functions, normalized
to SIS.

SIS SimE-G1 % ImprovementCircuit
Area Delay Power Area Delay Power Area Delay Power

mul2 18225 6.59 5.56 12636 3.56 4.66 44.23 84.98 19.35
mul3 112752 43.39 37.75 74358 13.14 21.65 51.63 230.23 74.38
cm42a 40824 8.86 13.65 40824 8.86 13.64 0.00 0.05 0.06
cm82a 39609 19.54 14.88 28552 9.34 9.10 38.73 109.21 63.51
b1 10206 3.23 3.99 11206 2.91 2.78 -8.92 10.85 43.68
c17 9963 3.56 3.64 9963 3.55 3.64 0.00 0.27 0.06
con1 31590 8.64 11.21 30233 6.90 14.23 4.49 25.19 -21.21
majority 14823 6.28 5.41 13851 4.57 5.06 7.02 37.32 6.93

Table 8.4: Comparison of SimE-G1 and SIS in area optimization for multiple output
circuits.

115

The graphical view of SimE-G1 results, normalized to SIS is shown in Figure 8.2.

Normalized Results of AODPC SimE-G1 to SIS

0

0.2

0.4

0.6

0.8

1

1.2

1.4

mul2 mul3 cm42a cm82a b1 c17 con1 majority

Area Delay Power

Figure 8.2: Results of SimE-G1 with AODPC for multiple outputs functions, nor-
malized to SIS.

Table 8.5 shows the results for single output circuits for SimE-G2 with AODPC

compared to SIS area minimization. The table shows that SimE-G2 provides circuits

with less area as compared to SIS. The highest improvements were observed for the

circuits 5 and 6. Figure 8.3 shows the graphical view of the results from SimE-G2.

Note that these results are normalized to SIS.

The results of multiple outputs circuits for area optimization is shown in Table 8.6

for SimE-G2 with AODPC compared to SIS area. The improvement in area varied

where the highest improvements observed for multiplier circuits (mul2 and mul3)

and cm82a circuit. However, SimE-G2 failed to deliver better circuits in terms of

area for b1 due to the same reason mentioned above.

The graphical view of SimE-G2 results, normalized to SIS is shown in Figure 8.4.

116

SIS SimE-G2 % ImprovementCircuit
Area Delay Power Area Delay Power Area Delay Power

circuit5 20169 8.17 7.57 11664 5.57 5.08 72.92 46.74 49.05
circuit6 15066 5.09 5.66 10935 3.34 3.82 37.78 52.31 48.26
circuit7 14580 6.79 4.75 12393 5.05 4.38 17.65 34.51 8.44
circuit8 7776 5.23 2.74 7290 2.96 3.16 6.67 76.77 -13.43
circuit9 20412 7.46 7.12 14970 5.20 4.91 36.35 43.48 44.97
circuit10 9963 6.42 3.34 9963 6.42 3.33 0.00 0.01 0.27
circuit11 17496 7.08 6.01 16354 6.40 5.75 6.98 10.61 4.56
circuit12 52731 17.34 19.11 48655 16.55 18.94 8.38 4.77 0.92
circuit13 24543 11.02 9.72 18523 9.77 7.80 32.50 12.81 24.62
circuit14 31347 10.03 11.55 23814 6.80 9.20 31.63 47.41 25.46
circuit15 24057 8.80 7.99 20655 6.40 5.89 16.47 37.47 35.77
circuit16 9720 8.51 3.45 9720 8.50 4.30 0.00 0.10 -19.69
circuit17 12636 6.38 4.76 10692 4.43 4.39 18.18 44.22 8.44

Table 8.5: Comparison of SimE-G2 and SIS in area optimization for single output
circuits.

Normalized Results of AODPC SimE-G2 to SIS

0

0.2

0.4

0.6

0.8

1

1.2

1.4

cir
cu

it5

cir
cu

it6

cir
cu

it7

cir
cu

it8

cir
cu

it9

cir
cu

it1
0

cir
cu

it1
1

cir
cu

it1
2

cir
cu

it1
3

cir
cu

it1
4

cir
cu

it1
5

cir
cu

it1
6

cir
cu

it1
7

Area Delay Power

Figure 8.3: Results of SimE-G2 with AODPC for single output functions, normalized
to SIS.

117

SIS SimE-G2 % ImprovementCircuit
Area Delay Power Area Delay Power Area Delay Power

mul2 18225 6.59 5.56 12636 3.56 4.66 44.23 84.98 19.35
mul3 112752 43.39 37.75 74358 13.14 21.65 51.63 230.23 74.38
cm42a 40824 8.86 13.65 38456 9.44 12.60 6.16 -6.10 8.32
cm82a 39609 19.54 14.88 25029 11.84 9.24 58.25 64.98 61.12
b1 10206 3.23 3.99 11206 2.91 2.78 -8.92 10.85 43.68
c17 9963 3.56 3.64 9963 3.55 3.64 0.00 0.27 0.06
con1 31590 8.64 11.21 30233 6.90 14.23 4.49 25.19 -21.21
majority 14823 6.28 5.41 13851 4.57 5.06 7.02 37.32 6.93

Table 8.6: Comparison of SimE-G2 and SIS in area optimization for multiple output
circuits.

Normalized Results of AODPC SimE-G2 to SIS

0

0.2

0.4

0.6

0.8

1

1.2

1.4

mul2 mul3 cm42a cm82a b1 c17 con1 majority

Area Delay Power

Figure 8.4: Results of SimE-G2 with AODPC for multiple outputs functions, nor-
malized to SIS.

Delay Optimization:

For delay optimization, the results from SIS were obtained by using delay.script,

mapped for delay minimization. All SimE-G1, SimE-G2 and SIS used the same

gate library for the experiments. Only SimE-G2 with DOAPC will be compared to

118

SIS in order to get an insight of the results because results of SimE-G2 and SimE-G1

are similar with minor improvements in SimE-G2. Table 8.7 and Table 8.8 shows

the results for single output circuits and multiple output circuits respectively. The

graphical view of the normalized results was given in Figure 8.5 and Figure 8.6.

SIS SimE-G2 % ImprovementCircuit
Area Delay Power Area Delay Power Area Delay Power

circuit5 20169 8.17 7.57 11664 5.57 5.08 72.92 46.74 49.05
circuit6 15066 5.09 5.66 10935 3.34 3.82 37.78 52.31 48.26
circuit7 14580 6.79 4.75 12393 5.05 4.38 17.65 34.51 8.44
circuit8 7776 5.23 2.74 7290 2.96 3.16 6.67 76.77 -13.43
circuit9 20412 7.46 7.12 17454 6.65 7.01 16.95 12.19 1.54
circuit10 9963 6.42 3.34 9963 6.42 3.33 0.00 0.01 0.27
circuit11 17496 7.08 6.01 17496 7.07 6.01 0.00 0.13 0.04
circuit12 52731 17.34 19.11 48655 16.55 18.94 8.38 4.77 0.92
circuit13 24543 11.02 9.72 22599 8.85 8.88 8.60 24.55 9.45
circuit14 31347 10.03 11.55 24786 7.25 9.20 26.47 38.30 25.46
circuit15 24057 8.80 7.99 20898 6.61 6.37 15.12 33.22 25.64
circuit16 9720 8.51 3.45 9720 8.50 4.30 0.00 0.10 -19.69
circuit17 12636 6.38 4.76 11565 3.89 5.34 9.26 64.13 -10.87

Table 8.7: Comparison of SimE-G2 and SIS in delay optimization for single output
circuits.

SIS SimE-G2 % ImprovementCircuit
Area Delay Power Area Delay Power Area Delay Power

mul2 18225 6.59 5.56 12636 3.56 4.66 44.23 84.98 19.35
mul3 112752 43.39 37.75 74358 13.14 21.65 51.63 230.23 74.38
cm42a 40824 8.86 13.65 40824 8.86 13.64 0.00 0.05 0.06
cm82a 39609 19.54 14.88 28552 9.34 9.10 38.73 109.21 63.51
b1 10206 3.23 3.99 11206 2.91 2.78 -8.92 10.85 43.68
c17 9963 3.56 3.64 9963 3.55 3.64 0.00 0.27 0.06
con1 31590 8.64 11.21 30233 6.90 14.23 4.49 25.19 -21.21
majority 14823 6.28 5.41 13851 4.57 5.06 7.02 37.32 6.93

Table 8.8: Comparison of SimE-G2 and SIS in delay optimization for multiple output
circuits.

The tables show that the improvement in delay can reach up to 76% (circuit8)

119

Normalized Results of DOAPC SimE-G2 to SIS

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

cir
cu

it5

cir
cu

it6

cir
cu

it7

cir
cu

it8

cir
cu

it9

cir
cu

it1
0

cir
cu

it1
1

cir
cu

it1
2

cir
cu

it1
3

cir
cu

it1
4

cir
cu

it1
5

cir
cu

it1
6

cir
cu

it1
7

Area Delay Power

Figure 8.5: Results of SimE-G2 with DOAPC for single outputs functions, normal-
ized to SIS.

Normalized Results of DOAPC SimE-G2 to SIS

0

0.2

0.4

0.6

0.8

1

1.2

1.4

mul2 mul3 cm42a cm82a b1 c17 con1 majority

Area Delay Power

Figure 8.6: Results of SimE-G2 with DOAPC for multiple outputs functions, nor-
malized to SIS.

120

and 230% (mul3). However, area did not improve in certain cases and it get worst in

some cases like b1. In contrast with AODPC, the results of DOAPC is very positive

in term of delay. However, the experiments show that DOAPC is better compared

to SIS in delay but not in power and area. One of the reasons behind this is the

nature of SimE algorithm, since it is similar to the placement (allocation) problem.

8.3 Comparison with Other Techniques

Other techniques includes Tabu Search which have been proposed in Chapter 6, and,

Ant Colony Optimization Technique is compared to SimE algorithm. The results

obtained by SimE-G2 is compared to the result of the other techniques in terms of

area, power and delay.

8.3.1 Comparison with Tabu Search

Table 8.9 shows the results for all circuits obtained using TS considering APODC

compared to SimE-G2 considering APODC. The results show that for small size

circuit, both TS and SimE-G2 have equal value of area, delay and power. However,

when the size of the circuits grow bigger, SimE-G2 gives better results than TS.

Moreover, the decline in performance for TS is observed greatly in multiple outputs

circuits. Some multiple output circuits in the benchmark being used for the work

could not be generated using TS such as mul3, add2 and add3 and this is due to

121

the increasing size of the problem. Also, for larger multiple output circuits, there is

an increase usage of subexpression which TS can not handle.

TS SimE-G2 % ImprovementCircuit
Area Delay Power Area Delay Power Area Delay Power

circuit1 12879 3.90 4.97 12879 3.90 4.97 0.00 0.00 0.00
circuit2 13122 5.18 5.28 13122 5.18 5.28 0.00 0.00 0.00
circuit3 10752 3.78 3.70 10752 3.78 3.70 0.00 0.00 0.00
circuit4 1458 0.005 0.66 1458 0.005 0.66 0.00 0.00 0.00
circuit5 13870 3.90 5.80 13870 3.90 5.80 0.00 0.00 0.00
circuit6 10935 3.34 3.82 10935 3.34 3.82 0.00 0.00 0.00
circuit7 12393 5.05 4.38 12393 5.05 4.38 0.00 0.00 0.00
circuit8 7776 5.22 2.73 7776 5.22 2.73 0.00 0.00 0.00
circuit9 16255 5.48 5.40 14970 5.20 4.91 8.58 5.38 9.98
circuit10 13472 5.78 5.25 9963 6.42 3.33 35.22 9.97 57.66
circuit11 19367 6.89 8.92 16354 6.40 5.75 18.42 7.66 55.13
circuit12 110266 24.82 32.67 48655 16.55 18.94 126.63 49.97 72.49
circuit13 25680 10.24 9.87 18523 9.77 7.80 38.64 4.81 26.54
circuit14 43266 10.45 15.42 23814 6.80 9.20 81.68 53.63 67.54
circuit15 25446 8.53 7.34 20655 6.40 5.89 23.20 33.24 24.60
circuit16 15338 7.88 5.20 9720 8.50 3.45 57.80 7.29 50.72
circuit17 21376 7.32 9.24 10692 4.43 4.39 99.93 65.35 110.53
add2 42566 11.50 16.83 24300 11.48 9.96 75.17 0.17 68.94
mul2 120344 15.62 19.43 13650 4.67 4.34 781.64 234.48 347.70
b1 30989 14.99 15.44 11206 2.91 2.78 176.54 415.12 455.40
c17 12330 8.34 9.41 10923 5.23 3.42 12.88 59.46 175.15
majority 33478 10.66 11.19 13851 4.57 5.06 141.70 133.21 121.36
xor8 45876 11.46 14.85 20655 5.90 9.32 122.11 94.24 59.42
xor9 60912 18.24 22.46 23814 9.57 10.65 155.78 90.54 110.95

Table 8.9: Comparison of TS and SimE-G2 in area and power optimization with
delay constraint.

Comparing SimE-G2 to TS in terms of time is shown in Table 8.10. For smaller

circuits, TS has less time than SimE-G2. On the other hand, for larger circuits,

TS spends large amount of time in order to give a solution compared to SimE-G2.

The reason is that SimE-G2 allocation makes several mutation (compound moves)

122

Normalized Results of DOAPC SimE-G2 to SIS

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

cir
cu

it5

cir
cu

it6

cir
cu

it7

cir
cu

it8

cir
cu

it9

cir
cu

it1
0

cir
cu

it1
1

cir
cu

it1
2

cir
cu

it1
3

cir
cu

it1
4

cir
cu

it1
5

cir
cu

it1
6

cir
cu

it1
7

Area Delay Power

Figure 8.7: Results of SimE-G2 with APODC normalized to TS.

compared to TS which make single move (change) in every iteration to generate N

solution which might not effect the goodness of solution.

8.3.2 Comparison with ACO

In this section, SimE-G2 is compared to Ant Colony Optimization (ACO) in terms

of area optimization, delay optimization and power optimization.

Table 8.11 shows the comparison between ACO and SimE-G2 for Area Opti-

mization. The area produced by SimE-G2 is better than the area produced by ACO

in 10 out of the 15 cases. Only in 2 cases where ACO outperformed SimE-G2. Also,

Table 8.12 shows the results of ACO and SimE-G2 for Delay Optimization. The

delay produced by ACO is better than the delay produced by SimE-G2 in 9 out

123

Circuit TS(s) SimE-G2 (s) % Improvement
circuit1 1.20 3.12 61.54
circuit2 1.01 3.77 73.21
circuit3 2.55 4.57 44.20
circuit4 0.07 0.48 85.42
circuit5 1.32 6.51 79.72
circuit6 1.22 6.02 79.73
circuit7 2.05 7.44 72.45
circuit8 1.77 5.02 64.74
circuit9 1472.83 8.22 -17817.64
circuit10 5623.75 9.43 -59536.80
circuit11 6573.87 25.30 -25883.68
circuit12 15673.24 30.52 -51254.00
circuit13 10972.26 28.94 -37813.82
circuit14 18592.62 40.73 -45548.47
circuit15 22376.91 70.94 -31443.43
circuit16 16578.42 65.83 -25083.69
circuit17 25438.77 77.49 -32728.46
add2 9.55 24.84 61.55
mul2 20.68 25.72 19.60
b1 15.43 25.93 40.49
c17 12.50 42.11 70.32
majority 18.71 15.32 -22.13
xor8 16.52 220.43 92.51
xor9 22.91 231.00 90.08

Table 8.10: Comparison with TS in terms of execution time.

124

of the 15 cases. Only in 3 cases where SimE-G2 outperformed ACO in terms of

delay. This is due to the nature of ACO is optimizing the paths unlike SimE-G2 is

optimizing locations of cells. Moreover, Table 8.13 shows the comparison between

ACO and SimE-G2 for Power Optimization. The power produced by SimE-G2 is

better than the power produced by ACO in 11 out of the 15 cases. Only in 1 case

where ACO outperformed SimE-G2.

125
A

C
O

Sim
E

-G
2

%
Im

provem
ent

C
ircuit

A
rea

D
elay

P
ow

er
T

im
e

A
rea

D
elay

P
ow

er
T

im
e

A
rea

D
elay

P
ow

er
T

im
e

circuit1
14094

4.51
5.28

15.27
12879

3.90
4.97

2.52
-9.43

-15.70
-6.25

-505.82

circuit2
14823

5.89
6.57

15.17
13122

5.18
5.28

3.09
-12.96

-13.70
-24.38

-390.83

circuit10
12393

6.05
4.48

75.70
9963

6.42
3.33

10.52
-24.39

5.73
-34.62

-619.58

circuit14
24786

7.25
9.20

222.40
23814

6.80
9.20

74.81
-4.08

-6.59
0.00

-197.29

circuit16
12393

5.71
4.26

188.33
9720

8.50
4.30

55.91
-27.50

32.78
0.88

-236.85

circuit17
10692

4.43
4.39

96.10
10692

4.43
4.39

80.52
0.00

0.00
0.00

-19.35

add2
24300

11.48
9.96

133.14
24300

11.48
9.96

30.71
0.00

0.00
0.00

-333.53

add3
49086

21.96
18.474

2009.50
40265

26.73
14.83

140.43
-21.91

17.85
-24.57

-1330.96

m
ul2

12636
3.56

4.66
57.20

12636
3.56

4.66
51.62

0.00
0.00

0.00
-10.81

m
ul3

59292
15.03

17.541
625.24

74358
13.14

21.65
239.11

20.26
-14.40

18.96
-161.48

cm
42a

38880
7.45

13.25
1004.21

38456
9.44

12.60
388.43

-1.10
21.08

-5.17
-158.53

cm
82a

25272
10.45

9.96
168.83

25029
11.84

9.24
110.20

-0.97
11.78

-7.89
-53.21

b1
13851

1.53
5.91

89.53
11206

2.91
2.78

60.30
-23.60

47.46
-112.45

-48.48

con1
38151

6.698
13.741

398.23
30233

6.90
14.23

330.43
-26.19

2.93
3.44

-20.52

rd53
35235

15.32
14.00

180.61
38073

14.75
15.34

70.44
7.45

-3.88
8.75

-156.40

T
ab

le
8.11:

C
om

p
arison

of
A

C
O

an
d

S
im

E
-G

2
con

sid
erin

g
area

op
tim

ization
.

126
A

C
O

Sim
E

-G
2

%
Im

provem
ent

C
ircuit

A
rea

D
elay

P
ow

er
T

im
e

A
rea

D
elay

P
ow

er
T

im
e

A
rea

D
elay

P
ow

er
T

im
e

circuit1
14823

3.86
6.41

15.27
15360

4.20
5.80

2.52
3.50

8.14
-10.47

-505.82

circuit2
17739

3.70
7.16

15.17
16870

3.88
6.90

3.09
-5.15

4.54
-3.70

-390.83

circuit10
12393

5.32
4.48

75.70
13771

5.50
4.77

10.52
10.01

3.22
6.02

-619.58

circuit14
30132

9.75
10.63

222.40
24786

7.25
9.20

74.81
-21.57

-34.52
-15.47

-197.29

circuit16
13122

5.71
4.26

188.33
10340

7.60
5.22

55.91
-26.91

24.82
18.35

-236.85

circuit17
12150

4.43
4.72

96.10
12354

5.30
5.38

80.52
1.65

16.47
12.23

-19.35

add2
31347

8.96
11.46

133.14
35270

9.37
12.66

30.71
11.12

4.41
9.45

-333.53

add3
53703

12.98
21.48

2009.50
53703

12.98
21.48

140.43
0.00

0.00
0.00

-1330.96

m
ul2

18225
2.96

5.99
57.20

18225
2.96

5.99
51.62

0.00
0.00

0.00
-10.81

m
ul3

74358
13.14

21.65
625.24

74358
13.14

21.65
239.11

0.00
0.00

0.00
-161.48

cm
42a

91854
7.07

32.89
1004.21

42768
5.19

15.02
388.43

-114.77
-36.37

-118.97
-158.53

cm
82a

48843
7.75

17.09
168.83

55872
14.25

18.56
110.20

12.58
45.61

7.95
-53.21

b1
14580

1.49
6.24

89.53
12745

2.08
7.05

60.30
-14.40

28.61
11.49

-48.48

con1
38394

6.24
12.65

398.23
30233

6.90
14.23

330.43
-26.99

9.55
11.08

-20.52

rd53
53946

15.45
19.00

180.61
40201

13.10
15.98

70.44
-34.19

-17.90
-18.88

-156.40

T
ab

le
8.12:

C
om

p
arison

of
A

C
O

an
d

S
im

E
-G

2
con

sid
erin

g
d
elay

op
tim

ization
.

127
A

C
O

Sim
E

-G
2

%
Im

provem
ent

C
ircuit

A
rea

D
elay

P
ow

er
T

im
e

A
rea

D
elay

P
ow

er
T

im
e

A
rea

D
elay

P
ow

er
T

im
e

circuit1
15552

4.88
5.28

15.27
12879

3.90
4.97

2.52
-20.75

-25.21
-6.25

-505.82

circuit2
15066

5.94
6.57

15.17
13122

5.18
5.28

3.09
-14.81

-14.51
-24.38

-390.83

circuit10
11178

5.42
4.06

75.70
9963

6.42
3.33

10.52
-12.20

15.58
-21.98

-619.58

circuit14
23814

6.80
9.20

222.40
23814

6.80
9.20

74.81
0.00

0.00
0.00

-197.29

circuit16
13122

5.71
4.19

188.33
9720

8.50
3.45

55.91
-35.00

32.78
-21.57

-236.85

circuit17
10692

4.43
4.39

96.10
10692

4.43
4.39

80.52
0.00

0.00
0.00

-19.35

add2
25029

13.30
9.57

133.14
24317

14.73
9.25

30.71
-2.93

9.69
-3.44

-333.53

add3
54675

14.36
20.55

2009.50
40265

26.73
14.83

140.43
-35.79

46.29
-38.58

-1330.96

m
ul2

14823
4.44

4.66
57.20

13650
4.67

4.34
51.62

-8.59
5.03

-7.37
-10.81

m
ul3

73386
16.331

19.11
625.24

74358
13.14

21.65
239.11

1.31
-24.30

11.73
-161.48

cm
42a

46170
6.39

15.27
1004.21

38456
9.44

12.60
388.43

-20.06
32.25

-21.17
-158.53

cm
82a

25029
11.84

9.24
168.83

25029
11.84

9.24
110.20

0.00
0.00

0.00
-53.21

b1
14580

3.05
5.37

89.53
13220

4.86
3.04

60.30
-10.29

37.35
-76.55

-48.48

con1
42282

9.79
13.97

398.23
40632

11.78
10.04

330.43
-4.06

16.92
-39.11

-20.52

rd53
42525

14.84
16.19

180.61
40231

15.33
13.89

70.44
-5.70

3.22
-16.56

-156.40

T
ab

le
8.13:

C
om

p
arison

of
A

C
O

an
d

S
im

E
-G

2
con

sid
erin

g
p
ow

er
op

tim
ization

.

128

8.4 Concluding Remarks

In this chapter, the proposed solution is compared to the existing techniques. It

proved to be better in terms of quality of solution and execution time in contrast with

the existing ELD and ACO techniques. It was also compared to existing conventional

tools. It was observed that the area optimization applied by the solution approach

performs better in most of the cases.

Chapter 9

Conclusion and Future Directions

Design of digital circuits requires knowledge of large collections of domain-specific

rules. The process of implementing a digital circuit in hardware involves transform-

ing the original logical specification into a form suitable for the target technology,

optimizing the representation with respect to a number of user defined constraints

(i.e., timing, fan-in/out, power, etc.), and finally carrying out technology mapping

onto the target technology [28].

Circuit designers use logic synthesis tools to create digital systems of arbitrary

complexity. Logic synthesis tools can be classified into two types according to the

algorithms used as conventional logic synthesis tools and evolutionary logic synthesis

tools.

In conventional logic synthesis, given a precis specification of a circuit in the

form of truth table or boolean expression, a circuit is synthesized for the target

129

130

technology using deterministic algorithms. Therefore, the solutions search space is

limited to specific representations including two-level, multi-level or Reed Muller.

In evolutionary logic synthesis, a non-deterministic algorithms are used. Evo-

lutionary techniques explore a larger search space compared to the conventional

one. The number of possible solutions is huge and the algorithm will search for an

optimum one according to the objectives considered such as power, area and delay.

9.1 Conclusion

In this thesis, Simulated Evolution (SimE) algorithm is used for evolutionary logic

design. Two goodness measures are proposed to guide the algorithm in the search

space. The performance of the proposed algorithms has been compared to both

existing evolutionary techniques and conventional techniques. The proposed algo-

rithm successfully addressed the issue of circuit design targeting area, power and

delay optimization. The proposed implementation has outperformed the existing

evolutionary techniques in terms of quality of solution and time requirements. Also,

it has outperformed the conventional techniques in quality of solution in most of

the cases. More work need to be done in order the improve the time requirements

of evolutionary logic synthesis compared to conventional techniques. Conventional

techniques have outperformed evolutionary techniques in term of execution time and

problem size.

131

9.2 Future Directions

There are more work can be done in order to improve the performance of evolution-

ary algorithms in the design of logic circuits. Some possible improvements including

the investigation of the following:

1. Using some of the conventional logic techniques such as kernel extraction.

2. Incorporation the ability of utilizing sub-function by proposing new goodness

measures

3. Using hybrid algorithms

4. Using other evolutionary algorithms

5. Considering paralyzation of algorithms.

6. Incorporate the cost of power, area and delay in the goodness function.

Appendix A

File Format and Circuit Used as

Test Cases

The following are the format of the required input files and the list of circuits used

as test cases during the experiments.

A.1 Library File Format

The gates’ parameters are obtained from CMOS MOSIS 0.25 m library. These

includes the following information:

1. The number of transistors (TRCOUNT)

2. The size of the gate (AREA)

3. The switching delay of the gate (BDELAY)

4. The input capacitance (CIN)

132

133

5. The output capacitance (COUT)

6. The load factor (LF)

Except for inverters and wires, there is more than one value for input capacitance.

In this regards, the higher value is considered. The same applied for the load factor.

The following shows the format of the library files used.

<GATE NAME> <TRCOUNT> <AREA> <BDELAY> <CIN> <COUT> <LF>

Using the above format, the library file considered in this thesis is given next.

WIRE 0 0 0 0 0 0

NOT 2 1215 3 2.661 0.005 516

AND 6 2187 9 2.661 0.005 553

OR 6 1944 11 2.661 0.004 567

XOR 10 3159 12 5.321 0.006 688

NAND 4 1458 5 2.661 0.007 444

NOR 4 1458 7 2.661 0.005 694

XNOR 10 2916 12 5.321 0.004 551

A.2 Input File Format

The proposed algorithms use PLA files as input. The parameters required by the

proposed algorithms are then generated automatically. However, if the circuits’

specification is not in the form of PLA files, the input file required by the algorithm

must contain the following information.

134

Field Description

maxrun The number of maximum runs to be performed by the algorithm

maxiter The number of maximum iterations for a single run

objtype The optimization objective of the current action.

(0 = gatecount, 1 = area, 2 = delay, and 3 = power)

ifdweight Static (0) or dynamic (1) weight is employed

weight The value Wf at the beginning of the iteration

ifphase Positive (0) or negative (1) phase is used.

In positive mode, all literals are uncomplemented. In negative mode,

some literals can be in the complemented forms, depending on its

functional fitness. (not used, default = 0)

dataset The number of input dataset. Useful for generating truth table for

arithmetic circuits such as adders, multipliers. For example, a 2-bit

adder has dataset value equal to 2. (not used, default value = 1)

numvar Number of inputs

numout Number of outputs

invin Set to ‘1’ if complemented literals are used in addition

to uncomplemented ones. (default = 0)

row The number of rows at the beginning of the iteration

level The number of columns at the beginning of the iteration

iflocal Set to 1 if local search is employed (not used)

gatemode The type of library used. Values are within [0-7]

gcmax Set the maximum number of gates allowed for a circuit (not used)

gcmin Set the minimum number of gates allowed for a circuit (not used)

numant Set the number of ants used

135

Field Description

maxgen Set the maximum number of generations of ant

gamma Set the constant for pheromone update calculation

rho Set the pheromone evaporation rate

range tau Set the maximum range of pheromone values allowed

ttf[0] The string of truth table of the first output of the circuit

ttf[1] The string of truth table of the second output of the circuit (if available)

ttf[k] The string of truth table of the k+1 output of the circuit (if available)

A.3 Randomly Generated Circuits

There are 20 randomly generated circuits used in the experiments. These circuits are

listed below.

circuit input(s) output(s) circuit input(s) output(s)
circuit1.pla 4 1 circuit11.pla 5 1
circuit2.pla 4 1 circuit12.pla 6 1
circuit3.pla 4 1 circuit13.pla 5 1
circuit4.pla 2 1 circuit14.pla 6 1
circuit5.pla 4 1 circuit15.pla 6 1
circuit6.pla 4 1 circuit16.pla 6 1
circuit7.pla 4 1 circuit17.pla 5 1
circuit8.pla 4 1 circuit18.pla 6 1
circuit9.pla 6 1 circuit19.pla 6 1
circuit10.pla 6 1 circuit20.pla 6 1

A.4 Benchmark Circuits

There are 14 benchmark circuits used in the experiments. These circuits are listed below.

136

circuit input output circuit input output

majority.pla 5 1 b1.pla 3 4

xor8.pla 8 1 C17.pla 5 2

xor9.pla 9 1 cm138a.pla 6 8

add2.pla 5 3 cm42a.pla 4 10

add3.pla 7 4 cm82a.pla 5 3

mul2.pla 4 4 con1.pla 7 2

mul3.pla 6 6 rd53.pla 5 3

Bibliography

[1] Standard Cell Library for MOSIS CMOS,

http://www.mosis.org/Technical/Designsupport/std-cell-library-scmos.html.

[2] S. B. Akers. Binary decision diagrams. IEEE Trans. on Computers, 27:509–516,

1978.

[3] D. Bostick et al. The Boulder Optimal Logic Design System. Proceeding of the

International Conference on CAD, pages 62–65, Nov. 1987.

[4] R. Brayton, G. D. Hachtel, C. T. McMullen, and A.L. Sangiovanni-Vincentelli.

Logic Minimisation Algorithms for VLSI Synthesis. Kluwer Academic Pub-

lisher, 1984.

[5] R. Brayton, G. D. Hachtel, and A. L. Sangiovanni-Vincentelli. Multilevel Logic

Synthesis. Proceeding of the IEEE, 78:264–300, Feb. 1990.

[6] R. Brayton, R. Rudell, A. L. Sangiovanni-Vincentelli, and A. Wang. MIS: A

Muliple-Level Logic Optimisation System. IEEE Trans. on Computer-Aided

137

138

Design, CAD-6:1062–1081, Nov. 1987.

[7] C. A. Coello, A. D. Christiansen, and A. H. Aguirre. Use of Evolutionary

Techniques to Automate the Design of Combinational Circuits. International

Journal of Smart Engineering System Design, Elsevier Science, 2(4):299–314,

June 2000.

[8] C. A. Coello, A. D. Christiansen, and A. H. Aguirre. Towards Automated

Evolutionary Design of Combinational Circuits. Computers and Electrical En-

gineering, Pergamon Press, 27(1):1–28, Jan. 2001.

[9] Coello Coello, Carlos A., and Hernandez Luna, Erika and Hernandez Aguirre,

Arturo,. Use of Particle Swarm Optimization to Design Combinational Logic

Circuits. Evolvable Systems: From Biology to Hardware. 5th International Con-

ference, ICES 2003, 2606:398–409, Mar 2003.

[10] Hugo de Garis. Evolvable Hardware: Genetic Programming of a Darwin Ma-

chine. Proceedings of the International Conference in Innsbruck, Austria, pages

441–449, Springer-Verlag, 1993.

[11] D. Debnath and T. Sasao. An Optimization of AND-EXOR Three-Level Net-

works. Proceeding of Asia and South Pacific Design Automation Conference,

pages 545–550, Jan. 1997.

139

[12] Srinivas Devadas and Sharad Malik. A Survey of Optimization Techniques

Targeting Low Power VLSI Circuits. 32nd ACM/IEEE Design Automation

Conference, pages 242–247, 1995.

[13] Chih-Shun Ding, Chi-Ying Tsui, and Masoud Pedram. Gate Level Power Esti-

mation Using Tagged Probabilistic Simulation. IEEE Trans. Computer-Aided

of Integrated Circuit and Systems, 17(11):1099 – 1107, Nov. 1998.

[14] Moshe Sipper et. al. A Phylogenetic, Ontogenetic, and Epigenetic View of

Bio-Inspired Hardware Systems. IEEE Trans. on Evolutionary Computation,

1(1):83–97, 1997.

[15] T. Fogarty, J. F. Miller, and P. Thomson. Evolving Digital Logic Circuits on

Xilinx 6000 Family FPGAs. The 2nd Online Conference on Soft Computing in

Engineering Design and Manufacturing, pages 299–305, Springer-Verlag, Lon-

don, 1998.

[16] D. Green. Modern Logic Design. Addison-Wesley, Reading, MA, 1986.

[17] Inman Harvey and Adrian Thompson. Through the Labyrinth Evolution Finds

a Way: A Silicon Ridge. Proceedings of Second International Conference on

Evolvable Systems, pages 406–422, 1996.

[18] T. Higuchi, M. Iwata, I. Kajitani, M. Murakawa, S. Yoshizawa, and T. Furuya.

Hardware Evolution at Gate and Functional Level. Proceeding of the Interna-

140

tional Conference on Biologically Inspired Autonomous Systems: Computation,

Cognition and Action, March Durham, USA, 1996.

[19] T. Higuchi, T. Niwa, T. Tanaka, H. Iba, H. de Garis, and T. Furuya. Evolving

Hardware with Genetic Learning: A First Step Towards Building a Darwin

Machine. Proceeding of the 2nd Int. Conf. on The Simulation of Adaptive

Behavior (SAB92), MIT Press, 1993.

[20] B. Hounsell and T. Arslan. A Novel Genetic Algorithm for the Automated

Design of Performance Driven Digital Circuits. CEC-2000, pages 601–608,

2000.

[21] R. M. Kling and P. Banerjee. ESP: A New Standard Cell Placement Package

using Simulated Evolution. Proceeding of 24th Design Automation Conference,

pages 60–66, 1987.

[22] J. R. Koza, F. H. Bennett, D. Andre, and M. A. Keane. Genetic Program-

ming III: Darwinian Invention and Problem Solving. Morgan Kaufmann, San

Fransisco, CA, 1999.

[23] J. R. Koza, F. H. Bennett, D. Andre, and M. A. Keane. Automated Design

of Both the Topology and Sizing of Analogue Electrical Circuits Using Genetic

Programming. Artificial Intelligent in Design, pages 151–170, Kluwer Academic

Publishers, 1996.

141

[24] John R. Koza. Genetic Programming: On the Programming of Computers by

Means of Natural Selection. MIT Press, 1992.

[25] C. Y. Lee. Representation of Switching Circuit by Binary Decision Programs.

Bell Systems Technical Journal, 38:985–999, 1959.

[26] Giovanni De Micheli. Synthesis and Optimization of Digital Circuits. McGraw-

Hill, New York, 1994.

[27] J. F. Miller, T. Fogarty, and P Thomson. Designing Electronic Circuits Using

Evolutionary Algorithms. Arithmetic Circuits: A Case Study. Genetic Al-

gorithms and Evolution Strategy in Engineering and Computer Science, John

Wiley and Sons, Chichester, pages 105–131, 1998.

[28] J. F. Miller, D. Job, and Vassilev V. K. Principles in the Evolutionary Design

of Digital Circuits - Part I. Journal of Genetic Programming and Evolvable

Machines, 1(1):8–35, 2000.

[29] J. F. Miller and P. Thomson. Discovering Novel Digital Circuits Using Evo-

lutionary Techniques. IEE Colloquium on Evolvable Systems, Savoy Place,

London, March 1998.

[30] J. F. Miller and Peter Thomson. A Developmental Method for Growing Graphs

and Circuits. GECCO’03, 1(1):8–35, 2003.

142

[31] Massoud Pedram. Power Minimization in IC Design: Principles and Applica-

tions. ACM Trans. Design Automation of Electronic Systems, 1(1):3 – 56, Jan.

1996.

[32] M. A. Pacheco R. S. Zebulum and Marley Vellasco. Evolvable systems in hard-

ware design: taxonomy, survey and applications. Evolvable System: From Bi-

ology to Hardware. Proceeding of the First International Conference, ICES 96

Tsukba, Japan, Lecture Notes in Computer Science, 1259:344–358, Oct. 1997.

[33] R. S. Zebulum and M. A. Pacheco and Maria Vellasco. Evolutionary Electronics:

Automatic Design of Electronic Circuits and Systems by Genetic Algorithms.

CRC Press, 2002.

[34] Sadiq M. Sait and H. Youssef. Iterative Computer Algorithms with Applica-

tions in Engineering: Solving Combinatorial Optimization Problems. IEEE

Computer Society Press, 1999.

[35] T. Sasao. Logic Synthesis and Optimisation. Kluwer Academic Publisher, 1993.

[36] E. M. Sentovic, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha,

H. Savoj, P. R. Stephan, R. K. Brayton, and A. L. Sangiovanni-Vincentelli.

SIS: A System for Sequential Circuit Synthesis. Technical Report UCB/ERL

M92/41, University of California, Berkeley, May 1992.

143

[37] Adrian Thompson. Silicon Evolution. Proceedings of the First Annual Confer-

ence on Genetic Programming, pages 444–452, MIT Press, 1996.

[38] Adrian Thompson, Paul Layzell, and Ricardo Salem Zebulum. Exploration in

Design Space: Unconventional Electronics Design through Artificial Evolution.

IEEE Trans. On Evolutionary Computation, 3(3), 2000.

[39] P. Thomson and J. P. Miller. Symbolic Method for Simplifying AND-EXOR

Representation of Boolean Functions Using a Binary Decision Technique and

a Genetic Algorithm. IEE Proceedings in Computers and Digital Techniques,

143:151–155, 1996.

[40] V. K. Vassilev, D. Job, and J. F. Miller. Towards the Automatic Design of

More Efficient Digital Circuits. Proceedings of the 2nd NASA/DOD Workshop

on Evolvable Hardware, pages 151–160, IEEE Computer Society, 2000.

[41] V. K. Vassilev and J. F. Miller. Scalability Problems of Digital Circuit Evolu-

tion: Evolvability and Efficient Designs. Proceedings of the 2nd NASA/DOD

Workshop on Evolvable Hardware, pages 55–64, IEEE Computer Society, 2000.

[42] R. Yager. Multiple objective decision-making using fuzzy sets. International

Journal of Man-Machine Studies, pages 9:375–382, 1977.

[43] R. Yager. Second order structures in multi-criteria decision making. Interna-

tional Journal of Man-Machine Studies, pages 36:553–570, 1992.

144

[44] Ronald R. Yager. On ordered weighted averaging aggregation operators in

multicriteria decision making. IEEE Transaction on Systems, MAN, and Cy-

bernetics, 18(1):183–190, Jan 1988.

[45] Xin Yao and Tetsuya Higuchi. Promises and challenges of evolvable hardware.

IEEE Trans. on Systems, Man, and Cybernetics - Part C: Applications and

Reviews, 29(1):87–97, 1999.

[46] L. A. Zadeh. Outline of a new approach to the analysis of complex systems and

decision processes. IEEE Transaction Systems Man. Cybern, SMC-3(1):28–44,

1973.

[47] L. A. Zadeh. The concept of linguistic variable and its application to approxi-

mate reasoning. Information Science, 8:199–249, 1975.

[48] R. S. Zebulum, M. A. Pacheco, and Marley Vellasco. Analogue Circuits Evo-

lution in Extrinsic and Intrinsic Modes. Proceedings of the 2nd International

Conference on Evolvable System: From Biology to Hardware. Lecture Notes on

Computer Science, 1478:154–165, 1998.

[49] H. J. Zimmerman. Fuzzy Set Theory and Its Applications. Kluwer Academic

Publishers, 3rd edition, 1996.

Vita

• Uthman Salem Al-Saiari

• Born in Jeddah, Saudi Arabia on July 10, 1975.

• Received B.S. degree in Computer Engineering from KFUPM, Saudi Arabia

in January 1999.

• Completed M.S. degree requirements at KFUPM, Saudi Arabia in November

2003.

