
Design, Analysis, and FPGA prototyping of

High-Performance Arithmetic for Cryptographic

Applications

Literature Review - Part 1: Cryptographic

Algorithms

Mostafa Abd-El-Barr, Alaaeldin Amin and Turki F. Al-Somani

Computer Engineering Department, King Fahd University
of Petroleum & Minerals, Dhahran 31261, Saudi Arabia,
E-mail: {mostafa, amin, tsomani}@ccse.kfupm.edu.sa

Abstract

This report presents a brief survey on secret key and public key
cryptography algorithms. These include: block ciphers, stream ci-
phers, RSA, ElGamal and Elliptic Curve Cryptosystems (ECC). Since
ECC achieved security levels comparable to those of traditional public
key cryptosystems using smaller keys (160 bits), this work focus more
on ECC. Finally, this work also presents a survey on scalar multiplica-
tion algorithms used in ECC.

1 Introduction

During the last century, digital communication has become a major part of
peoples every day’s life. Industrialized countries are evolving towards in-
formation societies, where bank cards, mobile phones and wireless Internet
access are available to every citizen. Moreover, the value of information
keeps growing, while it is being subjected to an increased number of threats
such as eavesdropping of communication lines and theft of sensitive data.
This clearly demonstrates that there is a strong need for techniques to pro-
tect information and information systems. Cryptography is the science of
protecting information. A cryptographic algorithm is a mathematical func-
tion that uses a key to encipher information. Without knowledge of the key,

1

deciphering is not possible. Contemporary cryptography deals with more
issues than plain encryption. Mathematical concepts that can be used to
construct digital signatures or protocols for entity authentication, are well
established.

In typical scenario, two entities which are called party#1 and party#2,
want to exchange messages securely over an insecure channel. The adversary
can have several goals including eavesdropping the communication or alter-
ing it. Eavesdropping is a threat to the confidentiality of the messages, i.e.,
no unintended third part can understand the content. Altering is a threat
to the integrity of the message, i.e., no-one can change the message while
it is in transit. In addition, the adversary could also try impose one of the
communicating parties. Therefore, it is required to authenticate (i.e. get
assurance of the identity) the communicating parties. The last of the four
basic security services deals with non-repudiation, i.e., the property that the
sender cannot deny a message was sent.

This work is organized as follows: Section 2 briefly introduces secret
key cryptography. Section 3 provides a brief introduction to public key
cryptography. This includes RSA, ElGamal and ECC. Section 4 focuses
more on ECC while Section 5 introduces a survey on scalar multiplication
algorithms. Finally, Section 6 concludes the report.

2 Secret Key Cryptography

Numerous applications use (software) implementations of cryptographic al-
gorithms to provide security at low cost. The most important requirement
for such algorithms, besides their resistance against attacks, is that their
use causes minimum performance degradation to the application that uses
them. Three types of secret key cryptographic primitives are discussed in
this section. Block ciphers are used to encrypt data. If block ciphers are not
fast enough for an application, stream ciphers can be used as alternative.
In order to ensure integrity of data, modification detection codes (MDC)
which are also called hash functions are used. For authentication, message
authentication codes (MACs) are used.

2.1 Block Ciphers

A block cipher is defined as a set of Boolean permutations operating on n-bit
vectors. This set contains a Boolean permutation for each value of a key k.
In other words, a block cipher is a length preserving transformation which

2

takes an element (a plaintext) from the set of plaintexts and transforms
it into an element (the ciphertext) from the set of ciphertexts under the
influence of a key [1].

A block cipher usually consists of several operations (transformations),
which form the encryption algorithm. To allow efficient implementation,
block ciphers apply the same Boolean transformation several times on a
plaintext. The Boolean transformation is called round function, and the
block cipher is called an iterated block cipher. For each round, a key has to
be used. To generate such round keys Ki from the cipher key, a key schedule
algorithm is applied to the cipher key. If the round key is exclusive or-ed
(x-ored) to an intermediate value, then the cipher is called key-alternating
block cipher.

Modern block ciphers are usually based on two different types of designs.
Feistel ciphers operate on 2m input bits. The plaintext is split into a right
and a left half, L and R, and the round function f only acts on one of the
halves.

Li = Ri−1

Ri−1 = Li−1 ⊕ f(Ri−1,Ki)

As a consequence of the Feistel structure, it takes two rounds before all
plaintext bits have been subject to the round transformation. Decryption
can be done in the same way as encryption with the round keys supplied
in reverse order. Moreover, the round function f does not have to be a
permutation. The traditional DES (Data Encryption Standard) [2] con-
sists of an algorithm of that type. Another popular construction is called a
substitution permutation network (SPN). This construction emphasizes on
separating confusion (substitution) and diffusion (permutation) in the ci-
pher. In many recent SPN ciphers, the permutation layer has been replaced
by an affine transformation that is chosen in such a way that a high level of
diffusion is guaranteed. Rijndael[1] which is an algorithm using the new AES
(Advanced Encryption Standard) [3] is an example for this design. Feistel
ciphers can also be considered as a kind of SPNs.

Whenever a message being longer than the block size needs to be en-
crypted, the block cipher is used in a certain mode of operation. For the
DES, four modes have been standardized [4]. The electronic code book
(ECB) mode corresponds to the usual use of a block cipher; the message
is split into blocks and each block is encrypted separately with the same
key. In the cipher block chaining (CBC) mode, each ciphertext block is
x-ored (chained) with the next plaintext block before being encrypted with

3

the key. In the output feedback (OFB) mode and the cipher feedback (CFB)
modes, a keystream is generated and x-ored with the plaintext. Hence, the
latter two modes work as a synchronous additive stream cipher.

There is ongoing work to define new modes. Five confidentiality modes
are specified in [5] for use with any approved block cipher, such as the AES
algorithm.

2.2 Stream Ciphers

Stream ciphers encrypt individual characters, which are usually bits, of a
plaintext one at a time. They use an encryption transformation which varies
with time. Hence, in contrast to block ciphers, the encryption depends
not only on the key and the plaintext, but also on the current state. As
mentioned before at the end of the previous section, a block cipher can be
turned into a stream cipher by using a certain mode of operation (such as
CFB or OFB). There are no stream ciphers that are standardized today.
However, the de-facto standard is the RC4 stream cipher [6].

Synchronous stream ciphers generate a keystream independently of the
plain- text messages and of the ciphertext. Sender and receiver must there-
fore be synchronized; they must use the same key and operate at the same
state within that key. A ciphertext digit that is corrupted during transmis-
sion does not influence any other ciphertext bit.

An asynchronous stream cipher is a stream cipher in which the keystream
is generated as a function of the key and a fixed number of previous cipher-
text bits. Because the keystream is dependent on only a few previous ci-
phertext bits, self-synchronization is possible even if some of the transmitted
ciphertext bits are corrupted.

2.3 MDCs

An MDC (hash function) takes an input of arbitrary length and compresses
(digests) it to an output of fixed length, which is called the hash value.
Cryptographic hash functions satisfy the following additional properties:

1. preimage resistance: it should be computationally infeasible to find a
preimage to a given hash value,

2. second (2nd) preimage resistance: it should be computationally infea-
sible to find a 2nd preimage to a given input,

3. collision resistance: it should be computationally infeasible to find two
different inputs with the same hash value.

4

Hash functions are used to ensure the integrity of data. This can be
done by using the data as input to the hash function and storing its output.
Later on, to verify that the input data has not been altered, the hash value
is recomputed using the data at hand and compared with the original hash
value. Another application for hash functions is to use them in digital sig-
nature schemes. Hash functions of the secure hash algorithms (SHA) family
have been standardized by NIST [7].

2.4 MACs

Hash functions which involve a secret key are called message authentication
codes (MACs). The output of such a keyed hash function is also called
MAC. In contrast to to MDCs they can also be used to guarantee data
origin authentication (i.e. corroborate the source of information) and data
integrity. Most contemporary MACs are constructed based upon either a
block cipher or a hash function.

In order to ensure authenticity of data, an entity computes a MAC on
the data by using the private key. In order to verify the authenticity of the
data later on, the MAC can be recomputed by anyone who may access the
private key. Standardized MACs are the data authentication code (DAC)
[8] and the new keyed-hash message authentication code (HMAC) [9].

3 Public Key Cryptography

In public key cryptography, secret keys are replaced by keypairs consisting
of a private key, which must be kept confidential, and a public key, which
is made available to the public by for example publishing it in a directory.
Anyone who wishes to send a message to the owner of a certain keypair will
take the public key, encrypt the message under this public key and send it
to the owner of the keypair. The owner can decrypt the message by using
the private key.

This idea works out in practice because the private and the public key
are linked in a mathematical way (by a mathematical function) such that
knowing the public key does not allow the recovery of the private key. Sev-
eral mathematical functions which are useful for public key cryptography
are known today. Amongst others, the most important hard mathematical
problems are:

• IFP (integer factorization problem): given a positiv integer n, find its
prime factorization n = pe1

1 pe2
2 ...pek

k

5

• GDLP (generalized discrete logarithm problem): given a finite cyclic
group G of order n, a generator α of G, and an element β ∈ G, find
the integer x, 0 ≤ x ≤ n− 1, such that ax = β.

• DHP (Diffie-Hellman problem): given a prime p, a generator α of Z∗
p ,

and elements αa mod p and αb mod p, find αab mod p.

In the subsequent sections, we discuss a reference cryptosystem for each
of the above given hard mathematical problems. Thereafter, we sketch two
other important applications for public-key cryptography, namely key agree-
ment and digital signatures.

3.1 RSA

The Rivest-Shamir-Adleman (RSA) algorithm [10] was the first public key
encryption algorithm invented. Under certain assumptions, the RSA algo-
rithm is based on the IFP. RSA keys are generated as follows: one selects two
large secret prime numbers p and q and computes the public RSA modulus
n = pq. Then one chooses a public encryption exponent e which satisfies
gcd(e, (p− 1)(q − 1)) = 1. The private key, i.e. the decryption exponent, d
can then be calculated by solving ed = 1(mod (p − 1)(q − 1)). Hence the
public key is the tuple (e, n) and the private key is the triple (d, p, q).

Suppose that someone wishes to encrypt a message for the entity which
is associated with the public key (e, n). Then, the message needs to be
represented as a number m < n. The ciphertext is computed by raising
m to the power e : c = me(mod n). This message can be decrypted by
exponentiation with the private key m = cd(mod n).

3.2 ElGamal

The ElGamal encryption algorithm[11] is based on the DLP in the finite
field Z∗

p . An advantage of ElGamal is that some public parameters can be
shared by a group of users. These so-called domain parameters are a large
prime p such that p-1 is divisible by another prime q, and an element g ∈ Z∗

p

of order divisible by q. The private key is chosen to be an integer d. The
public key e can then be computed by solving e = gd (mod p).

Suppose that someone wishes to encrypt a message for the entity which
is associated with the public key (e, p, q). Then, the message needs to be
represented as a number m < p. In a first step of the encryption proce-
dure, a random key k is generated. The ciphertext c consists of a pair
c = (c1, c2) = (gk,mek). To decrypt the ciphertext, c2/cd

1 is computed.

6

Since each message has a different ephemeral key, encrypting the same mes-
sage twice will produce two different ciphertexts. Cryptosystems with this
property are also called non-deterministic or randomized cryptosystems.

3.3 ECC

Since its inception, elliptic curve cryptography [12] has been the subject
of extensive cryptanalysis. Today, elliptic curve cryptosystems (ECCs) are
deemed secure for commercial as well as government use and has been in-
cluded in many standards [13] - [19]. Based on today’s crypt-analytical
knowledge, elliptic curve cryptosystems achieve security levels compara-
ble to those of traditional public-key cryptosystems, e.g. RSA, ElGamal,
and those based on the Diffie-Hellman key agreement algorithm [20], using
smaller keys and computationally more efficient algorithms.

The ability to use smaller keys and algorithms that are more com-
putationally efficient than traditional cryptographic algorithms are two of
the main reasons why elliptic curve cryptography is becoming popular for
use particularly in constrained environments, such as smart cards, cellular
phones and personal digital assistant devices, which have limited memory
and are battery-powered. The same reasons also make elliptic curve cryp-
tography attractive for high performance systems, such as secure network-
ing devices, whose ability to protect and route traffic is a function of their
capacity to establish secure connections. Establishing these secure connec-
tions often involves public-key operations. Elliptic curve cryptography is
discussed in details in the next section.

4 Elliptic Curve Cryptography

Elliptic Curve Cryptosystem (ECC), which was originally proposed by Niel
Koblitz and Victor Miller in 1985 [12], is seen as a serious alternative to RSA
with much shorter key size. ECC with key size of 128-256 bits is shown to
offer equal security to that of RSA with key size of 1-2K bits. To date,
no significant breakthroughs have been made in determining weaknesses
in the ECC algorithm, which is based on the discrete logarithm problem
over points on an elliptic curve. The fact that the problem appears so
difficult to crack means that key sizes can be reduced in size considerably,
even exponentially. This made ECC to become a serious challenge to the
RSA. The advantage of ECC is being recognized recently where it is being
incorporated in my standards [13]-[19]. ECC have gained popularity for

7

cryptographic applications because of the short key compared with earlier
public key cryptosystems such as RSA and ElGamal. They are considered
particularly suitable for implementation on smart cards or mobile devices.

4.1 GF (2m) Arithmetic Background

The finite GF (2m) field has particular importance in cryptography since it
leads to particularly efficient hardware implementations. Elements of the
field are represented in terms of a basis. Most implementations use either
a Polynomial Basis or a Normal Basis. For the implementation described
in this report, a normal basis is used since it leads to more efficient hard-
ware implementations. Normal basis is more suitable for hardware imple-
mentations than polynomial basis since operations are mainly comprised of
rotation, shifting and exclusive-OR operations which can be efficiently im-
plemented in hardware. A normal basis of GF (2m) is a basis of the form
(β20

, β21
, β22

, ...β2m−1
) , where β ∈ GF (2m)

In a normal basis, an element A ∈ GF (2m) can be uniquely represented
in the form A =

∑m−1
i=0 αiβ

2i
,where ai ∈ {0, 1}. GF (2m) operations using

normal basis are performed as follows.

1. Addition and squaring. Addition is performed by a simple bit-wise
exclusive-OR (XOR) operation, while squaring is simply a rotate left
operation.

2. Multiplication. ∀ A,B ∈ GF (2m), where A =
m−1∑
i=0

aiβ
2i

and B =

m−1∑
i=0

biβ
2i

, the product C = A ∗B, is given by:

C = A ∗B =
m−1∑
i=0

ciβ
2i

then multiplication is defined in terms of a multiplication table λij ∈
{0, 1}.

ck =
m−1∑
i=0

m−1∑
j=0

λijai+kbj+kβ
2i

(1)

An optimal normal basis (ONB) [21] is one with the minimum num-
ber of terms in (1), or equivalently, the minimum possible number of
nonzero λij . This value is 2m − 1, and since it allows multiplication

8

with minimum complexity, such a basis would normally lead to more
efficient hardware implementations.

3. Inversion. Inverse of a ∈ GF (2m), denoted as a−1, is defined as follows.

aa−1 ≡ 1 mod 2m

The algorithm used for inversion is derived from Fermat’s Little The-
orem

a−1 = a2m−2 = (a2m−1−1)2

for all a 6= 0 in GF (2m). The method chosen was proposed by Itoh
and Tsujii [22], based on the following decomposition which minimizes
the number of multiplications (squarings are much cheaper in a normal
basis).
If m is odd, then

2m−1 = (2
m−1

2 − 1)(2
m−1

2 + 1), and

a2m−1
= (a2

m−1
2 −1)2

m−1
2 +1

which can be computed using one field multiplication provided a2
m−1

2 −1

is given. The cost of squaring is ignored because it is insignificant com-
pared to multiplication.
If m is even, then

2m−1 − 1 = 2(2m−2 − 1) + 1 = 2(2
m−2

2 − 1)(2
m−2

2 + 1) + 1, and

a2m−1
= a2(2

m−2
2 −1)(2

m−2
2 +1)+1

which requires two field multiplications if a(2
m−2

2 −1) is given.

9

4.2 GF (2m) Elliptic Curve Arithmetic

This section provides a brief introduction to elliptic curve arithmetic. An
elliptic curve over a finite field GF (q) defines a set of points (x, y) that
satisfy the elliptic curve equation together with the point O, known as the
“point at infinity”[12]. The “point at infinity” does not satisfy the elliptic
curve equation. The coordinates x and y of the elliptic curve points are
elements of the field GF (q), where q = pm and p is prime. This report will
focus on elliptic curves defined over GF (2m), where m is prime. Hardware
implementations, in this case, have both higher security and computation
efficiency with addition requiring no carry propagation, squaring reduced
to a simple rotate operation, and no discrimination is necessary between
positive and negative numbers [16]. Only non-supersingular curves will be
considered since they are more secure than supersingular curves. Supersin-
gular elliptic curves are special class of curves with some special properties
that make them unstable for cryptography [23]. Equation (2) defines the
elliptic curve equation for fields GF (2m).

y2 + xy = x3 + ax2 + b (2)

where a, b ∈ GF (2m) and b 6= 0.
The set of discrete points on an elliptic curve form an abelian group

(commutative group), whose group operation is known as point addition.
Bounds for the number of discrete points n on an elliptic curve over a finite
field GF (q) are defined by Hasse’s theorem given in Equation (3), where the
symbol n represents the number of points on the elliptic curve and where
q = pm represents the number of elements in the underlying finite field.

q + 1− 2
√

q ≤ n ≤ q + 1 + 2
√

q (3)

Elliptic curve point addition is defined according to the “chord-tangent pro-
cess”. Point addition is described as follows:

Let P and Q be two distinct points on an elliptic curve E defined over
the real numbers with Q 6= −P (Q is not the additive inverse of P). The
addition of P and Q is the point R (R = P + Q); where R is the additive
inverse of S, and S is a third point on the elliptic curve intercepted by the
straight line through points P and Q. For the curve under consideration, R
is the reflection of the point S with respect to the x-axis; that is, if R is the
point (x, y), S is the point (x,−y). The addition operation just described is
illustrated in Figure 1.

When P = Q and P 6= −P, the addition of P and Q is the point R
(R = 2P); where R is the additive inverse of S, and S is the third point

10

Figure 1: Point Addition

Figure 2: Point Doubling

on the elliptic curve intercepted by the straight line tangent to the curve
at point P . This operation is referred to as point doubling, and is shown in
Figure 2.

The “point at infinity”, O, is the additive identity of the group. The
most relevant operations involving O are the following:

• The addition of a point P and O is equal to P (P +O = P)

• The addition of a point P and its additive inverse −P is equal to O
(P −P = O). If P is a point on the curve, then −P is also a point on
the curve.

Point addition and the point doubling operations are generally com-

11

puted using algebraic formulas derived from the geometrical operations just
described. Assuming affine coordinates, a point on the curve is represented
by two coordinates, x and y. For an elliptic curve E defined over GF (2m),
E : y2 + xy = x3 + ax2 + b, let P = (x1, y1) ∈ E; then −P = (x1, x1 + y1).

• If Q = (x2, y2) ∈ E, P 6= Q and Q 6= −P, then P +Q = (x3, y3), where

x3 = (y1+y2

x1+x2
)2 + (y1+y2

x1+x2
) + x1 + x2 + a

y3 = (y1+y2

x1+x2
) · (x1 + x3) + x3 + y1

• If P = Q = (x1, y1), then 2P = P + P = (x3, y3), where

x3 = x2
1 + b

x2
1

y3 = x2
1 + (x1 + y1

x1
)x3 + x3

Projective coordinates are used to eliminate the number of inversions
[23]. For elliptic curve defined over GF (2k), many different forms of for-
mulas are found [24]-[27] for point addition and doubling. The projec-
tive coordinates (Pr), so called homogeneous coordinates, takes the form
(x, y) = (X/Z, Y/Z) [25], while the Jacobian coordinates takes the form
(x, y) = (X/Z2, Y/Z3) [26] and the Lopez-Dahab coordinates takes the form
(x, y) = (X/Z, Y/Z2) [27]. From the Jacobian coordinates, two other co-
ordinates where proposed. These are: the Chudnovsky Jacobian coordi-
nates (Jc) representing the point with the quintuple (X, Y, Z, Z2, Z3) and
the Modified Jacobian coordinates (Jm) representing the point with the
quadruple (X, Y, Z, aZ4). Mixed coordinates was proposed in [24] leading
to better performance.

Point subtraction is a useful operation in some algorithms. This oper-
ation can be performed with the point addition or point doubling formulas
using the additive inverse of the point to be subtracted. For example, the
point subtraction P−Q can be computed using the point addition operation
where: P −Q = P +(−Q). The additive inverse of a point P = (x, y) is the
point (x, x + y) for curves defined over the GF (2m) fields.

The point operation used by elliptic curve cryptosystems is referred to
as point multiplication. This operation is also referred to as scalar point

12

multiplication. The point multiplication operation is denoted as kP, where
k is an integer number and P is point on the elliptic curve. The operation
kP represents the addition of k copies of point P as shown in Equation (4).

kP = P + P + · · ·+ P︸ ︷︷ ︸
k times P

(4)

Elliptic curve cryptosystems are built over cyclic groups. Each group
contains a finite number of points, n, that can be represented as scalar
multiples of a generator point: iP for i = 0, 1, ..., n−1, where P is a generator
of the group. The order of point P is n, which implies that nP = O and
iP 6= O for 1 < i < n− 1. The order of each point on the group must divide
n. Consequently, a point multiplication kQ for k > n can be computed as
(k mod n)Q.

4.3 Elliptic Curve Scalar Multiplication

Scalar multiplication is the basic operation for ECC. Scalar multiplication in
the group of points of an elliptic curve is the analogous of exponentiation in
the multiplicative group of integers modulo a fixed integer m. Computing kP
can be performed using a straightforward double-and-add approach based
on the binary representation of k = (kl−1, ..., k0) where kl−1 is the most
significant bit of k. Other scalar multiplication methods have been proposed
in the literature. A good survey is conducted by Gordon in [28]. These
scalar multiplication algorithms will be described in detail next Section.

4.4 Elliptic Curve Discrete Logarithm Problem

Elliptic curve cryptosystems base their security on what is known as the
elliptic curve discrete logarithm problem. This problem can be stated as
follows. Given a known elliptic curve and two known points P and Q, where
Q = kP, it is computationally infeasible to determine the value of k if the
parameters have been carefully chosen. Elliptic curve cryptosystems use
cyclic groups with very large number of points. For example, the FIPS
186-2 standard [19] recommends groups for which the number of points
ranges from about 2163 to about 2571 points, depending on the curve and
the underlying finite field. The best cryptanalysis algorithms known today,
such as the Pollard’s rho algorithm [29], computes an elliptic curve discrete
logarithm with an average of O

√
n point operations if the parameters have

been carefully chosen, where n represents the number of points of the cyclic
group being used.

13

Using the best cryptanalysis algorithms, determining a discrete loga-
rithm in the curves specified by the FIPS 186-2 standard require over 280

point operations [19]. This is an intractable exponential problem given the
current computer technology. It is important to realize that well-chosen
curves achieve the required degree of security. Other curves may exhibit
structures that facilitate cryptanalysis; for example, curves defined over
composite fields of characteristic two [30].

5 Scalar Multiplication Algorithms

This Section describes some of the most popular scalar multiplication algo-
rithms. The algorithms discussed here for scalar multiplications are mostly
variants of similar algorithms employed for exponentiation. The most pop-
ular algorithms for exponentiation are described in [31]. The algorithms for
scalar multiplication covered here are discussed in detail in [14],[28],[32]-[35].
The following two subsections study two main classes of algorithms. These
are the generic scalar multiplication algorithms that can be used to compute
an arbitrary scalar multiplication and the fixed-point scalar multiplication
algorithms, which can be used to compute scalar multiplications involving
fixed points. The fixed-point scalar multiplication algorithms are of interest
because scalar multiplication with fixed points can be computed much more
efficiently than for arbitrary points. In addition, fixed-point multiplication
is a common operation in elliptic curve cryptographic algorithms.

5.1 Generic Scalar Multiplication Algorithms

Generic scalar multiplication algorithms can be used to compute scalar mul-
tiplications involving arbitrary points. This section discusses six point multi-
plication algorithms: double-and-add (or binary), w -ary, addition-subtraction,
signed w -ary, width-w addition-subtraction scalar multiplication and Mont-
gomery scalar multiplication algorithms.

5.1.1 Double-and-Add Scalar Multiplication Algorithm

One of the simplest scalar multiplication algorithms is the double-and-add
point multiplication algorithm. Algorithm 1 shows the left-to-right version
of the double-and-add scalar multiplication algorithm. This algorithm in-
spects the multiplier k, starting with its most significant bit and ending

14

with its least significant bit. For each inspected bit, the algorithm performs
a point double (Step 2.1), and, if the inspected bit is a one, the algorithms
also performs a point add (Step 2.2).

The double-and-add scalar multiplication algorithm requires, on average,
l point doubles and l/2 point additions, where l ≈ dlog2 ke. This algorithm
also requires the storage of two points, P and Q.

Algorithm 1 Double-and-add scalar multiplication algorithm
Inputs: P, k
Output: kP
Initialization:
1. Q = O
Scalar Multiplication:
2. for i = l − 1 down to 0 do

2.1. Q = 2Q
2.2. if ki = 1 then Q = Q + P
end for

3. return(Q)

5.1.2 w-ary Scalar Multiplication Algorithm

The w -ary scalar multiplication algorithm, Algorithm 2, is a generalization
of the double-and-add scalar multiplication algorithm that process w bits of
the multiplier k in each iteration.

The first main step of Algorithm 2 is the recoding of the multiplier k in
radix 2w with dl/we digits in the range [0, 2w) : k =

∑dl/we−1
i=0 k′

i2
wi with

k′
i ∈ [0, 2w). This representation can be derived directly from the binary

representation of k ; for example, the number k = (01101100)2 is recoded
as k = (1230)4 in radix 4. The second main step of Algorithm 2 is the
precomputation of the values iP for i ∈ [2, 2w). The basic idea is to compute
these values once and then use the precomputed values as necessary in the
sacalr multiplication operation.

The third main step of Algorithm 2 is the actual scalar multiplication
operation. This operation involves dl/we iterations. In each iteration, the
accumulated value Q is doubled w times (Step 4.1). If the recoded digit k′

i is
nonzero, then the precomputed point Pk′i

is added to the accumulated point
(Step 4.2.1). Note that as in Algorithm 2 the recoded digits are consumed
starting with the most significant digit and ending with the least significant

15

Algorithm 2 w -ary scalar multiplication algorithm
Inputs: P, k
Output: kP

Recoding of k : k =
∑dl/we−1

i=0 k′
i2

wi, k′
i ∈ [0, 2w).

1. for i = 0 to dl/we − 1 do
1.1. k′

i = k mod 2w

1.2. k = k − k′
i

1.3. k = k/2w

end for
Initialization:
2. Q = O, P1 = P
Precomputations: Pi = iP, i ∈ [0, 2w).
3. for i = 1 to 2w−1 − 1 do

3.1. P2i = 2Pi

3.2. P2i+1 = P2i + P
end for

Scalar Multiplication:
4. for i = dl/we − 1 down to 0 do

4.1. Q = 2wQ
4.2. if k′

i 6= 0 then
4.2.1. Q = Q + Pk′i

end for
5. return(Q)

16

one.
The precomputation effort of the w -ary scalar multiplication algorithm

requires approximately 2w−1 point doubles and 2w−1 point additions. The
scalar multiplication phase requires on average l point doubles and l/w point
additions, when assuming that k′

i 6= 0 for all i and where l ≈ dlog2 ke.
In total, the algorithm requires approximately 2w−1 + l point doubles and
2w−1 + l/w point additions. The algorithm also requires the storage of
approximately 2w points.

For a given set of parameters, it may be advantageous to compute 2wP
directly in Step 4.1 with a closed expression instead of computing it with w
individual point doubles (2(2(2(... 2P)))).

The w -ary scalar multiplication algorithm is a fixed-size windowing algo-
rithm. Sliding window algorithms are extensions of the w -ary scalar multi-
plication algorithm that use variable-size windows. The complexity of point
double operations is typically lower than that of point addition operations,
which suggests that larger speedups could be obtained in scalar multiplica-
tion algorithms.

5.1.3 Addition-Subtraction Scalar Multiplication Algorithm

The addition-subtraction scalar multiplication algorithm, shown in Algo-
rithm 3, is an extension of the double-and-add scalar multiplication algo-
rithm that computes scalar multiplications using point additions, point sub-
tractions, and point doubles. By incorporating point subtractions, whose
computational complexities are quite similar to those of point additions,
this algorithm achieves a lower computational complexity than the double-
and-add point multiplication algorithm with a relatively small increase in
complexity.

The addition-subtraction point multiplication algorithm can be realized
with different signed digit representations. This work considers the use of the
non-adjacent form representation (NAF) described in [36]. Using this rep-
resentation a multiplier k =

∑l−1
i=0 ki2i is uniquely recoded as k =

∑l
i=0 k′

i2
i

with k′
i ∈ [−1, 1], where the recoded representation does not contain con-

tiguous nonzero digits and where the average number of nonzero digits is
l/3. The non-adjacent form (NAF) representation of an l -bit multiplier k is
at most l + 1 digits long.

The first main step of the addition-subtraction scalar multiplication algo-
rithm is the recoding of the multiplier k. The second main step is the scalar
multiplication operation. The scalar multiplication operation consists of l

17

Algorithm 3 Addition-subtraction scalar multiplication algorithm
Inputs: P, k
Output: kP
Recoding of k : k =

∑l
i=0 k′

i2
i, k′

i ∈ [−1, 1].
1. for i = 0 to l do

1.1. if k mod 2=1 then
1.1.1 k′

i = 2− k mod 22

1.2. else
1.2.1 k′

i = 0
1.3 k = k − k′

i

1.4 k = k/2
end for

Initialization:
2. Q = O
Scalar Multiplication:
3. for i = l down to 0 do

3.1. Q = 2Q
3.2. if k′

i = 1 then
3.2.1. Q = Q + P

3.3. if k′
i = −1 then

3.3.1. Q = Q− P
end for

4. return(Q)

18

+ 1 loop iterations. In each loop iteration an accumulated point is doubled
(Step 3.1). Also in each iteration of the loop, if the recoded digit under
inspection is a one, a point is added to the accumulated point (Step 3.2.1).
If the value of the recoded digit is negative one (-1), a point is subtracted
from the accumulated point (Step 3.3.1).

The addition-subtraction point multiplication algorithm requires, on av-
erage, l point doubles and l/3 point additions. This algorithm also requires
the storage of two points, P and Q.

5.1.4 Signed w-ary Scalar Multiplication Algorithm

The signed w -ary scalar multiplication algorithm, shown in Algorithm 4,
is an extension of the w-ary scalar multiplication algorithm that computes
scalar multiplications using point additions, point subtractions, and point
doubles.

The first main step of Algorithm 4 is the recoding of the multiplier k in
radix 2w with d(l+1)/we digits in the range [−2w−1, 2w−1) : k

∑d(l+1)/we−1
i=0 k′

i2
wi.

For example, using this representation, the number k = (11100100)2 can be
recoded as k = (102̄10)4 in radix 4, where 2̄ = −2. (Note that the signed
w -ary scalar multiplication algorithm can be implemented using different
signed digit representations.)

The second main step of Algorithm 4 is the precomputation of the values
iP for i ∈ [2, 2w−1]. The basic idea is to compute these values once and
then use the precomputed values as necessary in the scalar multiplication
operation. The additive inverse of a point is generated as necessary when
performing point subtractions.

The third main step of Algorithm 4 is the actual point multiplication op-
eration. This operation involves d(l+1)/we−1 iterations. In each iteration,
the accumulated value of Q is doubled w times (Step 5.1). If the recoded
digit k′

i is greater than 0, then the point P|k′i| is added to the accumulated
point (Step 5.2.1). If the recoded digit k′

i is negative, then the point P|k′i| is
subtracted from the accumulated point (Step 5.3.1). Note that as in the w -
ary scalar multiplication algorithm the recoded digits are consumed starting
with the most significant digit and ending with the least significant one.

The precomputations of the signed w -ary scalar multiplication algorithm
requires approximately 2w−2 point doubles and 2w−2 point additions. The
scalar multiplication phase requires approximately l point doubles and l/w
point additions (including subtractions), when assuming that k′

i 6= 0 for all
i and where l ≈ dlog2 ke. In total, the algorithm requires approximately

19

2w−2 + l point doubles and 2w−2 + l/w point additions (including subtrac-
tions). The algorithm also requires the storage of 2w−1 points.

In comparison with the w -ary scalar multiplication algorithm, the signed
w -ary scalar multiplication algorithm requires the precomputation and stor-
age of half as many points.

Algorithm 4 Signed w -ary scalar multiplication algorithm
Inputs: P, k
Output: kP

Recoding of k : k =
∑d(l+1)/we−1

i=0 k′
i2

wi, k′
i ∈ [−2w−1, 2w−1).

1. for i = 0 to d(l + 1)/we − 1 do
1.1. k′

i = k mod 2w

1.2. if k′
i ≥ 2w−1 then

1.2.1 k′
i = −(2w − k′

i)
1.3. k = k − k′

i

1.4. k = k/2w

end for
Initialization:
2. Q = O, P1 = P
Precomputations: Pi = iP, i ∈ [1, 2w−1].
3. for i = 1 to 2w−2 − 1 do

3.1. P2i = 2Pi

3.2. P2i+1 = P2i + P
end for

4. P2w−1 = 2P2w−2

Scalar Multiplication:
5. for i = d(l + 1)/we − 1 down to 0 do

5.1. Q = 2wQ
5.2. if k′

i > 0 then
5.2.1. Q = Q + Pki

5.3. if k′
i < 0 then

5.3.1. Q = Q− P|ki|
end for

6. return(Q)

20

5.1.5 Width-w Addition-Subtraction Scalar Multiplication Algo-

rithm

Algorithm 5 shows the width-w addition-subtraction scalar multiplication
algorithm described in [35].

The first main step of the algorithm is the recoding of the multiplier k
(Steps 1 1.4). In this algorithm, the multiplier k =

∑l−1
i=0 ki2i with k′

i ∈
[0, 1], is recoded using a width-w non-adjacent form (w -NAF) as follows:
k =

∑l
i=0 k′

i2
i where k′

i ∈ (−2w−1, 2w−1) and k′
i is odd.

The second main step of the algorithm is the precomputation of the
points iP for odd values of i in the range [3, 2w−1) (Steps 3-5.1).

The third main step of the algorithm is the scalar multiplication process.
This is an iterative process in which one digit of the recoded k is inspected
in each iteration. In each iteration the accumulated point is doubled (Step
6.1). If the scanned digit is greater than zero, the point Pbk′i/2c is added
to the accumulated point (Step 6.2.1). If the scanned digit is negative, the
point Pb|k′i|/2c is subtracted from the accumulated point (Step 6.3.1).

The precomputation phase of the width-w addition-subtraction scalar
multiplication algorithm requires one point double and 2w−2−1 point addi-
tions. The scalar multiplication phase requires on average approximately l
point doubles and l/(w + 1) point additions (including subtractions), where
l ≈ dlog2 ke. In total, the algorithm requires approximately l point doubles
and 2w−2+l/(w+1) point additions (including subtractions). The algorithm
also requires the storage of approximately 2w−2 points.

5.1.6 Montgomery Scalar Multiplication Algorithm

The Montgomery scalar multiplication algorithm for GF (2m) discussed here
uses a variant of the double-and-add point multiplication algorithm. The
algorithm is based on the observation that the x coordinate of the sum of
two points P1 and P2, whose difference is known to be P (P2 −P1 = P), can
be computed using the x coordinates of the points P, P1, and P2. The y
coordinate of the point P1, which contains the scalar multiplication result
at the end of the scalar multiplication process, can be recovered using the
x coordinates of P, P1, and P2 together with the y coordinate of P (see
Algorithm 6).

The description in the previous paragraph corresponds to the affine co-
ordinates version of the algorithm, which is unattractive for implementation
because it requires the computation of inverses for each group operation.

21

Algorithm 5 Width-w Addition-Subtraction Scalar Multiplication Algo-
rithm

Inputs: P, k
Output: kP
Recoding of k : k =

∑l
i=0 k′

i2
i, k′

i ∈ (−2w−1, 2w−1).
1. for i = 0 to l do

1.1. if k mod 2w =1 then
1.1.1. k′

i = k mod 2w

1.1.2. if k′
i ≥ 2w−1 =1 then

1.1.2.1 k′
i = −(2w − k′

i)
1.2. else

1.2.1. k′
i = 0

1.3. k = k − k′
i

1.4. k = k/2
end for

Initialization:
2. Q = O, P1 = P
Precomputations:
3. P0 = P
4. T = 2P
5. for i = 1 to 2w−2 − 1 do

5.1 Pi = Pi−1 + T
end for
Scalar Multiplication:
6. for i = l down to 0 do

6.1. Q = 2Q
6.2. if k′

i > 0 then
6.2.1. Q = Q + Pbk′i/2c

6.3. if k′
i < 0 then

6.3.1. Q = Q− Pb|k′i|/2c
end for

7. return(Q)

22

Algorithm 6 Montgomery Point Multiplication Algorithm
Inputs: P, k
Output: kP
Initialization:
1. k = (kl−1...k1k0)2
2. P1 = P, P2 = 2P
Scalar Multiplication:
3. for i = l − 2 down to 0 do

3.1. if ki = 1 then P1 = P1 + P2, P2 = 2P2

3.2. else P2 = P1 + P2, P1 = 2P1

end for
4. return(Q = P1)

An attractive projective coordinates version of the algorithm was also intro-
duced in [37].

5.1.7 Comparisons between generic scalar multiplication algo-

rithms

This section provides a brief comparisons between generic scalar multipli-
cation algorithms. The comparisons are based on the algorithm complexity
and the storage requirements. The complexity is specified in terms of point
additions and point doubles. While the storage requirements are specified
in terms of the number of points that needs to be stored.

The complexity and the storage requirements of generic scalar multipli-
cation algorithms are summarized in Table 1. It is clear from Table 1 that
the generic scalar multiplication algorithms require about one point double
per bit in the binary representation of k. It is also clear that the generic
scalar multiplication algorithms differ in how they reduce the number of
point additions which is done by multiplier recoding, precomputation or
combination between multiplier recoding and precomputation.

The addition- subtraction point multiplication algorithm reduces the
number of point additions over the double-and-add point multiplication al-
gorithm by recoding the multiplier k (point subtractions are treated as point
additions). The double-and-add, the addition-subtraction, and the Mont-
gomery scalar multiplication algorithms require no precomputation. The
other generic algorithms include combinations of multiplier recoding and
precomputation. The number of precomputations in these algorithms grows

23

Algorithm Average Complexity (log2 k ≈ m) Storage Requirments
point double # point add # points

double-and-add m m/2 2
w -ary 2w−1 + m 2w−1 + m/w 2w

addition-subtraction m m/3 2
signed w -ary 2w−2 + m 2w−2 + m/w 2w−1

width-w m 2w−2 + m/(w + 1) 2w−2

addition-subtraction
Montgomery m m 3

Table 1: Complexity of generic scalar multiplication algorithms

exponentially with the window size, and the number of point additions, ex-
cluding the ones required for the precomputations, grows inversely propor-
tional with the window size. The memory requirements grow exponentially,
as each precomputed point requires storage.

5.2 Fixed-Point Scalar Multiplication Algorithms

This section discusses the special case of scalar multiplication using fixed
points. This operation is used in elliptic curves cryptographic algorithms,
such as the analogues of the Diffe-Hellman key agreement algorithm, the
ElGamal encryption and digital signature algorithms, and the Digital Sig-
nature Algorithm (DSA).

5.2.1 Fixed-Point Windowing Scalar Multiplication Algorithm

The fixed-point windowing scalar multiplication algorithm, described by Al-
gorithm 7, is based on the fixed-base exponentiation algorithm introduced in
[38]. Algorithm 7 shows a variant of the fixed-point windowing point mul-
tiplication algorithm discussed in [28] that recodes the multiplier k using
signed digit representation.

In the fixed-point windowing scalar multiplication algorithm, the mul-
tiplier k is recorded as k =

∑d(l+1)/we−1
i=0 k′

i2
wi with k′

i ∈ (−2w−1, 2w−1)..
Using this recoding, the scalar multiplication can be expressed as follows:
kP =

∑d(l+1)/we−1
i=0 k′

i(2
wiP). Because the point P is known, it is possible

24

to precompute the points 2wiP for i = 1...d(l + 1)/we − 1. Given the pre-
computed points, a scalar multiplication can be computed by adding, or
subtracting, | k′

i | copies of 2wiP for all k′
i 6= 0. The fixed-point window-

ing scalar multiplication algorithm performs these point additions and point
subtractions in an efficient manner.

The first main step of the fixed-point windowing scalar multiplication
algorithm is the off-line precomputation of the points 2wiP for i = 1...d(l +
1)/we − 1(Steps 1-2.1).

The second main step of the fixed-point windowing scalar multiplication
algorithm is the recoding of the multiplier k (Steps 3-3.4).

The third main step of the fixed-point scalar multiplication algorithm is
the scalar multiplication process (Steps 5-5.3). This is an iterative process
that adds a point k′

i(2
wiP) by adding the point 2wiP to an accumulated

point when k′
i > 0 or by subtracting the point 2wiP when k′

i < 0. From the
iteration at which the point 2wiP is added or subtracted till the last loop
iteration, the accumulated point is added to itself k′

i times; therefore, the
accumulated point incorporates the point k′

i(2
wiP) in its result.

Assuming off-line precomputation, the scalar multiplication requires ap-
proximately 2w−1 + l/w point additions (including subtractions), where
l ≈ dlog2 ke. The algorithm also requires the storage of approximately
dl/we points.

5.2.2 Fixed-Point Comb Scalar Multiplication Algorithm

The fixed-point comb scalar multiplication algorithm, described by Algo-
rithm 8, is based on the fixed-base comb exponentiation algorithm intro-
duced in [39]. The fixed-point comb scalar multiplication algorithm arranges
the scalar multiplier k =

∑l−1
i=0 ki2i as shown to the left of the vertical

bar in Figure 2.4. The arrangement of the multiplier k consists of v two-
dimensional arrays, where each two-dimensional array contains h rows and
b columns and where l = ah and a = vb (note that the multiplier k can be
extended by adding zeros to the most significant bit positions to meet these
conditions).

The contribution of digit ki in the scalar multiplication kP =
∑l−1

i=0 ki2iP, ki2iP,
is shown in Figure 2.1 as follows. The weight of a multiplier ki within a row
is listed in the top row and the weight of a row is listed to the right of the
vertical bar. To determine the contribution of bit ki multiply the weight at
the top of the column containing ki, the weight of the row that contains ki,
and the value of ki; this process forms the value ki2iP .

25

Algorithm 7 Fixed-Point Windowing Scalar Multiplication Algorithm
Inputs: P, k
Output: kP
Off-Line precomputation: Pi = 2wiP
1. P0 = P
2. for i = 1 to d(l + 1)/we − 1 do

2.1. Pi = 2wiPi−1

end for
Recoding of k : k =

∑d(l+1)/we−1
i=0 k′

i2
wi, k′

i ∈ [−2w−1, 2w−1).
3. for i = 0 to d(l + 1)/we − 1 do

3.1. k′
i = k mod 2w

3.2. if k′
i ≥ 2w−1 then

3.2.1 k′
i = −(2w − k′

i)
3.3. k = k − k′

i

3.4. k = k/2w

end for
Initialization:
4. A = O, B = O
Scalar Multiplication:
5. for i = 2w−1 down to 1 do

5.1. for each i for which k′
i = j do

5.1.1 B = B + Pi

5.2. for each i for which k′
i = −j do

5.2.1 B = B − Pi

5.3. A = A + B
6. return(A)

26

Figure 3: Arrangement of multiplier k for the fixed-point comb scalar mul-
tiplication algorithm

The fixed-point comb scalar multiplication algorithms makes use of a two
dimensional precomputation table consisting of v rows and 2h − 1 columns.
Each entry in the table is a precomputed point. There is one row in the
table for each of the two dimensional arrays in Figure 2.1 (v two dimensional
arrays). There is also one column in the table for each binary combination
of the h-tuple formed by the digits in the columns of the two-dimensional
arrays excluding the h-tuple containing only zeros (2h − 1 columns).

A precomputation table entry in Algorithm 8 is denoted G[array-index][entry-
index], where array index is an integer in the range [0, v) that refers to one
of the v two dimensional arrays in Figure 2.4 and where the entry index is an
integer in the range [1, 2h) that refers to a column in the table corresponding
to the binary representation of an h-tuple containing digits of k.

In Algorithm 8, a column is pointed to by Is,r =
∑h−1

t=0 (kta+bs+r2t), where
s specifies a two-dimensional array and r specifies a column in it. Note that
the entry G[s, Is,r] in the lookup table contains the point

∑h−1
t=0 (kta+bs+r2ta+bs+r).

A sample precomputation table is shown in Figure 2.2.
The first main step of the fixed-point comb scalar multiplication algo-

rithm is the off-line computation of the precomputation table (Steps 1-2.2.1).
The second main step is the point multiplication process (Steps 4-4.2.2.1).

27

Figure 4: G[s, Is,r] precomputation table for the fixed-point comb scalar
multiplication algorithm

This is an iterative process consisting of b steps, each of which consists of v
sub-steps. In each sub-step, a precomputed point corresponding to a column
in one of the v two- dimensional arrays is added to an accumulated point.
The v sub-steps adds point corresponding to the same column in each of
the v two-dimensional arrays. In each main step, the accumulated point is
doubled and to it is added the point computed by the v sub-steps (this is
analogous to the double-and-add point multiplication algorithm).

Assuming off-line precomputation, the fixed-point comb scalar multipli-
cation algorithm requires, on average, b − 1 point doubles and a − 1 point
additions. This algorithm also requires the storage of v(2h − 1) points.

5.2.3 Comparisons between fixed-point scalar multiplication al-

gorithms

Table 2 summarizes the complexity and the storage requirements of the
fixed-point scalar multiplication algorithms. It is clear from Table 2 that
the fixed-point windowing scalar multiplication algorithm does not require
point doubles. The number of point additions required by this algorithm
exhibit growth similar to that of the generic scalar multiplication algorithms
that use precomputations. It is also clear that the memory requirement of
the fixed-point windowing scalar multiplication algorithm grows inversely
proportional with the window size.

The processing time of the fixed-comb scalar multiplication algorithm is
controlled by the parameters a and b, which are under user control. The
number of point additions is ruled by a ≈ m/h and the number of point
doubles is ruled by b = (m/h)/v. To reduce the number of point additions
and point doubles, one will choose a large value for h. To further reduce the

28

Algorithm 8 Fixed-Point Comb Scalar Multiplication Algorithm
Inputs:
P, k
h - number of blocks in which k is divided, also the number of rows in the
precomputation matrix
a - width of the blocks
v - number of sub-blocks in which each block is further subdivided
b - width of the sub-blocks
Output: kP
Off-Line precomputation:
1. for i = 0 to h− 1 do

1.1. Pi = 2aiP
end for

Compute precomputation array:
2. for i=1 to 2h − 1 do

2.1. G[0][i] =
∑h−1

j=0 ijP,wherei =
∑h−1

j=0 ij2j , ij ∈ [0, 1]
2.2. for i = 1 to v − 1 do

2.2.1. G[j][i] = 2bjG[0][i]
end for

end for
Initialization:
3. A = O
Scalar Multiplication:
4. for r = b− 1 down to 0 do

4.1. A = 2A
4.2. for s = v − 1 down to 0 do

4.2.1 Is,r =
∑h−1

t=0 kat+bs+r2i

4.2.2 if Is,r 6= 0 then
4.2.2.1. A = A + G[s][Is,r]

end for
end for

5. return(A)

29

Algorithm Average Complexity (log2 k ≈ m) Storage Requirments
point double # point add # points

fixed-point windowing 0 2w−1 + m/w m/w

fixed-point comb b a v(2h − 1)
(m = ah, a = vb)

Table 2: Complexity of fixed-point scalar multiplication algorithms

number of point doubles, one will choose a large value for v. The choice is
likely to be restricted by the memory requirements. The memory required
grows exponentially with h and linearly with v.

An advantage of the fixed-comb scalar multiplication algorithm over the
fixed-point windowing scalar multiplication algorithm is that the user has
full control of the processing time and memory requirements, which allows
to make best use of the available resources.

6 Conclusion

In this report we presented a brief survey on secret key and public key cryp-
tography algorithms. Secret key cryptography includes both block ciphers
and stream ciphers. While MDC and MACs are used for integrity and au-
thentication respectively. Public key cryptography includes RSA, ElGamal
and ECC. ECC use short key length (only 160 bits) without losing the same
secutiy levels reached by traditional public key cryptosystems.

In this work we also presented a brief introduction to ECC on GF (2m)
which is more suitable and efficient in hardware implementation specially
with normal basis representation. Finally, this report presented a survey on
different scalar multiplication algorithms.

Future work includes a survey on side channel attacks (SCA) and ECC.
Also, a survey on existing ECC implementations on FPGAs will be covered.
This will be followed by new algorithms development and implementations.

30

Acknowledgment

The authors would like to acknowledge the support of KACST for the
Project No. AT-22-17. The authors would like also to acknowledge the
support of King Fahd University of Petroleum & Minerals.

References

[1] J. Daemen and V. Rijmen. The Design of Rijndael. Number ISBN 3-540-
42580-2 in Information Security and Cryptography. Springer, 2002.

[2] FIPS 46-3. Data Encryption Standard. Federal Information Processing
Standard (FIPS), Publication 46-3, National Bureau of Standards, U.S.
Department of Commerce, October reaffirmed 1999.

[3] FIPS 197. Advanced Encryption Standard. Federal Information Process-
ing Standard (FIPS), Publication 197, Institute of Standards and Tech-
nology, U.S. Department of Commerce, November 2001.

[4] FIPS 81. DES Modes of Operation. Federal Information Processing Stan-
dard (FIPS), Publication 81, National Bureau of Standards, U.S. Depart-
ment of Commerce, December 1980.

[5] SP 800-38A. Recommendation for Block Cipher Modes of Operation -
Methods and Techniques, National Bureau of Standards, U.S. Depart-
ment of Commerce, December 2001.

[6] Bruce Schneier. Applied Cryptography. New York: Wiley 1996.

[7] FIPS 180-2. Secure Hash Standard. Federal Information Processing Stan-
dard (FIPS), Publication 180-2, National Institute of Standards and
Technology, US Department of Commerce, February 2003.

[8] FIPS 113. Computer Data Authentication. Federal Information Process-
ing Standard (FIPS), Publication 113, National Bureau of Standards,
U.S. Department of Commerce, May 1985.

[9] FIPS 198. The Keyed-Hash Message Authentication Code (HMAC). Fed-
eral Information Processing Standard (FIPS), Publication 198, National
Bureau of Standards, U.S. Department of Commerce, March 2002.

31

[10] R. Rivest, A. Shamir, L. Adleman. A method for obtaining digital signa-
tures and public key cryptosystems. Communications of the ACM, Vol.
21, No.2, pp. 120-126, 1978.

[11] T. El Gamal. A Public-Key Cryptosystem and a Signature Scheme
Based on Discrete Logarithms. Advances in Cryptology: Proceedings of
CRYPTO 84, Springer Verlag, pp. 10-18, 1985.

[12] N. Koblitz. Elliptic curve cryptosystems. Mathematics of Computation,
48, pp. 203-209, 1987.

[13] ANSI X9.62 - 1998, Public Key Cryptography for the Financial Services
Industry: Curve Digital Signature Algorithm (ECDSA), 1998.

[14] IEEE P1363, IEEE Standard Specifications for Public-Key Cryptogra-
phy, 2000.

[15] National Institute of Standards and Technology, Recommended Elliptic
Curves for Federal Government Use, Appendix to FIPS 186-2, 2000.

[16] Standards for Efficient Cryptography Group/Certicom Research, SEC
1: Elliptic Curve Cryptography, Version 1.0, 2000. http://www.secg.org/

[17] Standards for Efficient Cryptography Group/Certicom Research, SEC
2: Recommended Elliptic Curve Cryptography Domain Parameters, Ver-
sion 1.0, 2000.

[18] Wireless Application Protocol (WAP) Forum, Wireless Transport Layer
Security (WTLS) Specification. http://www.wapforum.org/

[19] FIPS 186-2. Digital Signature Standard (DSS). Federal Information
Processing Standards Publication 186-2, U.S. Department of Com-
merce/N.I.S.T. National Institute of Standards and Technology, January
2000.

[20] W. Diffie, M. E. Hellman. New directions in cryptography. IEEE Trans.
Inform. Theory, IT-22, pp. 644-654, November 1976.

[21] R. C. Mullin, I. M. Onyszchuk, S. A. Vanstone, and R. M. Wilson,
“Optimal normal bases in GF (pm),” Discrete Appl. Math., vol. 22, pp.
149-161, 1988/1989.

[22] T. Itoh and S. Tsujii, ”A fast algorithm for computing multiplicative
inverses in GF (2m) using normal bases,” Info. Comput., vol. 78, no.3,
pp. 171-177, 1988.

32

[23] A. J. Menezes, “Elliptic Curve Public Key Cryptosystems”, Kluwer
Academic Publishers, 1993.

[24] Cohen, H., Ono, T., and Miyaji, A. “Efficient elliptic curve exponentia-
tion using mixed coordinates”, Advances in Cryptology ASIACRYPT ’98
(1998), K. Ohta nd D. Pei, Eds., vol. 1514 of Lecture Notes in Computer
Science, pp. 51-65.

[25] K. Koyama and Y. Tsutuoka, “Speeding up elliptic cryptosystems by
using signed binary window method”, Advances in Cryptology Proc. Of
Crypto ’92, Lecture Notes in Computer Science, 740 (1993), Springer-
Verlag, pp. 345-357.

[26] H. Cohen, A. Miyaji and T. Ono, “Efficient elliptic curve exponenti-
ation”, Advances in Cryptology-Proc. Of ICICS ’97, Lecture Notes in
Computer Science, 1334 (1997), Springer-Verlag, pp. 282-290.

[27] J. Lopez and R. Dahab, “Improved Algorithms for Elliptic Curve Arith-
metic in GF (2n)”, SAC’98, LNCS Springer Verlag, 1998.

[28] D. Gordon, “A Survey of Fast Exponentiation Methods”, Journal of
Algorithms, 1998, pp. 129-146.

[29] J. Pollard. Monte Carlo methods for index computation mod p. Math-
ematics of Computation, 32:918-924, 1978.

[30] J. Guajardo and C. Paar. “Efficient algorithms for elliptic curve cryp-
tosystems”, Advances in Cryptology - CRYPTO ’97 (LNCS 1294), pp.
342-356. Springer-Verlag, 1997.

[31] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of
Applied Cryptography. CRC Press, 1997.

[32] D. Hankerson, J. Lopez, and A. Menezes. Software implementation of
elliptic curve cryptography over binary fields. In Cryptographic Hard-
ware and Embedded Systems - CHES ’00 (LNCS 1965), pages 1-24.
Springer-Verlag, 2000.

[33] I. Blake, G. Seroussi, and N.P. Smart. Elliptic Curves in Cryptography.
Cambridge University Press, Cambridge, UK, first edition, 1999.

[34] J. Lopez and R. Dahab. An overview of elliptic curve cryptography.
Technical Report IC-00-10, Institute of Computing, State University of
Campinas, Campinas, Sao Paulo, Brazil, May 2000.

33

[35] J. Solinas. Improved algorithms for arithmetic on anomalous binary
curves. Technical Report CORR-46, University of Waterloo, 1999.

[36] Marc Joye and Christophe Tymen, “Compact Encoding of Non-
Adjacent Forms with Applications to Elliptic Curve Cryptography”,
Public Key Cryptography, vol. 1992 of Lecture Notes, in Computer Sci-
ence, pp. 353-364, Springer-Verlag, 2001.

[37] J. Lopez and R. Dahab. Fast multiplication on elliptic curves over
GF (2m) without precomputation. In Cryptographic Hardware and Em-
bedded Systems - CHES ’99 (LNCS 1717), pages 316-327. Springer-
Verlag, 1999.

[38] Brickell, E., Gordon, D., McCurley, K. and Wilson, D., “Fast exponenti-
ation with precomputation”, Proc. Eurorypt’92, Balatonfured, Hungary
1992.

[39] C. Lim and P. Lee, “More Flexibility Exponentiation with Precompu-
tation”, Advances in Cryptology - Crypto ’94, LNCS 839, 1994, 95-107.

34

