
Accelerating Multiobjective VLSI Cell Placement
with Parallel Tabu Search

Sadiq M. Sait Mahmood R. Minhas
College of Computer Sciences & Engineering

King Fahd University of Petroleum & Minerals
Dhahran-31261, Saudi Arabia.

email: {sadiq,minhas}@ccse.kfupm.edu.sa

Abstract— Tabu Search has been successfully used to solve a
range of hard optimization problems [1], [2]. In this paper, we
present a parallelization of TS to increase efficiency of solving the
constrained multiobjective VLSI standard cell placement prob-
lem. Acceleration of search to decrease runtime requirements of
large circuits is investigated and other proposals in literature are
experimented with. Candidate list partitioning and distribution of
unique moves to slaves is employed. The proposed parallel TS is
implemented on a dedicated Linux-based cluster of workstations.
Results of experiments on ISCAS-85/89 benchmark circuits,
illustrating quality and speedup are presented and compared
with serial TS and genetic algorithm implementation.

I. I NTRODUCTION

General iterative heuristics such as tabu search are get-
ting more widely adopted to obtain near optimal solutions
to numerous hard problems [1]. For small problems, tabu
search techniques have reasonable runtime requirements. For
example, for a VLSI cell placement problem with few hun-
dred modules, it is possible to find very good solutions in
reasonable time. However, most practical circuits are very
large and require several hours of computer time to solve by
iterative heuristics [3]. One way to adapt iterative techniques
to solve large problems and traverse larger search spaces in
reasonable time is to resort to parallelization [4], [5]. Although
there have been some efforts to parallelize TS approach for
solving various optimization problems [6], but in many cases
if the reported speed-up and scalability results are observed,
effective parallelization of TS does not prove to be an easy
task [7].

A. Related Work

In this section we briefly survey some parallelization efforts
for the tabu search heuristic.

A number of parallelization techniques have been reported
in literature [7]. In the most straightforward and widely
adopted approachk tabu search processes are spawned and
run concurrently onk processors where each processor carries
out independent search [7], [8]. Malek suggested linking
independent searches where each slave runs a copy of a serial
TS but with different parameter settings [9]. After a specified
time the slave processes are halted and the main process selects
the best solution found and broadcasts to all slave processes
to start the entire search again from this new solution.

Another approach to parallelize search within an iteration
is when each process is given a task of exploring a subset
of the neighborhood of current solution. Two approaches are
followed: synchronousandasynchronous. In the synchronous
approach the various processes are always working with the
same solution, but exploring different partitions of the current
local neighborhood. Amasterprocess orchestrates the activi-
ties of theslaveprocesses [8]. In the asynchronous approach,
all processes are peer and usually are not all working with
the same current solution [7]. Both approaches require that
the set of possible moves be partitioned among the available
processors so that each processor will be exploring a distinct
sub-region of the current solutions neighborhood.

Suggestions to increase efficiency of TS by parallelizing
also include partitioning the search space, which is difficult, or
partitioning the problem into smaller sub-problems, determin-
ing the best moves for each sub-problem, and then performing
a compound move [7].

Attempts to solve several practical NP-hard problems has
been reported in literature. For example, in [8] a parallel imple-
mentation of the tabu search algorithm for the vehicle routing
problem is described. A massively parallel implementation
of tabu search for the quadratic assignment problem (QAP)
is reported in [10]. This parallelization strategy has been
implemented on the Connection Machine CM-2, a massively
parallel SIMD machine [11]. A reduction in the runtime per
iteration was achieved when compared to other sequential and
parallel implementations [12], [10].

Serial implementation of TS have been applied to VLSI
cell placement problem [3]. The approach obtained excellent
quality of placement solutions but at cost of huge runtime.
In this paper we present the parallelization of TS to address
the constrained multiobjective VLSI standard cell placement
problem. The optimization problem, and its serial implemen-
tation was analyzed and its results used to carefully engineer
the TS heuristic for increasing the efficiency of search.

This paper is organized as follows: The following sec-
tion briefly discusses the optimization problem (VLSI cell
placement) and the related cost functions. In Section III, the
proposed parallel Tabu Search approach is presented, followed
by experiments and results in Section IV.

II. PLACEMENT OPTIMIZATION PROBLEM AND COST

FUNCTIONS

In this section, we formulate our problem and the cost
function used in our optimization process.

A. Cell Placement

In this paper we are addressing the problem of paral-
lelizing SimE to solve the multiobjective VLSI standard cell
placement. The the objectives are optimizing of power con-
sumption, timing performance (delay), and overall wirelength
while, considering layout width as a constraint. A semi-formal
description of the placement problem can be found in [13].

B. Cost Functions

A semi-formal description of the placement problem can
be found in [13]. The multiobjective cost function is similar
to the one formulated in [3]. The first objective, wirelength
cost (Costwire) is estimated using an approximate Steiner tree
algorithm.

The power consumption costpi is computed for each net
i. Assuming a a fix supply voltage and clock frequency, the
estimate can be obtained bypi ' Ci · Si, (whereSi is the
switching probability andCi the total capacitance, of neti).
This can be further improved topi ' li ·Si (since interconnect
capacitances are a function of the interconnect lengths, and the
input capacitances of the gates are constant). The total estimate
of the power dissipation reduces toCostpower =

∑
i∈M pi =∑

i∈M (li · Si).
The delay cost is taken as the delay along the longest

path in a circuit. The delayTπ of a path π consisting of
nets{v1, v2, ..., vk}, is expressed as:Tπ =

∑k−1
i=1 (CDi+IDi)

whereCDi is the switching delay of the cell driving netvi and
IDi is the interconnect delay of netvi. The placement phase
affectsIDi becauseCDi is technology dependent parameter
and is independent of placement:Costdelay = max{Tπ}.

The layout width is constrained not to exceed a certain
positive ratioα to the average row widthwavg.

C. Fuzzification of Multiobjectives

Since, we are optimizing three objectives simultaneously,
we need to have a cost function that represents the effect of
all three objectives in form of a single quantity. Fuzzy logic is
used to integrate these multiple, possibly conflicting objectives
into a scalar cost function. Fuzzy logic allows us to describe
the objectives in terms of linguistic variables. Then, fuzzy rules
are used to find the overall cost of a placement solution. In
this work, we have used following fuzzy rule:

IF a solution hasSMALL wirelengthAND LOW power
consumptionAND SHORT delayTHEN it is an GOOD
solution.

The above rule is translated toand-likeOWA fuzzy opera-
tor [14] and the membershipµ(x) of a solutionx in fuzzy set

GOOD solutionis obtained by:

µ(x) =





β ·min
j=p,d,l

{µj(x)}+ (1− β) · 1
3

∑
j=p,d,l

µj(x);

if Width− wavg ≤ α · wavg,

0; otherwise.
(1)

Hereµj(x) for j = p, d, l, width are the membership values
in the fuzzy setsLOW power consumption, SHORT delay, and
SMALL wirelengthrespectively.β is the constant in the range
[0, 1]. The solution that results in maximum value ofµ(x) is
reported as the best solution found by the search heuristic. The
membership functions for fuzzy setsLOW power consumption,
SHORT delay, andSMALL wirelengthand the lower bounds
for different objectives can be found in [3].

III. PARALLEL TABU SEARCH IMPLEMENTATION

A generic intuitive strategy for parallelization is to partition
the data into small subsets that are distributed among the
processors. Each processor is responsible for a data subset and
implements a sequential version of the concerned function (or
the heuristic) over this data subset.

The sequential implementation of TS was analysed using
profiling tools (GNU profiler) to obtain insight into determin-
ing the time consuming operations of the code and the usage of
resources. For the circuits experimented on, between 60-80%
of time was spent on computation of cost of the objectives
and their fuzzification. Furthermore, experiments with param-
eters revealed that for our hard optimization problem with
conflicting multiobjectives, large sizes of candidate list (upto
120) were required to obtain high quality solutions. Since the
computation of cost for all moves in the candidate list was
the most time consuming operation, (in each iteration) the
algorithm was designed to partition this workload.

Therefore, the parallel Tabu Search strategy adopted in this
work employs dividing the operations within a TS iteration.
According to taxonomy given by Crainic et. al [6], our
approach can be classified as a synchronous master-slave
(one master and remaining slaves), 1-control (each process
is responsible for its search), Rigid Synchronous (RS) (all
processes are forced to establish communication and exchange
information at specific points) and Single Point Single Strategy
(SPSS) (all the processes start with the same initial solution
and follow the same strategy).

In this implementation, there is an initialization step during
which, the master process (Figure 1 generates and sends
an initial solution and a disjoint (non-overlapping) partial
candidate list (PCL) to each slave process. A move in a PCL
assigned to a slave in a particular iteration does not appear in
PCLs assigned to other slaves. Each slave process searches
its local neighborhood by trying each move in the partial
candidate list on the initial solution and computes gains due to
them. Then it sends the best move and its corresponding cost
(or gain) to the master process. The master process selects the
overall best move (OBM) among the moves it received from
slave processes subject to tabu restrictions.

Algorithm MasterProcess;
Begin

(* S0 is the initial solution. *)
(* BestS is the best solution. *)
(* PCL is the Partial Candidate List. *)
(* p is the number of slave processors. *)
(* OBM is the Overall Best Move. *)
GenerateS0 andp number ofPCLs;

SendS0 and aPCL to each slave process;
While iteration-count< max-iterations

Receivebest move and cost from each slave;
Find OBM subject to tabu restrictions;
GenerateP number ofPCLs;

SendOBM and aPCL to each slave process;
UpdateBestS; /*by applying OBM on BestS*/;

EndWhile
Return (BestS)

End. /*MasterProcess*/

Fig. 1. The master process in parallel TS.

Then in each subsequent iteration, the master process sends
the overall best move and a new partial candidate list to each
slave process. Each slave process now starts by performing
the received overall best move so that all the slave processes
start their iteration from the same solution. Each slave process
searches its local neighborhood and sends the best move and
its cost to the master process. The pseudo code of the slave
process is given in Figure 2.

IV. EXPERIMENTS& RESULTS

A. Experimental Setup

The experimental setup consists of the a homogeneous
cluster of 8 machines (where 1 machine is always working as a
master processor), x86 architecture, Pentium-4 of 2 GHz clock
speed, and 256 MB of memory. These machines are connected
by 100Mbit/s Ethernet switch. Operating system used in
RedHat Linux 7.3 (kernel 2.4.7-10). The paradigm used for
parallelization is MPI (Message Passing Interface). Specifi-
cally, MPICH (a portable implementation of MPI standard 1.1)
is used in our implementation. In terms of GFlops measure,
the maximum performance of the cluster, with NAS Parallel
Benchmarks was found to be 1.6 GFlops, (using NAS’s LU,
Class A, for 8 processors). Using this same benchmark for a
single processor, the individual performance of one machine
was found out to be 0.3 GFlops. The maximum bandwidth that
was achieved using PMB was 91.12 Mbits/sec, with an average
latency of 68.69µsec per message. ISCAS-85/89 circuits are
used as performance benchmarks for evaluating the proposed
parallel TS placement technique. These circuits are of various
sizes in terms of number of cells and paths, and thus offer a
variety of test cases.

B. Results, Comparison & Discussion

For comparison purposes, we also implemented a parallel
genetic algorithm (GA) which is a derivative of a standard dis-
tributed GA and follows the island model, with independently
evolving sub-populations and periodic exchanges of solutions
through migration [15], [16]. A pseudo-diversity approach

Algorithm SlaveProcess;
Begin

ReceiveS0 and aPCL from the master process;
CurS = S0; (* Current Solution *)
While iteration-count< max-iterations

Try each move inPCL and compute cost;
Send the best move and its cost to the master process;
ReceiveOBM and aPCL from the master process;
UpdateCurS /* by applying OBM on CurS */;

EndWhile
End. /*SlaveProcess*/

Fig. 2. The slave process in parallel TS.

is taken, wherein similar solutions are not permitted in the
population at any time. This diversity serves to widen the
search, while limiting the possibility of premature convergence
in local minima solution space. The initial population is con-
structed at the master process and distributed amongN slave
processes which start running serial GA on their allocated
population for a predefined number of iterations called the
Migration Frequency (MF). Then each slave process sends
MR (Migration Rate) number of its best solutions to the
master process, which selectsMR overall best solutions and
broadcasts them to all slave processes. Each slave process
absorbs the incoming best solutions into its population (if they
are not already found) by replacing the weakest solutions. Each
slave process then continues with the serial GA for another
MF iterations. Standard PMX crossover is used to generate
offsprings [1].

The quality of solution obtained and runtime required using
different number of processors for both TS and GA are
tabulated in Table I. For each circuit, the number of cells are
given in the table. The ‘µ(s) TS’ and ‘µ(s) GA’ columns show
the aggregate fuzzy membership of solution obtained by TS
and by GA respectively, whereas ‘p’ denotes the number of
processors used. It should be noted that runtimes shown are
for achieving a certain fixed quality.

In case of large circuits, parallel GA was unable to find
a reasonable quality solution even after running for a large
amount of time. Even for smaller circuits, the solution quality
obtained using TS is significantly superior to that obtained
using GA, and also the speedup trend is very consistent for TS.
On the other hand, parallel GA did not show such performance
or trend.

The proposed parallel TS has shown a consistent trend
in terms of speedup with increasing number of processors.
Figure 3 shows a speedup plot for some selected large circuits,
and it can be seen that almost linear speedup was obtained.

Another synchronous parallel implementation of TS in
which k tabu search processes are spawned and run concur-
rently on k processors was also experimented with in this
work [7]. All slave processes start from the same solution
and perform tabu search for a predefined number of iterations
and then pass their individual best solutions to the master
process, which selects and broadcasts the overall best solution
to the slave. . For our multiobjective optimization, in terms of

TABLE I

RUN TIMES AND SOLUTION QUALITY µ(s) FOR ACHIEVING A TARGET MEMBERSHIP FOR SERIAL AND PARALLELTS/GA APPROACHES. X INDICATES

UNREASONABLY HIGH RUNTIME REQUIREMENT.

Circuit Number µ(s) Time for Time for Parallel TS µ(s) Time for Time for Parallel GA
Name of Cells TS Serial TS p=2 p=3 p=4 p=5 p=6 p=7 GA Serial GA p=3 p=5 p=7
s386 172 0.688 52 28 20 17 16 15 14 0.504 15 9.9 5.7 6.7
s641 433 0.785 934 472 332 239 205 171 151 0.616 793 307 390 289
s832 310 0.644 74 40 33 23 22 20 19 0.479 128 43 37 39
s953 440 0.661 195 98 71 53 46 41 36 0.511 309 136 91 108
s1196 561 0.653 374 187 132 97 88 78 67 0.484 988 327 262 205
s1488 667 0.603 259 131 93 69 63 55 49 0.482 1883 677 435 418
s1494 661 0.601 268 137 96 72 65 57 51 0.496 1405 847 638 479
c3540 1753 0.665 2142 1146 703 547 440 370 344 - X X X X
s3330 1961 0.699 1186 590 451 313 245 210 184 - X X X X
c5378 2993 0.669 1850 914 601 467 371 312 264 - X X X X
s9234 5844 0.631 5571 2855 2006 1525 1272 1062 849 - X X X X

0.00

1.00

2.00

3.00

4.00

5.00

6.00

c3540
 s3330
 s5378
 s9234

Circuit Name

S
p

ee
d

-u
p

 2 3 4 5 6 2 3 4 5 6 2 3 4 5 6 2 3 4 5 6

Fig. 3. Speedup obtained for selected large circuits.

speedup obtained, results obtained were not encouraging.

V. CONCLUSIONS

In this work, we presented a parallel tabu search strategy
for accelerating the solution to a constrained multiobjective
VLSI cell placement problem. A distributed parallel GA was
also implemented for the comparison purposes. Experimental
results on ISCAS-85/89 benchmarks exhibited excellent trend
in terms of speedup, and it was revealed that the proposed
parallelization of TS required reduced runtimes for same
quality of placement solution.

VI. A CKNOWLEDGMENT

The authors would like to thank King Fahd University of
Petroleum & Minerals, Dhahran, Saudi Arabia, for support
under project code # COE/CELLPLACE/263.

REFERENCES

[1] Sadiq M. Sait and Habib Youssef.Iterative Computer Algorithms
and their Application to Engineering. IEEE Computer Society Press,
December 1999.

[2] F. Glover, E. Taillard, and D. de Werra. A User’s Guide to Tabu Search.
”Annals of Operations Research”, 41:3–28, 1993.

[3] Sadiq M. Sait, Mahmood R. Minhas, and Junaid A. Khan. Performance
and low-power driven VLSI standard cell placement using tabu search.
Proceedings of the 2002 Congress on Evolutionary Computation, 1:372–
377, May 2002.

[4] Prithviraj Banerjee. Parallel Algorithms for VLSI Computer-Aided
Design. Prentice Hall International, 1994.

[5] Van-Dat Cung, Simone L. Martins, Celso C. Riberio, and Catherine
Roucairol. Strategies for the Parallel Implementation of metaheuristics.
Essays and Surveys in Metaheuristics, pages 263–308, Kluwer 2001.

[6] T. G. Crainic, M. Toulouse, and M. Gendreau. Towards a taxonomy
of parallel tabu search heuristics.INFORMS Journal of Computing,
9(1):61–72, 1997.

[7] I. De Falco, R. Del Balio, E. Tarantino, and R. Vaccaro. Improving
search by incorporating evolution principles in parallel tabu search.
In Proc. of the first IEEE Conference on Evolutionary Computation-
CEC’94, volume 1, pages 823–828, June 1994.

[8] Bruno-Laurent Garica, Jean-Yves Potvin, and Jean-Marc Rousseau. A
parallel implementation of the tabu search heuristic for vehicle routing
problems with time window constraints.Computers & Operations
Research, 21(9):1025–1033, November 1994.

[9] M. Malek, M. Guruswamy, M. Pandya, and H. Owens. ”serial and
parallel simulated annealing and tabu search algorithms for the traveling
salesman problem”.Annals of Ops. Res., 21:59–84, 1989.

[10] J. Chakrapani and J. Skorin-Kapov. Massively parallel tabu search
for the quadratic assignment problem.Annals of Operations Research,
41:327–341, 1993.

[11] Connection Machine Model CM-2, Technical Summary Version 5.1.
Thinking Machines Corporation, Cambridge, MA, May 1989.

[12] E. Taillard. Robust tabu search for the quadratic assignment problem.
Parallel Computing, 17:443–455, 1991.

[13] Sadiq M. Sait and Habib Youssef. VLSI Physical Design Automation:
Theory and Practice.World Scientific Pubishers, 2001.

[14] Ronald R. Yager. On ordered weighted averaging aggregation operators
in multicriteria decision making.IEEE Transaction on Systems, MAN,
and Cybernetics, 18(1), January 1988.

[15] M. Toulouse, T. G. Crainic, and M. Gendreau. Issues in Designing
Parallel and Distributed search Algorithms for Discrete Optimization
Problems. Publication CRT-96-36, Centre de recherche sur les trans-
ports, Universit́e de Montŕeal, Montŕeal, Canada, 1996.

[16] Erick Cant-Paz. A survey of parallel genetic algorithms.Calculateurs
Parallles, Reseaux et Systems Repartis, 1998.

