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High-level synthesis systems start with an abstract behavioral
specification of a digital system and find a register-transfer level
structure that realizes the given behavior. In this paper we examine
the high-level synthesis task, showing how it can be decomposed
into a number of distinct but not independent subtasks. Then we
present the techniques that have been developed for solving those
subtasks. Finally, we discuss those areas related to high-level syn-
thesis that are still open problems.

I, INTRODUCTION
A. What is High-Level Synthesis?

The synthesis task is to take a specification of the behav-
ior required of a system and a set of constraints and goals
to be satisfied, and to find a structure that implements the
behavior while satisfying the goals and constraints. By
behavior we mean the way the system or its components
interact with their environment, i.e., the mapping from
inputs to outputs. Structure refers to the set of intercon-
nected components that make up the system, typically
described by a netlist. Ultimately, the structure must be
mapped into a physical design, that is, a specification of
how the system is actually to be built. Behavior, structure,
and physical design are usually distinguished as the three
domains in which hardware can be described.

Justas designs can be described at various levels of detail,
so synthesis can take place at various levels of abstraction.
The hierarchy of levels generally recognized as applicable
to digital designs was first described by Bell and Newell [1],
whoapplied it specifically to computer systems. An updated
view of their hierarchy and the way it appears across the
differentdomainsis shownin Table 1. Similar schemes have
appeared elsewhere in the literature [2]-[4].

At the top of their hierarchy is the so-called PMS level,
where computer systems are described as interconnected
sets of Processors, Memories, and Switches. Since this level
is concerned with the overall system structure and infor-
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Table 1. The Design Hierarchy

DOMAINS
Level Behavior Structure Physical
PMS (System) Communicating Processors Cabinets
Processes Memories Cables
Switches
instruction Set  Input-Output  Memory, Ports Board

(Algorithm) Processors Floorplan

Register-Transfer Register ALUs, Regs ICs

Transfers Muxes, Bus Macro Cells
Logic Logic Gates Standard Cell

Equations Flip flops Layout
Circuit Network Transistors, Transistor

Equations Connections  Layout

mation flow, we might also call it the system level. The next
level is what Bell and Newell refer to as the Instruction Set
level. At this level the focus is on the computations per-
formed by an individual processor, the way it maps
sequences of inputs to sequences of outputs. Since the term
instruction set implies a computer-like architecture, while
we are interested in a more general class of digital systems,
we will refer to this as the algorithmic level.

Below the algorithmic level is the register-transfer (RT)
level. There the system is viewed as a set of interconnected
storage elements and functional blocks. The behavior is
described as a series of data transfers and transformations
between storage elements. The difference between the reg-
ister-transfer and the algorithmic level is the level of detail
with which the internal structure is specified. At the algo-
rithmic level, the variables in the description do not nec-
essarily correspond to the internal registers of the design,
nordo assignment statements correspond to actual register
transfers; only the input/output behavior is considered
fixed.

Next comes the Jogic level, where the system is described
as a network of gates and flip-flops and the behavior is spec-
ified by logic equations. Below that is the circuitlevel, which
views the system in terms of the individual transistors of
which it is composed. Finally, one can go down one level
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further to the device level, where the focusis on the internal
structure and behavior of the transistors.

High-level synthesis, as we use the term, means going
from an algorithmic level specification of the behavior of
a digital system to a register-transfer level structure that
implements that behavior. The input specification gives the
required mappings from sequences of inputs to sequences
of outputs, where those inputs and outputs may commu-
nicate with the outside environment or with another sys-
tem-level component. The specification should constrain
the internal structure of the system to be designed as little
as possible. From the input specification, the synthesis sys-
tem produces a description of a datapath, that is, a network
of registers, functional units, multiplexers, and buses. If the
control is not integrated into the data path, and it usually
is not, the synthesis system must also produce the speci-
fication of the control part. In synchronous systems, the
only kind we consider in this paper, control can be pro-
vided by one or more finite state machines, specified in
terms of microcode, PLA profiles or random logic.

Usually there are many different structures that can be
used to realize a given behavior. One of the tasks of syn-
thesis is to find the structure that best meets the con-
straints, such as limitations on cycle time, area, or power,
while minimizing other costs. For example, the goal might
be to minimize area while achieving a certain required pro-
cessing rate.

High-level synthesis as we define it must be distinguished
from other types of synthesis that operate at different levels
of the design hierarchy. For example, high-level synthesis
is not to be confused with register-transfer level synthesis,
where the registers and functional units in the design and
the data transfer between them are already largely, or even
completely, specified. Much less is it equivalent to logic
synthesis, where the system is specified in terms of logic
equations, which must be optimized and mapped into a
given technology. Register-transfer and/or logic synthesis
might in fact be used after high-level synthesis.

Atthe other end of the hierarchy, thereis some promising
work under way on system level synthesis, sometimes called
architectural synthesis. One example of a system-level issue
is partitioning an algorithm into multiple processes that can
run in parallel or be pipelined. This work, however, is still
in its preliminary stages, and we will not focus on it here.

B. Why Study High-level Synthesis?

In recent years there has been atrend toward automating
synthesis at higher and higher levels of the design hier-
archy. Logic synthesis is gaining acceptance in industry, and
there has been considerable interest shown in register-
transfer level synthesis. There are a number of reasons for
this:

+ Shorter design cycle. If more of the design process is
automated, a company can complete a design faster,
and thus have a better chance of hitting the market
window for that design. Furthermore, since much of
the cost of the chip is in design development, auto-
mating more of that process can lower the cost sig-
nificantly.

« Fewer errors. If the synthesis process can be verified
to be correct—by no means a trivial task—there is a
greater assurance that the final design will correspond

to the initial specification. This means fewer errors and
less debugging time for new chips.

« The ability to search the design space. A good synthesis
system can produce several designs from the same
specification in a reasonable amount of time. This
allows the developer to explore different tradeoffs
between cost, speed, power etc., or to take an existing
design and produce a functionally equivalent one that
is faster or less expensive. Even if the design is ulti-
mately produced manually, automatically synthesized
designs can suggest tradeoffs to the designer.

« Documenting the design process. An automated system
can keep track of what design decisions were made
and why, and what the effect of those decisions was.

- Availability of IC technology to more people. As more
design expertise is moved into the synthesis system,
it becomes easier for one who is not an expert to pro-
duce a chip that meets a given set of specifications.

We expect this trend toward higher levels of synthesis to
continue. Already there are a number of research groups
working on high-level synthesis, and a great deal of prog-
ress has been made in finding good techniques for opti-
mization and for exploring design tradeoffs. These tech-
niques are very important because decisions made at the
algorithmic level tend to have a much greaterimpacton the
design than those at lower levels.

C. History

The roots of high-level synthesis can be traced back to
the 1960s. For example, the ALERT system developed at the
IBM T. J. Watson Research Center took a register-transfer
level behavioral description, written in APL, and produced
a logic level implementation. This early system already
addressed aspects of scheduling (called sequence analysis
in ALERT) and storage allocation (called automatic identi-
fication of Flip-flops) [5]. A complete IBM 1800 computer
was synthesized automatically, requiring, however, more
than twice as many components as used in the manual
design [6]. Another example was the synthesis system of
Duley and Dietmeyer, which translated register-transfer
descriptions written in DDL into logic {7].

During the 1970s design automation developed explo-
sively, but most of the effort went into automating tasks at
lower levels of the design hierarchy, such as layout. High-
level synthesis was still considered an academic exercise,
and research was restricted mainly to universities. Never-
theless, great progress was made in the development of
algorithms and techniques. In the early seventies at Car-
negie-Mellon University, the Expl system was the first to
explore the space of possible designs by performing series-
parallel tradeoffs. It took as input a description of the reg-
ister-transfer level behavior of the system to be designed,
specified in the ISPL hardware description language, and
built a register-transfer level structure for it. Expt used alim-
ited set of predesigned register-transfer modules for the
implementation, which simplified the synthesis process
enormously.

In the late seventies, researchers at Carnegie-Mellon pro-
duced a top-down design system, the CMUDA system,
which input a design specification written in ISPS (a more
general and powerful successor to ISPL) and output either
a CMOS standard cell or TTL implementation [8]. This sys-
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tem addressed the entire range of high-level synthesis tasks
listed in Section Il. The CMU group experimented with a
wide variety of algorithms for data path synthesis, ranging
from brute-force and heuristic methods to more sophis-
ticated polynomial-time algorithms, expert systems, and
mathematical programming.

In Europe, the first effort known to the authors was MIM-
OLA from the University of Kiel, which started as early as
1976 [9]. MIMOLA synthesized a CPU and microcode from
an input specification, iterating under user control until
constraints were met. The system was ported to Honeywell
in the late seventies, where it is now being used as part of
a VHDL synthesis system [10]. The CADDY/DSL system,
another early synthesis effort in Europe, has been under
development at Karlsruhe since 1979 [11].

In the last decade, work on high-level synthesis has pro-
liferated extensively, and is also starting to spread from the
academic community to industry. High-level synthesis sys-
tems are now producing manufacturable chip designs,
although the quality of these designs still seems inferior to
manual ones. Research has also expanded to encompass a
more diverse set of design styles and applications, includ-
ing signal processing [12], pipelined processors [13], and
interfaces [14], [15). Some of the more prominent ongoing
projects are those at Carnegie-Mellon University [16]-[{18],
at the University of Southern California[2], [19], at Carleton
University [20], at the University of California at [rvine [21],
at Karlsruhe University [22], at the University of Kiel {23], at
AT&T Bell Laboratories [24], [25], and at the IBM T. J. Watson
Research Center [26)].

There is now a sizable body of knowledge on high-level
synthesis, although for the most part it has not yet been
systematized. In the remainder of this paper, we will
describe what the problems are in high-fevel synthesis, and
what techniques have been developed to solve them. Since
this is a tutorial and not a survey, we certainly will not be
abletodojusticetoall thework that has gone on in the field.
The main objective is to help groups that want to get
involved in high-level synthesis to establish a firm base from
which to conduct their own explorations. To that end, Sec-
tion Il will describe the various tasks involved in developing
a register-transfer level structure from an algorithmic level
specification. Section Il will describe the basic techniques
that have been developed for performing those tasks.
Finally, Section IV will look at those issues that have not
been adequately addressed and thus provide promising
areas for future research.

II. THE SYNTHESIS TAsK
A. Task Definition

The system to be designed is usually represented at the
algorithmic level by a programming language such as Pas-
cal [27] or Ada [14], or by a hardware description language
thatis similar to a programming language, such as ISPS [28],
DSL [22], MIMOLA [29] or behavioral VHDL [30]. Most high-
level synthesis approaches have used procedural lan-
guages. That is, they describe data manipulation in terms
of assignments to variables that keep their values until they
are overwritten. Statements are organized into larger blocks
using standard control constructs for sequential execution,
conditional execution, and iteration. Modularity is achieved
by the use of hierarchically organized subprograms (pro-
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cedures). There have also been experiments with various
types of nonprocedural hardware description languages,
including applicative, LISP-like languages [31], and ““logic”’
languages such as Prolog [32]. The input specification can
describe a simple algorithm such as a nonrecursive digital
filter,amore complex algorithm with conditional branches,
and loops like a floating-point arithmetic processor, or the
instruction set of a large CPU, such as the IBM 370.

A realistic specification language should contain a mech-
anism to specify hierarchy, usually procedures, and a way
of specifying concurrent tasks. These two decompositions
should be regarded only as a specification aid, however,
since the logical decomposition that is helpful for under-
standing the behavior is seldom the same as a good decom-
position for the hardware. Therefore the synthesis system
should partition the design into procedures and concur-
rent tasks according to hardware design criteria. This early
planning and partitioning is one of the most difficult prob-
lems in high-level synthesis, one that must be considered
at the system level. One problem which is particularly dif-
ficult is the decomposition of an algorithm into concurrent
modules. For example, automatic synthesis of an asyn-
chronous pipeline from a sequential processor description,
including all the control necessary for pipeline stalls, the
bypassing buses, etc., is beyond today’s capabilities. Such
an automatic pipeline synthesis would require not only the
processor specification but also extensive instruction traces
in order to be able to evaluate the pipeline. In practice,
therefore, the specified decomposition into concurrent
processes is used as given. Most current synthesis systems
are also not capable of changing the hierarchy implicit in
the specification. They simply synthesize each procedure
separately or flatten the hierarchy.

The first step in high-level synthesis is usually the com-
pilation of the formal language into an internal represen-
tation. Most approaches use graph-based representations
that contain both the data flow and the control flow implied
by the specification, although parse trees are also used [33].

To illustrate this and subsequent steps in the synthesis
process, we present a simple example. It should be noted,
incidentally, that the example has been kept simple for the
purposes of illustration and is not representative of the large
and complex input descriptions that many synthesis sys-
tems can handle. The example, shown in Fig. 1, is part of
a program that computes the square-root of X using New-
ton’s method. The number of iterations necessary in prac-
tice is very small. In the example, 4 iterations were chosen.
A first degree minimax polynomial approximation for the
interval [+, 1] gives the initial value.

The graphical representation of the algorithm is also
shown in the figure, with the data flow and control flow
graphs shown separately for intelligibility. The control
graph is derived directly from the explicit order given in the
program and from the compiler’s choice of how to parse
the arithmetic expressions. The data flow graph shows the
essential ordering of operations implied by the data depen-
dencies in the specification. For example, in Fig. 1, the addi-
tion at the top of the diagram depends for its input on data
produced by the multiplication. This implies that the mul-
tiplication must be done first. On the other hand, there is
no datadependence between the / + 1operation inside the
loop and any of the operations in the chain that calculates
Y, even though they are ordered in the control graph shown.
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Y = 0.222222 + 0.888889 * X;

|1:=0;
DO UNTIL | > 3 LOOP
Y =05*(Y+X/Y)
=14+ 1;
ENDDO;
0.888889 X
\
0.222222
®
0
o
@,
3 | 1
0.5 © > &)
O,
false ctl. 1|
control data
flow flow

Fig. 1. High-Level specification and internal representa-
tion for sqrt.

Therefore the / + 1 may be done in parallel with those oper-
ations, as well as before or after them. The data flow graph
can also be used to remove the dependence on the way
internal variables are used in the specification, since each
value produced by one operation and consumed by another
is represented uniquely by an arc. This variable disam-
biguation, which is similar to what is done during global
flow analysis in compilers {34], is important both for reor-
dering operations and for simplifying the data paths.

Itwould seem that this ““direct”” compilation is essentially
a one-to-one translation of the program into the internal
representation. Nevertheless, there are several important
tasks that should be performed by the compiler at this stage
and that may turn “’direct”” compilation into a laborious task.
Examples are the already mentioned variable disambigua-
tion, taking care of the scope of variables across proce-
dures, converting complex data structures into simple
types, type checking, and converting data types where this
is required. It is desirable that the input language have all
of the power and comfort of a modern high-level program-
ming language, which means that the complier must be
intelligent enough to handle procedures, complex data
structures, and a variety of data types and operations.

Some optimizing transformations, such as expression
simplification, may be done at this stage also. In Fig. 1, for
example, 0.22 + 0.88 * X might be rewritten as 0.22 * (1 +
4 * X), which is simpler to implement, since the multipli-
cation by four can be done by a shift, ““picking the right
wires,” thus using only one multiplication and an incre-
ment instead of a multiplication and an addition.
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There is a wide variation in the types of graphs used as
internal representations. In many systems, the control and
data flow graphs are integrated into one structure. Exam-
ples include the Value Trace (VT) [35], [36], used by the
CMUDA system, the CDFG used by the HAL system [20],
and the YIF used by the Yorktown Silicon compiler [37]. The
DDS of the ADAM synthesis system [38], on the other hand,
maintains separate graphs for data flow and control and
timing, with bindings to indicate the correspondence
between elements of the two graphs. There are also dif-
ferences in how much information is kept from the spec-
ification. Some control graphs, for example, do not include
all the dependencies in the program, only the essential ones
like conditional branches; and some data flow graphs, such
as the VT, do not use the variable assignments defined by
the specification in defining essential orderings of opera-
tions, while others, such as the YIF, do.

The rest of this section outlines the various steps used
in turning the intermediate form into an RT-level structure,
using the square root example to illustrate the different
steps.

Since the specification has been written for human read-
ability and not for direct translation into hardware, it is
desirable to do some initial optimization of the internal rep-
resentation. These high-level transformations [39] include
such compiler-like optimizations as dead code elimination,
constant propagation, common subexpression elimina-
tion, in-line expansion of procedures, and loop unrolling.
Local transformations, including those that are more spe-
cific to hardware, are also used. In the example, the loop-
ending criterion can be changed to | = 0 using a two-bit
variable for /. The multiplication times 0.5 can be replaced
by a right shift by one, which can be done by discarding the
rightmost bit. The addition of 1 to / can be replaced by an
increment operation. The internal representation after
these optimizations is depicted in Fig. 2(a). Loop unrolling
can also be done in this case since the number of iterations
is fixed and small (Fig. 2(b)).

X 0.888889

0.888889 X
™Y

0.22222 e

®

v 0
@ &
% €9 @)
& ctl. |
Y
@) (b)

Fig. 2. Internal representation. (a) After some optimiza-
tions. (b) After loop unrolling.
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The DSL/ICADDY system does some high-leve! optimi-
zation as part of the synthesis process [22], as does the MIM-
OLA system[23] and the HERCULES system [33]. The System
Architect’s Workbench [40] contains a number of high-level
transformations, although most of these must be applied
interactively. The Flamel system [27] has a somewhat more
limited set of transformations, but it applies them auto-
matically, using a branch-and-bound algorithm that is very
effective, at least for small hardware descriptions.

The next two steps in synthesis are the core of trans-
forming behavior into structure: scheduling and allocation.
They are closely interrelated. Scheduling involves assign-
ing the operations to so-called control steps. A control step
is the fundamental sequencing unit in synchronous sys-
tems; it corresponds to a clock cycle. Allocation involves
assigning the operations and values to hardware, i.e., pro-
viding functional units, storage and communication paths,
and specifying their usage. Different methods for sched-
uling and allocation will be examined in detail in the next
section. Here we simply describe what they do and how
they fit into the overall synthesis task.

control step
1

data
0 4 9 14 19 part

5 10 15 20

[}

11 16 21

-~

12 17 22

8 13 18 23
(a)

control step

4 shift

©
Fig. 3. Some possible schedules and data-path allocations.
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¢ constant

e multiplexer

The aim of scheduling is to assign operations to control
steps so as to minimize a given objective function while
meeting constraints. The objective function may include,
among other things, the number of control steps, delay,
power, and hardware resources. In our example, a straight-
forward, nonoptimized schedule uses just one functional
unit and one single-port memory (Fig. 3(a)). Each operation
has to be scheduled in a different control step, so the com-
putation takes 3 + 4 %5 = 23 control steps. If instead of the
memory, single registers for Y and / and an extra register
T are provided, then the operations / := 0 and shift do not
need a control step any more, and the computation takes
only 2 + 4 * 4 = 18 steps (Fig. 3(b)). To further speed up the
computation, the operations in the control graph can be
scheduled with maximal parallelism, packing them into
control steps as tightly as possible, observing only the
essential dependencies required by the data flow graph and
by the loop boundaries. This form is shown for the example
in Figure 3(c). Notice that two dummy nodes to delimit the
loop boundaries were introduced. Since the shift operation
is free, with two functional units the operations can now

control step
1

2

2

3 7 1115
4 8 12 16
4 8 12 16
5 9 13 17
6 10 14 18

(b)

2345

2345

2345

(d)
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be scheduled in 2 + 4 * 2 = 10 control steps. The number
of control steps can be still further reduced by executing
ordered operations in the same control step, (often called
““chaining”). In our example, the initializations can be per-
formed in one control step, and then each iteration in
another control step, so the computation takes only 5 con-
trol steps. (Fig. 3(d)). In the extreme case, with no con-
straints on the hardware and the use of loop unrolling, the
whole computation can be done in combinational logic tak-
ing just one control step or part of it. Notice that the tradeoff
is not only between the number of control steps and the
amount of hardware to be allocated, but also involves the
length of each control step. As fewer control steps are used
to exploit operation chaining, the length of a control step,
i.e., the number of operations to be done serially in com-
binational logic, will increase and thus the cycle time will
increase.

This discussion has assumed the nonoverlapped exe-
cution of tasks, i.e., that the operation is not pipelined. The
techniques described here can be extended to cover pipe-
line design, and some specific techniques for pipeline
design exist [13].

The clocking scheme assumed in most scheduling algo-
rithms is a one-phase clock with master-slave registers. If
two or more clock phases are necessary, scheduling is fur-
ther complicated.

In allocation, the problem is to minimize the amount of
hardware needed. The hardware consists essentially of
functional units, memory elements, and communication
paths. To minimize them together is usually too complex,
$0 in many systems they are minimized separately, although
in general this may lead to suboptimal results. As an exam-
ple, consider the minimization of functional units. Oper-
ations can share functional units only if they are mutually
exclusive, that is, they are assigned to different control
steps. The problem is then to form groups of mutually
exclusive operations in such a way that the number of
groups is minimized. Since each group will require its own
functional unit, this will minimize the number of functional
units. This kind of allocation is sometimes called “‘folding.”
The grouping of operations is also affected by the capa-
bilities of functional units. For example, if there is no func-
tional unit that can both add and multiply, additions and
multiplications must be kept in separate groups. The allo-
cation of functional units for the schedules given in Figures
3(a), 3(b), and (3(c), is minimal in this sense. In the allocation
of Fig. 3(d) this is not the case. Since the two adders are never
used atthe same time, a data path with only one adderwould
be sufficient; but this would complicate the communica-
tion path, requiring additional multiplexers.

The problems of minimizing the amount of storage and
the complexity of the communication paths for a given
schedule can be formulated similarly.

In storage allocation, values that are generated in one
control step and used in another must be assigned to reg-
isters. Values may be assigned to the same register when
their lifetimes do not overlap. Storage assignment should
be done in a way that not only minimizes the number of
registers, but also simplifies the communication paths. The
latter criterion is illustrated by the program sequence

al:=aland b ; c:= not al;

where the ;" indicates sequential execution. A value is
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assigned to the variable a1, which already has an initial
value, so that al has more than one source. Hence it should
be stored in a register with an input multiplexer. Of course
this cumbersome solution is unnecessary: duplicating al,
the program becomes

a2 := aland b ; c := not a2;

Storage allocation is not necessarily limited to single reg-
isters; multi-port memories are often much more efficient
solutions [41].

Communications paths, including buses and multiplex-
ers, must be chosen so that the functional units and reg-
isters are connected as necessary to support the data trans-
fers required by the specification and the schedule. The
simplest type of communication path allocation is based
only on multiplexers. Buses, which can be seen as distrib-
uted multiplexers, offer the advantage of requiring less wir-
ing, but they may be slower than multiplexers. Depending
on the application, a combination of both may be the best
solution.

Conditional branches and loops further complicate both
scheduling and allocation. If pairs of conditional values or
operations are mutually exclusive, that is, if they are in sep-
arate branches so that they can never exist at the same time,
they may share resources. The ability of a synthesis pro-
gram to detect and use this information is very important,
since it can lead to a much more efficient use of resources.
Many allocators, including HAL, MAHA, Sehwa, the DAA,
and the YSC mark operations and values that are mutually
exclusive and use this information in allocation.

A formal model of scheduling and allocation has been
defined by Hafer and Parker [42]. This model provides for-
mal rules expressing the design tradeoffs, constraints and
costs (excluding interconnect hardware) for synthesizing a
data path from a behavioral description.

In addition to designing the abstract structure of the data
path, the system must decide how each component of the
data path is to be implemented. This is sometimes called
module binding [43]. For the binding of functional units,
known components such as adders can be taken from a
hardware library. Libraries facilitate the synthesis process
and the size/timing estimation, but they can prevent effi-
cient solutions that require special hardware. The synthesis
of special-purpose full-custom hardware is possible, but it
makes the design process more expensive by requiring
extensive use of logic synthesis and possibly layout syn-
thesis.

Some systems do preliminary module selection before
scheduling and allocation. This provides more information
on the costs and delays associated with various operations,
which can help the scheduling and allocation algorithms
produce more accurate results. The BUD system [44], for
example, selects modules for its functional clusters as they
are formed. Jain et al. have implemented a method for
selecting a set of candidate modules for a design by esti-
mating the area-time tradeoff curves for several candidate
module sets and finding the one that gives the best set of
design points. This is optimal only for pipelined designs
[45], butit has been applied to nonpipelined designs as well
[46].

Once the schedule and the data paths have been chosen,
it is necessary to synthesize a controller that will drive the
data paths as required by the schedule. The synthesis of the
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control hardware itself can be done in different ways. If
hardwired control is chosen, a control step corresponds to
a state in the controlling finite state machine. Once the
inputs and outputs to the FSM, that is, the interface to the
data part, have been determined as part of the allocation,
the FSM can be synthesized using known methods, includ-
ing state encoding and optimization of the combinational
logic [47], [48]. If microcoded control is chosen instead, a
control step corresponds to a microprogram step and the
microprogram can be optimized using encoding tech-
niques for the microcontrol word [49], [50].

Finally, the design hasto be converted into real hardware.
Lower level tools such as logic synthesis and layout syn-
thesis complete the design.

B. The Design Space

As we have seen, there are many different designs that
implementa given specification. If we disregard the designs
that are clearly inferior, the remaining designs represent
differenttradeoffs between areaand performance. The plot
of area versus processing time for these designs forms what
is sometimes called the design space. Figure 4 shows an

Area

Delay
Fig. 4. The design space.

idealized view of the register-transfer level design space for
a particular specification.

High-performance designs, found close to the area axis,
are generally parallel implementations of the algorithm.
Inexpensive designs, which are spread along the time axis,
use less hardware and thus are usually slower. For pipe-
lined designs, the cost-performance tradeoff curve is reg-
ular and well-characterized. More hardware allows more
operations to be done at once, so that the throughput is
higher. For nonpipelined designs, the space seems to be
divided into two regions. One region consists of designs
with few time steps and longer clock cycles, due to operator
chaining. Designs in the other region all have clock cycles
with the same length, equal to the delay of the slowest oper-
ation, but with more control steps as the designs become
less expensive and require more resource sharing.

C. Problem Complexity

There are a number of problems that designers of syn-
thesis software encounter. The major problem is the
extremely large number of design possibilities that must be
examined in order to select the design that meets con-
straints and is as near as possible to the optimal design.
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There are many factors that account for the differences
between the various designs, and it is hard even to find a
canonical set of operators that systematically search
through all those designs. Furthermore, the shape of the
design space is often problem-specific, so that there is no
methodology that is guaranteed to work in all cases.

Finding the best solution to even a limited problem such
as scheduling is difficult enough. Many synthesis subtasks,
including scheduling with a limitation on the number of
resources and register allocation given a fixed number of
registers, are known to be NP-hard [51]. That means that the
process of finding an optimal solution to these is believed
to require a number of steps that is at least exponential in
the problem size. Yet in high-level synthesis there are sev-
eral such tasks, and they cannot really be isolated, since
they are interdependent.

Another problem is the difficulty of evaluating designs
that have not been implemented and manufactured. Area
is not really known until the design is laid out, because it
is not until the layout is done that the area due to inter-
connections and unused area is known. Similarly the speed
of the design is hard to determine until delays are actually
measured, and this cannot be done accurately until the lay-
out is done and all the path delays are known. There is, in
fact, evidence that when all of the factors that affect area
and delay are taken into account, the design space becomes
much less regular [52].

1. BAsIC TECHNIQUES
A. Scheduling

We distinguish three dimensions along which schedul-
ing algorithms may differ: (1) the objective function and
constraints that they use; (2) the interaction between sched-
uling and data path allocation; and (3) the type of sched-
uling algorithm used.

1) Objectives and constraints:

An objective is a measure that the design system seeks
to maximize or minimize. A constraint is a condition that
must be met. For example, if the goal is to design a system
0 as to minimize area while holding the cycle time below
1 microsecond, minimizing area is an objective, while the
condition that cycle time is less than or equal to 1 micro-
secondisaconstraint. Almostall systems define their objec-
tives and constraints in terms of area (or some other mea-
sure of the amount of hardware) and time. Many systems,
such as the CMUDA system [8] and the MIMOLA system
[23], [29], try to minimize the number of control steps sub-
jectto areaconstraints. Others, such as the HAL system [53],
seek to minimize area given certain time constraints. There
are some systems, such as MAHA [19] and Shewa [13], that
can do either. The BUD system [44], uses a combination of
area and time as an objective.

Area is measured in different ways. Until recently, most
systems simply counted the number of functional blocks,
and perhaps registers, to get an estimate of area. Lately, sev-
eral systems, including EIf {14] and Chippe [54], have added
an estimate of multiplexing cost to the area measure. BUD
does arough floorplan of each design it evaluates and from
that estimates total area, thus taking into account layout
and wiring space as well as active area.

Time is usually taken to be the time required to process
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one set of input data, or the time needed to execute one
major cycle of the machine, that is, the average number of
control steps per cycle times the delay per control step. For
a pipeline synthesis system like Sehwa, throughputis a bet-
ter measure. For interfaces and communications circuits,
on the other hand, meeting global time constraints is not
enough; it is necessary to meet local constraints. For exam-
ple, there might be a requirement that certain data be cal-
culated and placed on an output port within 150 ns of the
time that a certain input signal is received. The Elf system,
the ISYN interface synthesizer [55], and the Janus system
[15] can not only measure those local constraints, but also
use them to guide the scheduling.

There are many other factors that are important in eval-
uating designs, such as pin limitations, package selection,
testability, variety of latches, library of cells, power dissi-
pation, clock skew, etc., [56]. These should be taken into
account during high-level synthesis, but at present there is
no system that does so.

2) Interaction with Allocation:

As noted earlier, scheduling and operator allocation are
interdependent tasks. In order to know whether two oper-
ations can be scheduled in the same control step, one must
know whether they use common hardware resources—for
example, the same functional unit. Moreover, finding the
most efficient possible schedule for the real hardware
requires knowing the delays for the different operations,
and those can only be found after the details of the func-
tional units and their interconnections are known. On the
other hand, in order to make a good judgement about how
many functional units should be used and how operations
ought to be distributed among them, one must know what
operations will be done in parallel, which comes from the
schedule. Thus there is a vicious circle, since each task
depends on the outcome of the other.

Anumber of approachesto this problem have been taken
by synthesis systems. The most straightforward one is to set
some limit (or no limit) on the number or total cost of func-
tional units available and then to schedule. This is done, for
example, in the CMUDA system [57],[16], in the early Design
Automation Assistant [58], in the Flamel system [27], and in
the V system [59]. This limit could be set as a default by the
program or specified by the user. Asomewhat more flexible
version of this approach is to iterate the whole process, first
choosing a resource limit, then scheduling, then changing
the limit based on the results of the scheduling, resched-
uling and so on until a satisfactory design has been found.
This is done, for example, under user control in the MIM-
OLA system and under guidance of an expert system, with
feedback from the data path allocator, in Chippe. The Sehwa
pipeline synthesis system uses this general strategy, look-
ing at different allocations of functional units and finding
the best schedule for each. This search is guided by math-
ematical models that relate area and performance, and thus
is much more efficient than a naive search.

Another approach is to develop the schedule and
resource requirements simultaneously. For example, the
force-directed scheduling in the HAL system schedules
operations within a given time constraint so as to balance
the load on the functional units, and thus to meet the given
time constraints while using as few functional units as pos-
sible. The MAHA system uses a similar procedure. HAL also

includes a feedback loop that allows the scheduling to be
repeated with more precise contraints after the detailed data
paths have been designed, when more is known about
delays and interconnect costs. Two more recent approaches
have formulated scheduling and allocation together as an
optimization problem to be solved by general optimization
techniques, in one case by simulated annealing [60] and in
the other by integer programming [61].

The Yorktown Silicon Compiler (YSC) [37] does allocation
and scheduling together, but in a different way. It begins
with each operation being done on a separate functional
unitand all operations being done in the same control step.
Additional control steps are added for loop boundaries, and
as required to avoid conflicts over register and memory
usage. The hardware is then optimized so as to share
resources as much as possible. If there is too much hard-
ware or there are too many operations chained together in
the same control step, more control steps are added and
the data path structure is again optimized. This process is
repeated until the hardware and time constraints are met.

Finally, functional unit allocation can be done first, fol-
lowed by scheduling. In the BUD system, the operations to
be performed by the hardware are first partitioned into
clusters, using a metric that takes into account potential
functional unit sharing, interconnect, and parallelism. Then
functional units are assigned to each cluster and the sched-
uling is done. The number of clusters to be used is deter-
mined by searching through arange of possible clusterings,
choosing the one that best meets the design objectives.

In the CADDY/DSL system, the data path is built first,
assuming maximal parallelism. This is then optimized,
locally and globally, guided by both area constraints and
timing. Global optimizations include mapping different
operations onto the same functional unit, unrolling small
loops, sharing registers, etc. Local optimization relies on
rules very much like local logic optimization. The opera-
tions are then scheduled, subject to the constraintsimposed
by the data path.

3) Scheduling Algorithms:

There are two basic classes of scheduling algorithms:
transformational and iterative/constructive. A transforma-
tional type of algorithm begins with adefault schedule, usu-
ally either maximally serial or maximally parallel, and applies
transformations to it to obtain other schedules. The fun-
damental transformations are moving serial operations, or
blocks of operations, in parallel and the inverse, moving
parallel operations in series (Fig. 5). Transformational algo-
rithms differ in how they choose what transformations to
apply.

Expl [62] used exhaustive search. That is, it tried all pos-
sible combinations of serial and parallel transformations
and chose the best design found. This method has the
advantage that it looks through all possible designs, but of
course it is computationally very expensive and not prac-
tical for sizable designs. Exhaustive search can be improved
somewhat by using branch-and-bound techniques, which
cut off the search along any path that can be recognized to
be suboptimal. That was the approach used implicitly by
Hafer and Parker [42] when they used integer-linear pro-
gramming to solve a set of equations that modeled the
scheduling and allocation problem. This technique was
important in that it showed the power of this formal model,
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Fig. 5. Basic scheduling transformations.

but it too proved to be impractical for all but the simplest
designs.

Another approach to scheduling by transformation is to
use heuristics to guide the process. Transformations are
chosen that promise to move the design closer to the given
constraints or to optimize the objective. This is the approach
used, for example, in the Yorktown Silicon Compiler, as
described above, and the CAMAD design system [63]. The
transformations used in the YSC can be shown to produce
a fastest possible schedule, in terms of control steps, for a
given specification.

The other class of algorithms, the iterative/constructive
ones, build up a schedule by adding operations one at a
time until all the operations have been scheduled. They dif-
fer in how the next operation to be scheduled is chosen and
in how they determine where to schedule each operation.

The simplest type of scheduling, as soon as possible
(ASAP) scheduling, is local both in the selection of the next
operation to be scheduled and in where it is placed. ASAP
scheduling assumes thatthe number of functional units has
already been specified. Operations are first sorted topo-
logically; thatis, if operation x;is constrained to follow oper-
ation x; by some necessary dataflow or control relationship,
then x; will follow x; in the topological order. Operations
are taken one at atime in this order and each is put into the
earliest control step possible, given its dependence on other
operations and the limits on resource usage. Figure 6 shows
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Fig. 6. ASAP scheduling.

a dataflow graph and its ASAP schedule. This was the type
of scheduling used in the early CMUDA schedulers, in the
MIMOLA system and in Flamel. The problem with this algo-
rithm is that no priority is given to operations on the critical
path;, so that when there are limits on resource usage, oper-
ations that are less critical can be scheduled first on limited
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resources and thus block critical operations. This is shown
in Fig. 6, where operation 1is scheduled ahead of operation
3, which is on the critical path, so that 3 is scheduled later
than is necessary, forcing a longer than optimal schedule.

List scheduling overcomes this problem by using a more
global criterion for selecting the next operation to be sched-
uled. For each control step to be scheduled, the operations
thatare available to be scheduled into that control step, that
is, those whose predecessors have already been scheduled,
are kept in a list, ordered by some priority function. Each
operation on the list is taken in turn and is scheduled if the
resources it needs are still free in that step; otherwise it is
deferred to the next step. When no more operations can
be scheduled, the algorithm moves to the next control step,

- the available operations are found and ordered, and the

process is repeated. This continues until all the operations
have been scheduled. Studies have shown that this form
of scheduling works nearly as well as branch-and-bound
scheduling in microcode optimization [64]. Figure 7 shows

Schedule

Fig. 7. A list schedule.

a list schedule for the graph in Fig. 6. Here the priority,
shown in parentheses next to each node, is the length of
the path from the operation to the end of the block. Since
operation 3 has a higher priority than operation 1, it is
scheduled first, giving an optimal schedule for this case.

A number of schedulers use list scheduling, though they
differ somewhat in the priority function they use. BUD uses
the length of the path from the operation to the end of the
block it is in. Elf and ISYN use the ““urgency’’ of an oper-
ation, the length of the shortest path from that operation
to the nearest local constraint. The HAL system can do list
scheduling with force as a priority, a concept that will be
explained below.

Freedom-based scheduling, an example of which is
MAHA, is another type of scheduling that is global in the
way it selects the next operation to be scheduled. The range
of possible control step assignments for each operation is
first calculated from the time constraints and the prece-
dence relations between the operations. The operations on
the critical path, those with the tightest constraints on them,
are scheduled first and assigned to functional units. Then
the other operations are scheduled and assigned one at a
time. At each step the unscheduled operation with the least
freedom, that is, the one with the smallest range of control
steps into which it can go, is chosen. Thus operations that
might present more difficult scheduling problems are taken
care of first, before they become blocked.

The last type of scheduling algorithm we will consider is
global both in the way it selects the next operation to be
scheduled and in the way itdecides the control step in which
to putit. An example of this is the force-directed scheduling
used in HAL. In force-directed scheduling, the guiding fac-
tor both for choosing which operation to schedule nextand
for choosing where to schedule it is the so-called force on
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each operation. The force between an operation and a par-
ticular contro! step is proportional to the number of oper-
ations of the same type that could go in that control step.
Thus scheduling so as to minimize force tends to balance
the use of functional units, producing a schedule that min-
imizes the number of resources needed to meet a given
time constraint.

To calculate the force for a dataflow graph, a distribution
graph is first set up for each set of operations that could
share a functional unit. The distribution graph shows, for
each control step, how heavily loaded that step is, given that
all possible schedules are equally likely. The distribution
graph is calculated by finding the earliest and latest control
step in which each operation could be done, given the time
constraints and the precedence relations between the
operations. This is called the mobility for that operation,
and is similar to the freedom used in freedom-based sched-
uling. If an operation could be done in any of k control steps,
then 1/k is added to each of those control steps in the graph.
Forexample Fig. 8 shows a dataflow graph, the range of steps
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Fig. 8. A distribution graph.

N -

for each operation, and the corresponding distribution
graph for the addition operations, assuming a time con-
straint of three control steps. Addition at must be sched-
uled in step 1, so it contributes 1 to that step. Similarly addi-
tion a2 adds 1 to control step 2. Addition a3 could be
scheduled in either step 2 or step 3, so it contributes } to
each.

For each possible assignment of an operation x to a con-
trol step i, a force is calculated as

F(iy = 2 DG(j) % x(i, j)
/

where DG(j)isthevalue of thedistribution graph at control
step j and x(i, j) is the change of x’s probability in control
stepj if x is scheduled in control step i. For example, in Fig.
8, the force involved in assigning a3 to step 2 is 13 x § +
3 X (—3. The first term comes from the change involved in
adding a3 to step two, since its probability goes from j to
1, while the second term comes from removing a possible
assignment to step 3, causing the probability to go from
310 0. This positive force indicates that a3 should not go into
step 2, since it is already heavily loaded. Other forces are
added that reflect the effect of scheduling an operation on
its predecessors and successors, since once an operation
is scheduled it changes the mobilities of its neighbors.

Once all the forces are calculated, the operation-control
step pair with the largest negative force (or least positive
force) is scheduled. In the above example, a3 would first be
scheduled into step 3. The distribution graph and forces are
updated and the process is repeated.

Force-directed scheduling is more expensive computa-
tionally than list scheduling. Force-directed scheduling has
complexity O(cN? versus O(cN log N) for list scheduling,
where c is the number of control steps and N is the number
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of operations. (c is equal to N in the worst case.) The advan-
tage of force-directed scheduling is that it tends to balance
the distribution graph, so that a minimum amount of hard-
ware is used to achieve a given time constraint.

All of the scheduling algorithms mentioned above, except
for Expl and Sehwa, use heuristics to guide the search for
a good schedule. None of these is guaranteed to find the
best possible schedule. Nevertheless many of them do give
good results in practice.

B. Data Path Allocation

Data path allocation involves mapping operations onto
operators, assigning values to registers, and providing
interconnections between operators and registers using
buses and multiplexers. The decision to use complex func-
tional units (e.g., ALUs) instead of simple operators is also
made at this time. The optimization goal is usually to min-
imize some objective function, such as

+ total interconnect length.

+ total operator, register, bus driver and multiplexer
cost, or

+ critical path delays.

There may also be constraints on the design which limit
total area of the design, total throughput, or delay from
input to output. As with scheduling, allocation programs
must search the design space efficiently or reduce the size
of the search space.

The techniques that perform data path allocation can be
classified into two types: iterative/constructive, and global.
Iterative/constructive techniques assign elements one at a
time, while global techniques find simultaneous solutions
to a number of assignments at a time. Exhaustive search is
an extreme case of a global solution technique. Iterative/
Constructive techniques generally look at less of the search
space than global techniques, and therefore are more effi-
cient, but are less likely to find optimal solutions.

1) Iterative/Constructive Techniques:

Iterative/constructive techniques select an operation,
value or interconnection to be assigned, make the assign-
ment, and then iterate. The rules which determine the next
operation, value or interconnect to be selected can vary
from global rules, which examine many or all items before
selecting one, to local selection rules, which select the items
in a fixed order, usually as they occur in the dataflow graph
from inputs to outputs. Global selection involves selecting
a candidate for assignment on the basis of some metric, for
example taking the candidate that would add the minimum
additional cost to the design.

The data path allocator used in the early CMUDA system
was iterative, and used local selection [57]. The DAA uses
a local criterion to select which element to assign next, but
chooses where to assign it on the basis of rules that encode
expert knowledge about the data path design of micro-
processors. EMUCS [65] uses a global selection criterion,
based on minimizing both the number of functional units
and registers and the multiplexing needed, to choose the
nextelement to assign and where to assign it. The Elf system
also seeks to minimize interconnect, but uses a local selec-
tion criterion. The REAL program [66] separates out register
allocation and performs it after scheduling, but prior to
operator and interconnect allocation. REAL is constructive,
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and selects the earliest value to assign at each step, sharing
registers among values whenever possible. REAL performs
a global analysis only once to sort the values.

An example of greedy allocation is shown in Fig. 9. The
graph is processed from the earliest time step to the latest.

Fig. 9. Greedy data-path allocation.

Operators, registers, and interconnectare allocated for each
time step in sequence. Thus, the selection rule is local, and
the allocation constructive. Assignments are made so as to
minimize interconnect. In the case shown in the figure, a2
is assigned to adder2, since the increase in multiplexing
cost required by that allocation is zero. a4 is assigned to
adder1 because there is already a connection between
adder1and the register storing one of the inputs to a4. Other
variations are possible, each with different multiplexing
costs. For example, if we assigned a2 to adder1 and a4 to
adder1 without checking for interconnection costs, then
the final multiplexing would be more expensive. Or we
could assign a3 before a2, and achieve a different multi-
plexer configuration, but one which happens to have the
same cost as our original design. Finally, a more global
selection rule could be applied. For example, we could
select the next item for allocation so as to minimize the cost
increase. In this case, if we already allocated a3 to adder2,
thenthe next stepwould be to allocate a4 to the same adder,
since they occur in different time steps, and the incre-
mental cost of doing that assignment is less than assigning
a2 to adder1.

2) Global Allocation:

Global allocation techniques include graph theoretic for-
mulations, branch and bound algorithms, and mathemat-
ical programming techniques. One popular graph theo-
retic formulation, used for example in Facet [16], involves
creating graphs in which the elements to be assigned to
hardware, whether they are operations, values, or inter-
connections, are represented by nodes, and there is an arc
between two nodes if and only if the corresponding ele-
ments can share the same hardware. The problem then
becomes one of finding sets of nodes in the graph, all of
whose members are connected to one another, since all of
the elements in such a set can share the same hardware
without conflict. This is the so-called clique finding prob-
lem. If the objective is to minimize the number of hardware
units, then we would want to find the minimal number of
cliques that cover the graph, or, to put it another way, to
find the maximal cliques in the graph. Unfortunately, find-
ing the maximal cliques in a graph is an NP-hard problem,
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Fig. 10. Example of a clique.

so in practice, heuristics are often employed. Figure 10
shows the graph of operations from the example shown in
Fig. 9. One clique is highlighted, showing that the three
operations can share the same adder, just as in the greedy
example.

The branch-and-bound technique uses search to find a
good or optimal solution to the allocation problem. Poten-
tially a branch-and-bound algorithm can look through all
possible configurations for the data path by trying all pos-
sible allocations of operations to processors, values to reg-
isters, and connections to buses and multiplexers. This
makes it very powerful, since it can reach every possible
solution. By the same token, however, it can be very expen-
sive, since the number of possible configurations is expo-
nential or worse in the number of elements to be allocated.
Branch-and-bound is more efficient than a naive search,
since it keeps track of the best solution so far and cuts off
the search of any portion of the solution space as soon as
it recognizes that that cannot improve on the current best
solution; but it is still potentially exponential. If afull search
is too expensive, heuristics can be used to limit the number
of possible solutions tried; but then the outcome is no
longer guaranteed to be optimal. The Splicer program [67]
and the MIMOLA system use a branch-and-bound search
to do allocation. They include heuristics that can be used
to limit the search, thus trading off processing time for solu-
tion quality.

Formulation of allocation as a mathematical program-
ming problem involves creating a variable for each possible
assignment of an operation, variable, or interconnection to
a hardware element. The variable is one if the assignment
is made and zero if it is not. Constraints must be formulated
that guarantee that each operation must be assigned to one
and only one hardware element, and so on. The objective
then is to find a valid solution that minimizes some cost
function. Finding an optimal solution requires exhaustive
search, which is very expensive. This is done by Hafer and
Parker on asmall example[42], and recent research by Hafer
indicates that heuristics can be used to reduce the search
space, so that larger examples can be considered.

C. Alternative Approaches

The main problem in high-level synthesis, as noted ear-
lier, is the size and irregularity of the search space. One way
around this is to use expert knowledge to inform and guide
the search and thus to help find good solutions.

The Design Automatior Assistant [58] was the first rule-
based expert system that performed data path synthesis.
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The prototype DAA just encoded in its rules a standard
scheme [68]. The system was improved over a period of time,
however, by having experts critique the designs it pro-
duced. The knowledge gained from these critiques was
entered into the system in the form of new rules. As aresult,
the designs produced by the new system were much closer
to what an expert would produce [69].

One problem with the expert system approach is that
existing expert systems are very slow. Ittakes orders of mag-
nitude more processing time to achieve results comparable
to those obtained by some of the nonoptimal algorithms
mentioned above.

If the area of application is restricted to a particular
domain, more domain-specific knowledge can be used.
Each domain has its own paradigms and methods. For
example, the digital signal process domain has been
explored by several groups. The CATHEDRAL system [12]
and the FACE system [70] are examples of very successful
efforts in that area. Other programs have been able to get
very good results by focusing on microprocessor design,
for example the SUGAR system [71], [72]. The synthesis of
data paths for synchronous pipelines is a design domain
that has now been given a foundation in theory [13] and an
implementation in the program Sehwa.

IV. FUTURE DIRECTIONS

There are a number of areas where high-level synthesis
must continue to develop if it is to become a useful tool in
designing VLS| systems. Some of these are specific design
problems that still need to be solved. Others are more gen-
eral issues that involve integrating synthesis into the larger
context of a design system.

A. Open Design Problems

1) Design style selection:

Design Style Selection refers to the selection of a basic
architecture for a design and a module set for imple-
menting it, based on measurements made on the initial
specification and perhpas on further input from the user.
This should be done early in the synthesis process, before
scheduling and allocation. Thomas and Siewiorek [73]
showed that by measuring certain parameters in the spec-
ification, it was possible to predict the structure that human
designers would choose for the design. Little has been done,
however, to follow up on his work. The System Architect’s
Workbench [18] does have the ability to use different allo-
cators depending on the user’s choice of design style. Jain
and Parker recently described a technique for design style
selection between pipelined and nonpipelined implemen-
tation, which is partially automated in the ADAM system
[46]. With the need to limit the search space in a synthesis
system, and with the success of special-purpose synthesis
systems that assume a certain design style tailored to a spe-
cificdomain, itdoes seem that it would be beneficial to make
an early decision about design style and use that to choose
a specific design methodology.

2) Interface design:

One area where the use of high-level synthesis seems
most attractive is in the design of interface and commu-
nications circuits. There are many such circuits needed, they
are relatively low volume, and often cutting design time is
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more important than saving area or achieving higher per-
formance. Yet most synthesis systems cannot handle that
type of circuit because at best they can only meet global
timing constraints. That is, they can design hardware that
does a specified set of computations within a given amount
of time ora given number of clock cycles. Interface circuits,
on the other hand, must satisfy local constraints on the tim-
ing of input/output events. For example, a bus interface
specification might contain the requirement that after a
ready signal is received, the interface must place data on
the data lines and set an acknowledge flag. The specifi-
cation might also require that there be a delay of at least
75 ns between the time the data is output and the time the
acknowledge flag is set and a delay of no more than 100 us
between the detection of the ready signal and the setting
of the acknowledge flag. The input languages to most syn-
thesis systems cannot even express such constraints, and
the synthesis algorithms themselves are not set up to han-
dle them.

There has, however, been some recent work on synthesis
with local timing constraints. The HAL and ELF systems can
handle some forms of local timing constraints. The ability
to enter local timing constraints, check them for consis-
tency, and use them in automatic synthesis has been
explored in the CADDY synthesis system [74]. The Janus
system [15] uses a graphical interface to allow the user to
specify detailed timing constaints on the inputs and out-
puts of asystem. These specifications are translated directly
into interface logic. At a higher level of specification, the
ISYN system [55], allows local timing constraints to be added
to an ISPS description. It uses these constraints to set prior-
ities in a modified list scheduler, thus ensuring that input/
output events are scheduled so as to meet the constraints.
CONSPEC [75] uses local timing constraints in the gener-
ation of a state machine controller.

This is a very promising area for further research. More
work needs to be done, especially in integrating the inter-
faces with the rest of the system being designed [76].

3) System-level synthesis:

There are a number of important decisions and tradeoffs
that current systems do not explore. These include trading
off complexity between the control and the data paths, par-
titioning the control, breaking a system into interacting
asynchronous processes, breaking a memory array into
separate modules, collecting a set of registers into aregister
file, and changing the bitwidth of the data path in order to
increase or decrease parallelism. Many of these are system-
level issues. That is, they relate to the number and config-
uration of system-level components such as memories, pro-
cessors, and controllers, rather than to how those individ-
ual pieces are designed. To date, very little has been done
to provide design aids at this level, although Walker and
Thomas have explored some system-level transformations
[40], and Lagnese and Thomas have looked at system-level
partitioning [77].

4) High level transformations:

As noted earlier, high level transformations on the input
specification or its internal representation are an important
step in the synthesis process. In particular, transformations
that alter the control flow, such as the in-line expansion of
procedures, moving operations out of conditionals, chang-
ing conditionals into data selects, and soon, can havealarge
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impact on the speed of the final design. Transformations
have been classified and studied, [39], [40], and, as men-
tioned previously, many systems now apply some opti-
mizations before scheduling and allocation. But when to
applythemandinwhatorderis stillan open problem. There
is no system that takes advantage of the full range of known
transformations. Trickey found an effective way of ordering
and searching through alimited number of transformations
using a branch and bound algorithm [27]; but it is not clear
that that method would generalize to a richer and less
orderly set of transformations.

B. General Issues

1) Human Factors:

Human factors refers to the place of the designer in the
design process. Certainly the human designer has an
important role to play in the synthesis process, a role which
goes far beyond writing the initial specification and con-
straints. There are certain optimizations that a human can
recognize that no algorithm can find; and there are con-
ditions, constraints, and goals that emerge only as the
design process proceeds. Thus the user should have as
much or as little control over the synthesis process as he
or she wants. How best to achieve that is not yet known.
Itis simple enough to allow the user to intervene and make
some of the individual decisions that the synthesis algo-
rithms normally make, such as applying a particular optim-
izing transformation, scheduling an operation in a specific
time-step, or allocating a register to hold certain values. This
is not, however, the level at which the human designer
interacts best with the system. Our experience is that with
alarge specification, there is too much detail for the human
to be able to see these individual possibilities and under-
stand their impact on the overall design. Humans seem to
be better at seeing patterns and grasping the overall shape
of things and in formulating high-level strategies than at
systematically working through a series of detailed steps.
New ways must be found to present the user with summary
information on the specification and partial design, to allow
the user to focus on different areas of the design while at
the same time seeing how the parts are interrelated, to help
the user guide the synthesis process without making each
individual decision, and to allow the user to explore the
implications of various design decisions. The synthesis sys-
tem should also be able to explain the decisions it makes
to the user so that the user can evaluate and, if necessary,
change them,

Some synthesis systems, such as EMUCS, and DAA, and
HAL, allow the user to bind certain decisions and then
invoke the system to complete the design. User interaction
can be used to guide the search in Sehwa. MIMOLA sup-
ports user interaction, particularly in restricting resources.
The System Architect’s Workbench supports user trans-
formations on a graphical representation of behavior [18].
The CORAL system [78], which is also part of the System
Architect’s Workbench, displays in a graphical form the
connections between the behavioral specification, the syn-
thesized data path, and the control specification. These
efforts, however, are only the beginning of the research
needed on this aspect of synthesis.

There is still more work to be done on system specifi-
cation as well. A full specification has many aspects, requir-
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ing different modes. of specification. Certainly the proce-
dural specification, which gives the sequences of actions
to be performed, is important. Some aspects of the behav-
ior, however, are best stated in declarative form: “When Y
happens, X should be done,”” as in the PHRAN-SPAN system
[79]. Other requirements on the design are best expressed
as constraints, for example on the timing of certain events,
on the size of the resulting hardware or of Various parts of
it, or on the power and other electrical characteristics.
Somehow all of these aspects must be integrated into acon-
sistent and coherent specification, and the synthesis sys-
tem must be able to digest and use all of the information
contained therein. There also remains the question of how
a designer can most easily develop a specification. Should
it be done graphically? Should there be an interactive,
“intelligent’” editor, whether textual or graphical? If a lan-
guage is used, should it be a known programming lan-
guage, an existing hardware description language, anatural
language, or something entirely new? Is an applicative lan-
guage better than a procedural one? What data types and
structures should be supported? And so on. There are
strongly held prejudices on these questions, but little solid
basis for choosing one way or the other.

2) Design Verification:

Design verification involves showing that the synthe-
sized design has the behavior required by the specification.
This checking is normally done for manual designs by sim-
ulating both the initial specification and the final design on
the same sets of inputs, and making sure that the outputs
correspond. Especially now that there are languages that
allow both behavioral and structural descriptions of hard-
ware, such as VHDL, MIMOLA, and Verilog, it should be
simple enough to do the same for a synthesis system, sim-
ulating both the initial behavioral specification and the syn-
thesized structure. Furthermore, since the synthesis sys-
tem actually derives the final design from the specification
in awell-defined manner, it can establish links between the
two, which can be used to compare the two descriptions
and verify their correspondence. The CORAL system does
some of this, for example. Little work has been reported on
verifying the output of synthesis systems, however. More
of this needs to be done in order to check the soundness
of the synthesis algorithms and their implementations.
When an early version of the CMUDA system was used to
design a PDP-8 minicomputer and a computer was actually
built according to that design and was tested, it exposed
a number of flaws in the synthesis programs [80].

The MIMOLA system is one synthesis system that does
do verification by simulating both the behavioral specifi-
cation and the synthesized output. In addition, a retarget-
able microcode generator has been used to verify the data
paths that have been synthesized by the system, and pos-
sibly modified manually [81]. It does this by attempting to
generate microcode to execute the specified behavior on
the data paths. If the code generator fails, it is an indication
that the data path does not support the required behavior.
A somewhat different approach is taken by the RLEXT sys-
tem [82]. It allows the user to modify the data paths and
schedule as desired, then automatically fixes them so that
they are once again correct with respect to the specifica-
tion.

There is also a growing body of work on the formal ver-
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ification of hardware designs [83], [84]. This means con-
structing a formal proof that the behavior of the final design
is consistent with the behavior implied by the specification.
As with simulation, the fact that the synthesis system can
maintain links between the specification and the design can
help make construction of the proofs easier.

Part of the attractiveness of a synthesis system, however,
is that it offers possibilities for verification other than just
checking the output design against the specifications. Since
the synthesis system always follows the same procedures,
it is claimed, once those procedures themselves are veri-
fied, the designs produced are guaranteed always to be cor-
rect. There is nolongerany need to verify them individually.
The hope, then, is to be able to prove that the output of the
synthesis system always has the same behavior as the input
specification. This can be done in theory by viewing the
action of the synthesis system as a series of transformations
on a hardware description.

The initial description is the specification of the system
to be designed. The final description, which is produced
by applying a series of transformations, is the synthesized
structure. If it can be shown that each transformation pre-
serves the behavior of the description to which it is applied,
then it follows that the synthesized structure will always
have the same behavior as the initial specification. This is
a promising application for formal verification techniques
because the proofs only have to be done once, rather than
for every design. This would justify the enormous invest-
ment of time and effort required to carry out any formal
proof of a nontrivial system.

McFarland and Parker [85] have used formal methods to
verify thatanumber of the optimizing transformations used
at the beginning of the synthesis process are correctness-
preserving. Beyond that, however, very little has been done.
There are some formidable problems to be overcome before
much more progress can be made on verification. For one,
what does it mean to say that two descriptions have the
“’same behavior’’? How is that behavior represented in the
first place, and how is it modeled in a formal system? These
problems become especially difficult when the descrip-
tions being compared are at different levels of abstraction
and in different domains, e.g., structural versus behavioral.
And what about timing? It is difficult enough to show that
behavior is preserved in terms of the values that are pro-
duced and in terms of the sequences of actions that are exe-
cuted. But how do you show that all the necessary timing
constraints would be observed without overly restricting
the system’s freedom to optimize the design? Secondly, how
are complex algorithms such as clique partitioning mod-
eled as transformations? It will probably be necessary to
define a set of invariant properties for such an algorithm
and then to prove both that the algorithm preserves the
invariants and that the invariants are sufficient to guarantee
that behavior is preserved. The third problem has to do with
the level at which each synthesis step is verified. Assuming
that the abstract algorithm or transformation can be veri-
fied, this does not guarantee that the code itself is correct.
That is beyond the capacity of current techniques in code
verification.

. As the above indicates, no synthesis system will ever be
verified to the point where testing and simulation can be
dispensed with. This does not mean, however, that formal
verification is not worth pursuing. Formal verification is a
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means of doing a precise, disciplined analysis of what a sys-
tem is doing. The whole process of building formal models
of a system and submitting them to rigorous logical anal-
ysis, if done intelligently and not mechanically, gives great
insight into how a system works and what its flaws and
weaknesses are. If formal verification cannot prove systems
perfect, it can at least make them better.

3) Integrating Levels of Design:

High-level synthesis systems have almost all used a top-
down approach to design. This approach begins with a very
abstract view of behavior and structure, and makes the high-
level decisions about optimization, scheduling, and allo-
cation purely in terms of that view. Costs are measured in
terms of abstract operators, and perhaps registers, and
speed in terms of abstract control steps. Factors such as the
particular properties of hardware modules, layout, wiring,
and parasitics are not considered at all at this stage. The
physical design is not done until the very end of the pro-
cess, when all the key architectural decisions have been
made. This division into levels has been seen as necessary
in order to break the synthesis problem into a number of
smaller subtasks and thus make it tractable. It is also arti-
ficial, however, and something is lost when synthesis is
done that way. Human designers think in terms of a floor
plan even when they are working at the overall structure
of the system [86]; and there is evidence [52] that consid-
eration of layout, wiring, and so on can cause one to choose
avery differentregister-transfer level structure for a system.
Itmight be desirable, for example, to have two ALU’s instead
of one in a system in order to simplify the wiring, even
though there is no gain in parallelism.

Itis necessary, therefore, for synthesis systems to be able
to work across the various levels and domains of design
representation. This means a number of things. For one, it
means performing or predicting the effects of physical
design, including floorplanning, along with the synthesis
of the register-transfer level structure. The BUD program
does this to some extent by partitioning the behavioral
specification in a way that suggests a geometry for the
design and then using that partitioning to derive the logical
structure. Thus physical layout and structure evolve
together. At this point, however, the process is rather crude,
and needs much more work.

The second place where integration is needed is in the
evaluation of designs. In order to make realistic design
tradeoffs at the algorithmic and register transfer levels, it
is necessary to be able to anticipate what the lower level
tools will do. For example, logic optimization can change
significantly the number of gates needed for a design [56].
What happens at the level of physical design is also impor-
tant. Area does not just depend on the number of memory
and functional units, but also on the multiplexing and wir-
ing, and the wasted area due to layout constraints. Simi-
larly, speed is not simply proportional to the number of
control steps or clock cycles needed to execute the required
functions, but also to the length of a clock cycle, which
depends on the delays through all the paths in the system.
Wiring can have a substantial impact here as well. An ade-
quate evaluator must be able to anticipate the impact of
these factors on a design. BUD estimates the area and per-
formance of a register-transfer level design, including the
effects of layout and wiring, by using its approximate floor
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plan for the design. The PLEST program [87] performs area
estimation for a structure based on a stochastic model of
the number of wiring tracks needed. The models used in
these sytems still have their limitations, however, More
research is needed in this area.

Finally, integration across design levels means maintain-
ing a single representation that contains all levels and
domains of design information, as the ADAM Design Data
Structure [2] does. With this kind of structure, it should be
possible to allow different parts of a design to exist at dif-
ferent levels during the design process. It is sometimes
important to be able to pick out a critical part of a structure
and design it in great detail before working on the rest of
the structure. That is because in such cases the critical part
has the largest impact on the cost of the design, and no
design decisions should be made on other parts that might
block optimization of the critical part. It should also be pos-

- sible to have multi-level specifications. For example, one
might be able to specify the part of a system that does com-
putation at the algorithmic level., while the input/output
section requires specification at the logic level due to the
critical timing constraints on it. No current synthesis system
supports this adequately.

4) Evaluation of Synthesis Programs:

The synthesis field has now become large enough that
there are a number of competing algorithms and programs.
It is important to be able to compare the results of these
programs on a set of common examples in order to learn
more about the relative advantages of the different
approaches. Beginning with the 1988 High-Level Synthesis
Workshop, work has gone on to collect a set of benchmark
hardware descriptions [88]. To date, however, the use of
these benchmarks has been spotty and inconsistent.

There are a number of cautions that must be observed
if meaningful comparisons are to be made. Scheduling is
very sensitive to operator delays, so schedules should be
compared using the same module library. It is a prablem
when programs cannot use externally defined modules.
Programs that use different styles of data path design, such
as buses versus multiplexers, should be compared using a
common metric such as total area. Final layouts can be com-
pared only if done in the same layout style. With regard to
run times, only very large differences should be considered
significant. Otherwise machine, language, or operating sys-
tem differences could lead to misinterpretation of the
results.

There are other factors that are important besides the
results of a program when run on one or two examples and
the final run times. The ability of a program to generate good
designs on a variety of examples is important. The ability
to search a large portion of the design space should be eval-
uated, as should the program’s ability to deal with more
than one objective function or constraint type.

Finally, fabrication of working designs produced by high-
level synthesis systems is needed to prove the viability of
the individual programs and of the whole approach.

C. Results

High-level synthesis systems are now being tied to logic
synthesis and layout systems so that they can produce com-
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plete, manufacturable designs. We are therefore just begin-
ning to see actual results from these systems.

The most advanced systems in this regard are the special-
purpose systems for synthesizing signal processors. The
Cathedral system has produced a number of chips imple-
menting complex signal processing algorithms [89]. The
FACE system has also been used to produce actual designs
[70].

With regard to more general-purpose synthesis systems,
a complete 801 microprocessor [90] with over 100 instruc-
tions, a streamlined architecture and a 4-stage pipeline has
been synthesized with the Yorktown Silicon Compiler in
less than 4 CPU hours on an IBM 3090 [91]. The synthesized
processor had the same performance as an RT-level hand
design (using the same logic synthesis tool), but used 26%
more transistors over all (45% more combinational logic and
11% more latches). The circuits were synthesized down to
the transistor level using cell generators.

A complete Motorola 68000 was synthesized using
CADDY/DSL[22] in afew CPU hours on a Siemens 7561. The
behavioral description was developed at a fairly low level
in 1/2 person-years, resulting in a circuit quite similar to the
original 68000. The synthesis result was a netlist of standard
cells.

The System Architect’s Workbench has recently added
the LASSIE program [92] to translate the register-transfer
level designs produced by the Workbench into layouts.
These layouts have been used to test the effectiveness of
some new design techniques [77]. Work is underway to con-
nect the Workbench to commercial layout systems in order
to produce real chip designs.

D. Conclusion

The problem of translating a high-level, behavioral
description of a digital system into a register-transfer level
structure has been divided into a number of subtasks. The
specification is first compiled into an internal represen-
tation, usually a data flow/control flow graph. The graph is
transformed so as to make the resulting design more effi-
cient. Operations are then scheduled into time steps and
hardware elements are allocated for the processors and
registers that are needed. These are connected together
along with the necessary multiplexing and busing, giving
the basic structure for the data paths. Next, specific mod-
ules are selected to implement the abstract hardware
blocks, if this has not already been done. Finally a controller
is designed to generate the control signals needed to invoke
the data operations in the scheduled control steps. This
completed register-transfer level design is then ready to be
handed on to a logic synthesis system or physical design
system.

The individual tasks, particularly the key tasks of sched-
uling and allocating, are well understood, and there are a
variety of effective techniques that have been applied to
them. However, when synthesis is seen in its real context,
opening up such issues as specification, designer inter-
vention, input/output, the need to handle complex timing
constraints, and the relation of synthesis to the overall
design and fabrication process, there are still many unan-
swered questions. These are the areas where much research
and development are needed in order to make high-level
synthesis practical.
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