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ESP: Placement by Simulated Evolution

RALPH M. KING anp PRITHVIRAJ BANERJEE, MEMBER, IEEE

Abstract—ESP (Evolution-based Standard cell Placement) is a new
program package designed to perform standard cell placement includ-
ing macro-block placement capabilities. It uses the new heuristic
method of simulating an evolutionary process in order to minimize the
cell interconnection wire length. While achieving comparable results
to popular Simulated Annealing algorithms, ESP usually requires less
CPU time. A concurrent version designed to run on a network of loosely
coupled processors, such as workstations connected via ETHERNET,
has also been developed. For medium to large circuits (>250 cells per
processor) Concurrent ESP achieves linear speedup.

Index Terms—Standard cell placement, new heuristics, iterative im-
provement, stochastic algorithm, evolution, mutation, distributed pro-
cessing.

I. INTRODUCTION
1.1. The Placement Problem and Previous Algorithms

Given a set of standard cells of common height and var-
iable width and the interconnections between the cells,
the objective of a standard cell placement algorithm is to
arrange cells in an integrated circuit layout such that it
permits automatic routing of the interconnections while
satisfying one or more possibly conflicting goals. Exam-
ples of such goals are minimizing layout area, maximiz-
ing circuit performance, minimizing timing delays on
critical nets, etc. Often such goals are difficult to cast into
an objective function that can be evaluated by a computer,
hence a more restricted objective must be substituted. A
discussion of various objective functions that have been
proposed by researchers in the past is given in the next
subsection. It has been shown that the placement problem
is NP-hard [1], [2]. Since large numbers of cells are in-
volved, an optimum solution cannot be obtained. Hence,
some heuristics are needed to prune the immense search
space and to find a placement close to the global opti-
mum.

Placement methods fall into two classes [3]-[5]: Con-
structive and Iterative. Constructive methods produce a
complete placement (all cells have assigned positions)
based on a partial placement (some or all cells do not have
assigned positions). Constructive algorithms are typically
divided into the following classes: (1) cluster growth [4],
(2) partitioning based placement [6]-[8], (3) global tech-
niques like quadratic assignment and convex function op-
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timization [9], [10], and (4) branch-and-bound techniques
[4]. Iterative methods attempt to improve a complete
placement by producing a new better placement. Con-
structive placement algorithms are normally used for ini-
tial placement, and are usually followed by iterative al-
gorithms. Within one iteration, certain cells are selected
and moved to alternate locations. If the resulting config-
uration is better than the old one, the new configuration
is retained; otherwise the previous configuration is re-
stored. Some of the conventional iterative improvement
techniques include pairwise interchange [11], force-di-
rected interchange, and force-directed relaxation [12].

The previous iterative techniques accept trial place-
ments only if the objective function does not increase.
This characteristic may cause an algorithm to get stuck in
a local minimum rather than finding the global optimum.
The Simulated .Annealing (SA) technique proposed by
Kirkpatrick er al. [13] is a general combinatorial optimi-
zation technique that uses a probabilistic hill-climbing
method to get around this problem. However, this algo-
rithm has several drawbacks, mainly its tremendous CPU
time requirements and the need for an efficient annealing
schedule [14]. Simulated Annealing (SA) has been proven
to converge to a globally optimal result given an arbitrary
amount of computation time. If less CPU time is pro-
vided, it will produce near-optimal solutions. The SA
technique has been successfully used in the standard cell
placement problem in the TimberWolf placement and
routing package [15]-[17]. Other implementations of SA
applied to standard cell placement have been reported as
well [18].

In this paper, we propose a new heuristic for standard
cell placement that combines the features of iterative im-
provement and constructive placement with the ability to
avoid getting stuck at local minima using a stochastic ap-
proach. The heuristic is based on an analogy between the
natural selection process in biological environments and
the method of solving engineering problems by iterative
improvements; we call this approach Simulated Evolu-
tion. An initial implementation of the evolution-based al-
gorithm was first reported by us last year at the Design
Automation conference [19]. The algorithm has been im-
plementated in an Evolution-based Standard cell Place-
ment (ESP) program. For compatibility reasons, the cur-
rent version of ESP accepts the TimberWolf input data
format [16]. The ESP program also supports most options
available in TimberWolf such as pad and macroblock
placement.

Recently, another placement algorithm called Genetic
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Placement has been proposed [20]. It is based on similar
general ideas as our algorithm, however, it differs signif-
icantly in the actual procedure used. Our algorithm is not
a genetic approach and also differs significantly from Sim-
ulated Annealing. The differences are described in Sec-
tion III.10.

1.2. Review of Cost Functions

The effectiveness of a given heuristic and the evaluation
of the resulting placement quality strongly depend on the
cost function used. Since the global objective of a place-
ment package is to produce a routable layout, the cost
function used should model the routability of the chip as
realistically as possible.

The most general form of an interconnection topology
is the Steiner tree [21], which can be approximated by the
half perimeter of the smallest rectangle enclosing the pins
of the net [11], [22]. Other cost functions and their ap-
plications can be found in [6], [23]. The cost function
used by ESP is the minimal wire length using the bound-
ing box approximation for each net. This allows the direct
comparison of our results with placements computed by
programs such as TimberWolf [16].

1.3. Outline of this Paper

Section II gives an introduction to the general concept
of Simulated Evolution. The structure of the ESP algo-
rithm is outlined in Section III. Performance results of the
program using several example circuits are presented in
Section IV. Section V discusses Concurrent ESP, an im-
plementation of the algorithm designed for a distributed
computing environment. Subsequently, workload parti-
tioning issues and the general implementation of Concur-
rent ESP are discussed in Section VI. Section VII presents
performance results of Concurrent ESP. Conclusions and
future work are outlined in the last section.

II. THE CONCEPT OF SIMULATED EVOLUTION

The novel cell placement algorithm proposed in this pa-
per is based on an analogy with the natural selection pro-
cess in biological environments and uses the notions of
evolution and mutation. The biological solution to the se-
lection process is the evolution from one generation to the
next one by eliminating ill-suited designs and keeping
near-optimal ones. Every constituent of each generation
has to constantly prove its functionality under the current
conditions in order to remain unaltered. The purpose of
this process is to gradually create stable structures which
are finally perfectly adapted to the given constraints. In
many cases, the engineering environment (such as the cell
placement problem) is even better suited to the evolution-
ary process than the natural one since the given con-
straints remain constant.

Nature also has a way of preventing the development
of species from getting stuck at local optima by using the
concept of mutation. Mutation can be defined as a pseu-
dorandom process which alters the characteristics of the
design in an unpredictable way. The altered design is

again subjected to the evolutionary process which deter-
mines its survival. The mutation rate is normally very
small compared to the evolution rate.

The idea of applying natural selection processes to en-
gineering problems may sound unfamiliar at first but there
are several very promising aspects associated with that
idea. A similar concept was proposed about twenty-five
years ago in a paper on logic minimization [24].

The classes of problems which seem suitable for apply-
ing evolutionary algorithms are mainly those that are not
easily solved in a closed form, i.e., NP-hard and NP-
complete problems. Since the computation of an exact so-
lution to these problems is normally not feasible except
for very small problem sizes, usually some heuristics are
applied to reduce the search space and generate an ap-
proximate solution.

The goodness of the achieved solution, i.e., the amount
of deviation from the optimum is strongly determined by
the type of heuristic employed. Simple (greedy) heuristic
algorithms such as hill climbing have the undesirable ten-
dency of getting trapped at local minima of the cost func-
tion and are therefore applicable only to a small subset of
the problems described above. A stochastic approach such
as Simulated Annealing does much better in most appli-
cations since it allows temporary cost increases. How-
ever, there are certain drawbacks associated with the an-
nealing approach. While the basic algorithm is quite
simple and straightforward, an actual implementation re-
quires very careful consideration and tuning of the pro-
cess parameters to achieve the desired result. In addition,
even with an optimally designed algorithm, the compu-
tation time required is usually very long compared to most
other heuristics.

An algorithm based on the Simulated Evolution heuris-
tic has, therefore, been designed to address these prob-
lems. Even though the theoretical proofs of convergence
of this new stochastic algorithm are currently being re-
searched, experimentally we have observed promising
convergence results. The evolution-based algorithm for
standard cell plaement will be described in the next sec-
tion.

III. SIMULATED EvoLuTioN CELL PLACEMENT
ALGORITHM

II1.1. Overview of our Proposed Algorithm

The basic idea behind our algorithm is to determine,
for each current placement, the goodness of each cell in
its current location. The goodness value is a figure of merit
(normalized in the range 0-100) of how well the cell is
placed with respect to the cells to which it has connec-
tions. The goodness is high if most cells it is connected
to are clustered together as closely as possible in the pre-
sent placement. Conversely, the goodness is low if those
cells are less clustered. The process of evolution keeps
the cells which are already well placed (having high good-
ness numbers) in their present locations and tries to im-
prove the positions of the others (that have low goodness
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numbers). At a particular iteration, a random number R
in the range 0-100 is generated for each cell, and all cells
whose goodness values exceed R are labeled as “‘good
cells’’ and survive in their present locations; the remain-
ing cells are labeled as ‘‘bad cells’’ and do not survive
(become extinct) in their present location. The goodness
number therefore corresponds to the survival chance of a
cell in a particular position for a given configuration. The
“‘bad’’ cells are removed from the placement grid and are
allocated to new positions using constructive placement
techniques with the objective of clustering cells using a
local cost function. The above set of steps is iterated upon.
Thus the global placement procedure is based on iterative
improvement while within an iteration constructive place-
ment is performed.

The algorithm has two places where probabilistic tech-
niques help prevent the solution from getting stuck at a
local minimum. The first one is in the generation of the
threshold value to distinguish ‘‘good’’ cells from *‘bad”’
cells. The second is in the mutation step. Periodically
during the evolution-based iterative improvement pro-
cess, the system state is mutated, i.e., randomly changed.
The mutation rate is much less than the evolution rate to
ensure convergence. From empirical results we found that
a mutation rate of about 0.1 percent of the evaluation rate
yields the best results.

II1.2. Definitions

In order to facilitate the explanation of the algorithm’s
operation, we will define the following terms:

Current cell: the cell currently being evaluated;
Current net: the net currently being evaluated;
Neighbor: a cell directly connected to the current cell;
Netset: all nets connected to the current cell.

111.3. Initialization

Our Simulated Evolution based cell placement algo-
rithm is divided into two main stages. A block diagram
of the main procedures is shown in Fig. 1. The first rou-
tine allows the user to enter certain process parameters if
he chooses to override the default settings. Subsequently,
the input files containing circuit data and parameters are
read. After the aspect ratio of the chip has been deter-
mined, the floorplanning algorithm allocates space for the
rows in which the standard cells are to be placed. It also
takes care of reserving areas for macroblocks and pads
which are then preplaced. If the user does not specify fixed
locations for them, a routine following the cell placement
will optimize their positions in a postprocessing phase.
The floorplanning procedure will not only determine the
number of rows needed for placement of the standard
cells, but also their average and maximal lengths.

The next step is the generation of an initial placement
which will serve as a seed for the evolutionary process.
Due to the fact that the initial exchange rate is relatively
high the algorithm’s performance is generally almost in-
dependent of the quality of the initial generation. How-
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Fig. 1. Algorithm outline.

ever, if this seed is already a relatively good placement,
the overall computation time will decrease. In our pro-
gram, the seed placement is generated randomly. Option-
ally, a previously generated placement can be loaded to
serve as a seed. This allows an efficient way to evaluating
the effects of manually made changes.

II1.4. Precomputation

The process of evolution keeps the cells which are al-
ready well placed in their locations and tries to improve
the positions of the others. In order to determine the good-
ness of a cell placed in a particular location, a reference
value has to be established. This is done during precom-
putation.

HI1.4.1. Wire Length Based Cost Function: For the
evaluation cost function which computes the placement
value based on the total wire length of a cell’s netset,
lower bounds on all net lengths have to be established in
order to allow a meaningful comparison. This is not triv-
ial since there are no restrictions on where the actual pin
connection can occur within the cell boundary. The ap-
proach taken in ESP is illustrated in Fig. 2. The general
method used to calculate a lower bound on the actual net
length is to compute half the perimeter of the bounding
rectangle. To do this, however, an optimal placement of
the cells connected to the current net has to be assumed
which is the original intent of the cell placement algo-
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Fig. 2. Precomputation.

rithm! We address this paradoxical situation by focusing
on the sub-problem of optimal relative placement of cells
that belong to the current net and ignore (for this precom-
putation phase) the interactions with cells in other nets.
As a first approximation of the optimal placement, all cells
of the current net are assumed to be placed next to each
other without space in between. Next, all cell areas are
collapsed to an approximate square region (since a square
has the minimal perimeter among all rectangles of the
same area). Row spacing is considered and included in
the computation. This leads to a minimal perimeter by
considering only the cell dimensions. However, the min-
imal bounding rectangle depends on the relative position
of the pins which connect the cells to the current net. To
estimate the effect on the actual net length, half the height
of the cell (equal to the maximal pin displacement in
y-direction) is subtracted on each side of the square. The
perimeter of the resultant reduced square divided by two
serves as the lower bound on the wire length of the cur-
rent net. It has to be stressed, that the computed value is
a theoretical result which may not be achieved in practice
owing to conflicting requirements regarding cell positions
between cells of different nets. This does not have serious
adverse effects, however, since the same principle applies
to all nets. This cost function computes reference values
for nets only.

H1.4.2. Iteration-Directed Cost Function: Another
method for precomputation, which can also be combined
with the one described above, is to use the iterative pro-

cess itself to compute the reference values for the net
lengths. In the beginning, all net lengths are assumed to
have an arbitrary large value, ¢.g., the maximum integer.
During each iteration the actual values obtained by the
evaluation routine are compared with those reference val-
ues. If the actual value is smaller than the reference value,
it replaces the now obsolete reference value. We have
found that this process converges within a few hundred
iterations and leads to acceptable results, thus avoiding
the complicated computation described above. The reason
for the good convergence is a high probability of each net
having a near-minimal net length sometime during the it-
erative process because of its initially high exchange rates.

The current ESP implementation actually uses a com-
bination of both methods described above. A relaxed ver-
sion of the first one is used to compute the initial values
and the second one is used to update them if necessary.
As far as performance is concerned, this combination
yields the best results on actual circuits.

H1.5. Evaluation

The first step of the iterative loop is the evaluation of
the current placement. A placement value for every cell
is established. The purpose of computing this measure is
to determine which cells are in positions that lead to a
minimum total wire length, and which cells contribute un-
necessarily to large amounts of additional wire length.

The evaluation procedure, which is done for every net
separately, is illustrated in Fig. 3. The following evalu-
ation steps are performed for each net in the design. The
wire length of the current net is calculated by computing
half the perimeter of its bounding box which is the small-
est rectangle enclosing all pins belonging to a net.

Then, the ratio of its optimal (precomputed) wiring cost
over its current wire length is determined. The result will
be called the net’s placement value. Subsequently, each
cell’s goodness is computed by taking the average of the
placement values of its netser. The result is then normal-
ized to a scale from O to 100. Averaging over the place-
ment values of all cells, a global goodness of the current
layout is also computed. Finally, the total wire length of
the current placement is calculated.

111.6. Selection

The next step is called the selection phase. Here it is
determined whether a cell will retain its current position
in the next generation, or if it will be scheduled for new
allocation. This is done by comparing its placement value
to a random number generated for each cell in the range
0 to 100 percent. If the goodness of the cell is larger than
the random number, it will survive in its present position.
Otherwise, it is placed in a queue for new allocation. By
using this selection process, each cell’s chance of survival
at its current location is exactly equal to its placement
value. The user can, however, alter this default setting by
supplying an extra parameter in order to extend or reduce
the global survival chances, and thereby control the aver-
age number of selected cells per iteration.
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Fig. 3. Wire length based cost function.

11.7. Allocation

The primary operations of the allocation routine are the
removal of all selected cells from the placement grid, the
re-placement of those cells and a final realignment step to
remove empty spaces and overlaps. We have found that
the iterative phase can be divided into three major sub-
phases which have unique requirements and demand ap-
propriately suited allocation algorithms. The transition
from one stage to the next is dependent on the circuit size
and structure.

In order to adapt the allocation routine to different re-
quirements during early, intermediate and final stages of
the iterative process, we devised three different allocation
procedures. During the early stage, it is important to place
a large number of cells since the average global goodness
is low causing the number of selected cells g to be high.
Due to the fact that the goodness of the initial random
placement tends to be around 40-50 percent about one
half of the total number of cells may be initially allocated
for replacement. Due to the complexity of the allocation
procedure, this number can be limited for large circuits.

The complexity of the allocation procedure should be
low during the early stage. Furthermore, it is sufficient
that cells are placed in the general neighborhood of
strongly connected cells, however, the exact position may
yet be undetermined. It would be costly and unnecessary
to compute the optimal position of each cell during every
iteration. The sorted individual best fir method described
below suits these requirements.

After a number of iterations, the gain achieved by the
method described above during each cycle will diminish.
If no substantial improvement can be achieved during fur-
ther iterations, the iterative process is considered to have
moved to its intermediate stage. At this point, most cells
should have reached their approximate positions and long
distance moves are rare. Now it is important to reorder
the cells within their respective clusters and shape the
clusters’ boundaries. The allocation function has to op-
erate more accurately, trading off individual gains for
global benefits. A few number of cells have to be ex-
changed during each iteration, saving CPU time for more
elaborate computation. We use a weighted bipartite
matching algorithm during this intermediate phase.

If, after more iterations, even the second method ceases
to yield a sufficient gain per iteration, the placement is
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considered to have almost converged. During this final
stage, most cells have reached a close vicinity to their
final locations and no long distance movement of cells are
necessary. In order to achieve improvement of the current
layout, the cost calculations have to be very precise. This
requires a large amount of CPU time, therefore only few
cells can be exchanged during each iteration. The last al-
location method is uses a branch-and-bound search al-
gorithm to find the optimal placement of a small set of
cells to be newly allocated.

II1.7.1. Sorted Individual Best Fit Allocation: All cells
which were removed from the placement grid reside in the
replacement queue. This queue is sorted, such that the
cell with the most connections is placed first. The follow-
ing steps are performed until all cells have been replaced.
Fig. 4 illustrates this process. The algorithm has a time
complexity of 0(q?), where g is the number of cells to
be replaced which can be relatively large due to the low
initial overall goodness. Therefore, the program limits this
number to a maximum of about 100 cells.

The first cell is removed from the allocation queue and
tentatively placed at all empty locations. During this pro-
cess, a simplified evaluation routine is invoked, which de-
termines the goodness of the current cell at each trial lo-
cation. This evaluation routine can, of course, only
compute wire lengths involving already placed cells. The
best placement value for the cell is retained and deter-
mines its new location. The current cell is placed in the
new position. Subsequently, the next cell in the queue is
processed, using the remaining empty locations.

II1.7.2. Weighted Bipartite Matching Allocation: The
basic principle of this method is shown in Fig. 5. Before
the actual replacement starts, the goodness of each cell in
the queue is evaluated in every possible location. This
yields a table of size g*. The matching algorithm now
tries to assign each cell to a location, such that the overall
wire length is minimized. This can be done optimally in
O(q*) time complexity [25]. This is an increased com-
plexity compared with the first method, however, the
number of cells ¢ to be replaced is now much smaller,
about 20-30 cells. The computation can only be as ac-
curate as the preceding evaluation. Therefore, wires con-
necting unplaced cells are not considered. The overall ac-
curacy is, however, much better than in the first method.
Sorting of cells is not explicitly needed, but the procedure
benefits if the order of cells in the minimal cost assign-
ment path coincides with the ordering of the allocation
queue. We found empirically, that ordering the cells such
that the ones with the smallest goodness values (from the
previous cycle) are processed first improves the algo-
rithm’s performance.

I11.7.3. Branch-and-Bound Search Allocation: The
branch and bound method of exhaustive search works by
continually trying to extend a partial solution. If an ex-
tension of the current solution is not possible, a backtrack
is performed to a shorter partial solution. It is based on
the assumption that each solution has a cost associated
with it which is well defined for partial solutions, and has
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the property that for all partial solutions and their exten-
sions, the cost of the extension is lower bounded by the
cost of the partial solution [26]. The success of this
method is based on an accurate calculation of the cost
function that has the above mentioned property of bound-
ing. The search tree of an optimal allocation of a small
number of cells ¢ is shown in Fig. 6. Each node in the
tree corresponds to an assignment of a cell to a location.
The basic idea is to calculate lower bounds on the wire
length incurred at each tree node (this cost is shown in
parenthesis). This is done by calculating the wire lengths
of the current cell’s netser. Unplaced cells are not consid-
ered. This does not affect the accuracy of the procedure
since only a lower bound needs to be computed. During
the placement of the last cell in the replacement queue,
all nets are accurately evaluated, therefore the search is
guaranteed to find the optimal placement.

The algorithm always expands the tree node having the
least cost so far and evaluates its children. This evaluation
can be done in two parts, the static and the dynamic part.
The static subset contains all nets which are connected to
only one unplaced cell. The wire lengths of this set can
be precomputed by tentatively placing every unplaced cell
in all possible locations. The resulting costs are stored in
a table of size O(g?), as in the previous algorithm. The
dynamic subset contains all nets connected to more than
one unplaced cell. The intersection of the dynamic part
and the netset of the current cell has to be recomputed for
each tree node.

The overall complexity of this method is clearly expo-
nential, however, sorting the replacement queue can force
early bounding and reduce the required CPU time. There-
fore, the cells potentially incurring the highest cost due to
their number of connections, are placed in the front of the
replacement queue. In addition, the number of cells g to
be replaced is now very small, usually less than 10 cells.

l11.7.4. Cell Realignment after Allocation: Since the
cell which is to be placed and the empty slot are generally
of different width, special consideration has to be given
to the problem of possible overlaps and unused spaces.
This is important because the subsequent realignment of
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Fig. 7. Operation of the alignment precedure.

the cells can cause the expected improvement in the total
wire length to be diminished or even negated. So far, we
have found that realignment after each allocation phase
does not seriously disturb the convergence of the algo-
rithm. Removing the overlaps and unused spaces between
the cells simplifies the program and yields legal place-
ments at any stage of the iteration.

The current implementation employs a routine which
cleans up all overlaps and unused spaces between cells
after the allocation step is completed. The operation of
the realignment routine is shown in Fig. 7. Ongoing re-
search is done on studying the effects of allowing tem-
porary overlaps and empty spaces. We are also trying to
estimate the additional cost of potential realignment dur-
ing the allocation phase.
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111.8. Mutation

The first step of this procedure is to determine if a mu-
tation will occur in the current iteration. The probability
of a mutation is 0.1 times the current cell exchange rate.
If a mutation is to occur the procedure randomly selects
two cells from the placement grid and exchanges them
without regard to the effects on the placement values. This
step is repeated according to user-supplied parameters. In
case of unequal cells, a collision-resolving routine is
called to clean up the placement grid.

I1.9. I/0 and Postcomputations

The remaining part of the main loop is dedicated to
/0O operations such as informing the user of the current
wire length, updating the performance statistics, and in
case an improvement has been achieved, saving the cur-
rent placement. If the user wishes to change certain pa-
rameters, the computation loop can be interrupted at this
point to invoke the interative parameter input routine. The
loop termination condition is checked, and depending on
its result, the program branches to the loop start or to the
postcomputation routine.

The postcomputation procedure creates certain output
files containing the placement information and perfor-
mance statistics. It optionally invokes routines which op-
timize pad and macroblock placement.

H1.10. ESP compared to Simulated Annealing and
Genetic Placement

Both our ESP and SA are algorithms using iterative im-
provement strategies. They try to avoid local minima by
encorporating random elements into the guiding heuris-
tics. However, there are several major differences be-
tween the approahces taken by ESP and SA as we will
outline in the following.

Most SA algorithms use random choices of cells to be
moved to alternate locations. Typically in one move, one
cell is displaced to a new location, or two cells are ex-
changed. ESP allows the simultaneous removal of a large
number of badly placed cells from their current locations
using a stochastic method and places them in new loca-
tions.

During each iteration, SA performs tentative exchanges
and accepts or rejects them based on a Boltzmann distri-
bution function. ESP, however, tries to construct a vari-
ety of partial solutions during each iteration and combines
them to a current optimum. In this respect, ESP has some
similarities to the constructive placement algorithms men-
tioned earlier. :

The SA algorithm requires an explicit parameter (called
temperature) to guide the iterative process, while ESP im-
plicitly analyzes the current placement goodness and uses
it to guide its operation.

As mentioned before, another evolution-based ap-
proach for standard cell placement, called Genetic Place-
ment (GP) has recently been proposed [20]. The general
strategy of using evolution from one generation to the next
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is quite similar to our approach. There are, however, sig-
nificant differences in the way a new generation is con-
structed as will be shown in the following.

The GP technique maintains a set of solutions during
each iteration, called parents. It then constructs another
set of solutions for the next generation by merging the
placements of two parents to obtain one child. ESP, how-
ever, generates only one child from one parent during each
generation, thereby eliminating the extra CPU time and
memory needed to maintain a set of solutions.

Furthermore, the methods of selecting cells to be re-
placed are totally different. While the GP algorithm se-
lects a random set from the parents, ESP will determine
the goodness of each cell individually to determine its sur-
vival at its present location. Due to these stronger con-
vergence properties, it performs much less total iterations
than GP.

In conclusion, we are convinced that the application of
evolution to engineering problems is a reasonable ap-
proach which leads to uncomplicated and easily adaptable
algorithms. ESP may serve as an example for a successful
implementation. Its main advantage is a comparatively
fast execution time while achieving results of high qual-

ity.
IV. PLACEMENT RESULTS

We compared our algorithm to the Simulated Annealing
based placement programs TimberWolf 3.2 [16] and
TimberWolf 4.1 [17] in placement-only mode using their
recommended annealing schedules to produce near-opti-
mal results. However, on several circuits, we were still
able to obtain some improved results. The CPU time
needed by our algorithm was in all cases at least one order
of magnitude smaller that the computation time required
by TimberWolf 3.2 and in most cases significantly faster
than TimberWolf 4.1. It should be noted that TimberWolf
4.1 goes beyond the basic Simulated Annealing principle
by adding heuristics based on statistical data generated by
numerous placements.

All computations were carried out on a SUN 3/50 desk-
top workstation with MC68020 CPU and MC68881 float-
ing-point-coprocessor. Both ESP and TimberWolf were
compiled using the floating point option and code opti-
mization and were executed under the BSD UNIX 4.2 op-
erating system. It should be noted that TimberWolf was
written in the C programming language using a lot of so-
phisticated programming techniques such as hashing into
bins, etc., to maximize the performance. ESP is written
in PASCAL (using 5000 lines of code) for ease of pro-
gramming and does not use any sophisticated program-
ming techniques since our intent was to demonstrate the
concept and not develop a mature product. We believe
that we can speed up our ESP program by an additional
factor of 3-4 by implementing it in C and including so-
phisticated programming features.

The placement results for several different circuits are
compiled in Table I. Most circuits were obtained from
industry while some (e.g., the 1000 cell circuit) were gen-
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TABLE I
ESP RESuLTs

circuit ESP TimberWolf 3.2 TimberWolf 4.1

#rows | #cells || time[s] result time [s}] result time [s] result
8 60 141 17021 3082 19528 464 18007

13 183 1568 73321 9669 73566 1284 62965
16 286 7762 151378 20116 | 139777 2775 108625
32 300 2412 188096 62712 | 195350 7452 179408
31 1000 22317 304380 || 927801 { 310120 32133 333040

TABLE II

COMPARISON OF ALLOCATION STRATEGIES

Placement Status Allocation Algorithm | Performance Index *
Initial Best fit 730
Maiching 633
BB. Search 118
Intermediate Best fit 206
Matching 298
BB. Search 102
Final Best fit 14
Matching 3
BB. Search 21

* Average wire length reduction per CPU second

erated artificially to simulate circuits with high connectiv-
ity. Each row in the table shows values for a different
circuit. For each circuit, the CPU time required and the
result obtained is listed. All placement results reflect the
estimated total wire length of the best placement using the
bounding rectangle criterion (half the perimeter equals the
estimated wire length).

As the data in Table I shows, the placement values gen-
erated by ESP are comparable to those generated by the
TimberWolf programs. In some cases TimberWolf ob-
tains a better result whereas on other circuits the place-
ment generated by ESP is superior. We are currently
working on an improved version of the ESP program; the
prime objective being to consistently obtain results of
highest quality.

The data in Table II shows the performance of the dif-
ferent allocation methods during different stages of con-
vergence. The performance index shown in the last col-
umn was measured using a standard 300 cell circuit. The
program was given an initial placement as stated in the
first column and run for a certain constant amount of time.
Then, the improvement of the total wire length was de-
termined and divided by the CPU time used.

From these measurements, it can be deducted that the
sorted individual best fit allocation method performs best
during the initial stage. During the intermediate stage, the
weighted bipartite matching allocation method shows su-
perior preformance. Finally, the branch and bound search
allocation method gives the best result near convergence.

V. CoNcURRENT ESP
V.1. Motivation

As we have shown in the preceding section, the Simu-
lated Evolution algorithm provides good placement re-
sults using relatively little CPU time. However, the place-
ment of circuits containing several thousand cells will still
take many hours to complete. Therefore, we studied pos-
sibilities of achieving an even greater speedup. One pos-
sibility is to use a faster computer such as a mainframe
instead of a workstation. An alternative is to use a net-
work of workstations as a distributed processing environ-
ment to provide an efficient and cost-effective way to
compute large placements. Due to its structure, the place-
ment problem seemed a good target for such an imple-
mentation, as will be outlined subsequently. Our initial
results on such a scheme has been reported at the [ICCAD
conference [27]. In the remainder of this paper, we will
discuss the distributed algorithm and its implementation
in detail. Similar approaches have been pursued by other
researchers for parallelizing Simulated Annealing based
cell placement algorithm on multiprocessor systems [28]-
[31].

V.2. Workload Partitioning

When redesigning an algorithm in order to use it on a
system with distributed resources, the main task is to par-
tition the workload most efliciently. This divide-and-con-
quer approach is guided by the following aspects and con-
siderations:

1) The total amount of CPU time on all machines com-
bined should not significantly exceed the amount of
CPU time needed on one machine. To achieve this
goal, the cost of partitioning, scheduling, joining,
and communication has to be kept low, compared to
the overall computation time.

2) The amount of real time needed for execution on
parallel machines should approximately equal the
amount of real time needed on one machine divided
by the number of machines used, or in other terms,
the computation efficiency should be as close to
unity as possible.

3) For synchronization purposes, the workload, ex-
pressed by the amount of real time required on each
machine, should be equally distributed, not only
considering the total amount, but also for each it-
eration. Significant deviations in the workload will
slow down the process, since each iteration can be-
gin only after all previous data has been successfully
collected.

4) The layout quality product by the distributed algo-
rithm should equal the performance of the single
machine version.

The partitioning in the concurrent algorithm is done by
assigning a certain subset of the cells to each machine as
shown in Fig. 8 for the case of three machines. The dif-
ferent shadings show the allocation of rows to the differ-



KING AND BANERIJEE: ESP

77
///////////////// W)
7////////////////// //
7777702772774

2/

L

Fig. 8. Row partitioning for three machines.

ent hosts. The left pattern shows the distribution for odd-
numbered iterations and the right one the partitioning for
even-numbered cycles. It should be noted that only two
different patterns are needed for any (small) number of
processors. The partitioning is done row-wise because this
greatly simplifies the adaptation of the algorithm to the
parallel environment and avoids adverse effects created by
unequal cell lengths.

The pattern for each host alternates every iteration to
ensure that each cell can move to any position on the grid
in at most two steps, as long as the number of rows per
machine is sufficiently large. In that case, boundary ef-
fects which lead to an increased number of necessary
moves can be neglected.

We will now describe how the requirements 1.-4. men-
tioned above are taken care of in the distributed version
of the algorithm.

The partition of the workload in terms of rows in the
placement grid satisfies the requirements of an approxi-
mately equal distribution. The computational overhead
due to the distributed structure is kept low. This is mostly
due to the fact that a complete iteration is performed by
each machine without the need for any communication
during the process. The reason for partitioning the tasks
at the block-level is the relatively high cost of initiating a
communication on the bus.

The total number of real time needed for the program
to execute is dependent on many factors, mainly the
workload on each machine and the network traffic. Due
to the necessary synchronization after each cycle, the total
amount of real time needed will equal the sum of real
times required by the slowest machines during each iter-
ation. Since an equal amount of cells is assigned to each
host, the computation times are not significantly different.
Little variations, however, are not avoidable due to the
random processes involved. Irregularities tend to cancel
out with an increasing number of cells per machine.

The final placement quality depends mainly on the gen-
eral structure of the algorithm, and less on the actual con-
ditions during each single iteration. The main strategy,
however, has remained the same so that comparable re-
sults of the sequential and the distributed version can be
expected.

VI. IMPLEMENTATION OF CONCURRENT ESP

The main program structure consists of a master pro-
gram and one or more servers which get their instructions
remotely from the master during initialization. The master
partitions the workload and schedules the tasks to be per-
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Fig. 9. Outline of the distributed algorithm.

formed on each machine. The block diagram of the con-
current algorithm is shown in Fig. 9.

It should be noted that only the main iterative loop is
computed in a distributed manner with true parallelism
and workload distribution. The precomputations are per-
formed by all machines concurrently, but in the same se-
quential way as in the uniprocessor case, since the amount
of CPU time required is very small compared to the CPU
time needed during the iterative process (usually less than
1 percent). Therefore, the overall performance of the pro-
gram is not degraded by this mode of operation. The com-
munication is, due to the network implementation, packet-
switched and based on the client/server model.

After performing the interactive parameter input, the
master initializes one or more servers, as specified by the
user. After successful initialization of the network, all
program copies perform the same precomputations. The
corresponding blocks in Fig. 9 are read input files, pre-
compute, and place. The workload partitioning is done by
a special routine which is executed during the precom-
putation phase.

At the beginning of each iteration, the master program
distributes the current placement information (i.e., the lo-
cations of all cells on the placement grid) to all its servers.
Next, each process is assigned its subset of cells, accord-
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ing to the currently active partition. Then, each copy in-
cluding the master itself, performs a complete cycle con-
sisting of evaluate, select, sort, and allocate.

Having completed the allocation routine, each process
sends its results back to the master which combines them
and performes the I/O and mutate tasks. The master de-
termines if a new iteration is to be started or the loop is
to be exited. In the latter case, postcomputations will be
performed and all copies terminate execution.

VII. PERFORMANCE EVALUATION OF CONCURRENT ESP

The computations were carried out on several SUN 3/
50 desktop workstations connected to a file server by a
common ETHERNET bus with a nominal data transfer
rate of 10 Mbit /s. The workstations are equipped with an
MC68020 CPU and an MC68881 floating-point copro-
cessor. The program, written in PASCAL, was compiled
using the code optimization and floating-point options and
executed under the BSD UNIX 4.2 operating system.

To evaluate the performance of the distributed algo-
rithm, five similar circuits were used. The circuits contain
the same type of cells and have the same interconnection
density. They differ, however, in the number of cells.
Similar circuits were used in order to compare the perfor-
mance as a function of the number of cells per circuit only
while minimizing other dependencies. For each circuit,
the number of rows was selected automatically by ESP
such that the x- and y-dimensions of the chip were ap-
proximately equal (to minimize the total wire length).

For each circuit, the placement program was executed
for 1000 iterations on one to four processors. The CPU
time and real time requirements were measured along with
the final placement value (minimal total wire length). A
summary of the results is given in Table III.

From the data obtained during the experiments, speed-
up and efficiency factors as well as degradation of the re-
sult were calculated for each case. The speedup diagram
for each circuit is shown in Fig. 10, the degradation of
the final results versus the number of machines used is
shown in Fig. 11.

Speedup: S =T/1,
Efficiency: E =S/p
Degradation: D = R, /R,

T, time required by a single processor,

T, time requi.red by p processors,

R, result achieved with a single processor,
R, result achieved with p processors,

p number of processors.

A closer look at the results reveals the efficiency ex-
ceeds the maximum value of unity in certain instances.
This behavior can be explained by considering the deri-
vation of the values and the nature of the algorithm. Ba-
sically, three factors are responsible for that effect:

1) The actual amount of computation depends on the
number of cells exchanged during each iteration,
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Fig. 11. Result degradation versus number of machines.

TABLE III
CONCURRENT ESP REsuLTS
# processors
#cells
circuit 1 2 3 4
# rows

200 real time 575 527 504 499

I cpu time 573 405 354 337
10 result 30500 30900 32510 32330

400 real time 1987 1220 1085 98

1 cpu time 1974 973 714 672
14 result 83540 84100 87600 88300

600 real time 4461 3252 1724 1605

i cpu time 4444 1904 1236 1080
17 result 153080 157700 158540 158080

800 real time 9015 4166 3070 2215

v cpu time 8979 3145 2415 1635
20 result 229430 231290 231140 231300

1000 real time 13371 5697 4010 3100

v cpu time 13325 4847 3090 2190
22 result 327580 327590 327600 327650

which is in turn a function of the current goodness.
Due to the statistical nature of the algorithm, the
amount of computation differs to a certain extent
each time the program is run, as does the finally
achieved near-optimal result.

2) The efficiency calculation does not take into account

the degradation in the quality of the final result. This
degradation is due to the increased granularity of the
partitioned problem compared to the sequential ver-
sion. Therefore, the additional amount of computa-
tion needed in a postprocessing step to achieve the
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same result as in the uniprocessor case should be
considered. Due to the heuristic nature of the algo-
rithm, however, no exact value for the additional
CPU time required can be given.

3) It may be possible to reduce the amount of compu-
tation performed in the uniprocessor case by delib-
erately reducing the search space during the alloca-
tion process, as forced in the distributed
implementation. We are currently investigating this
possibility and its implications.

As can be deduced from the graphs, if each processor
is assigned at least 250-300 cells, the parallel processing
efficiency reaches 100 percent without any serious deg-
radation of the final result. This proves the effectiveness
of the workload partitioning.

VIII. CoNcLUSIONS AND FUTURE WORK

In this paper, we have proposed a new heuristic called
Simulated Evolution for standard cell placement that is
based on an analogy between the natural selection process
in biological environments and the method of solving en-
gineering problems by iterative improvements.

The ESP program applies the Simulated Evolution
method to the standard cell placement problem. The com-
bination of evolution and mutation has been experimen-
tally observed to give good results for realistic circuits.
Various precomputation, evaluation, and allocation strat-
egies have been experimented with and were reported in
the paper. The ESP placement package has been shown
to achieve results comparable to SA algorithms, using less
the CPU time for results of comparable quality. We ex-
pect additional speedups in future versions of ESP due to
an improved algorithm and the use of the C language
which will allow a more efficient coding.

A concurrent implementation of the ESP placement al-
gorithm has also been presented. The design uses desktop
workstations connected by a local area network as pro-
cessing elements. With regard to these hardware con-
straints, a general model for the distributed algorithm has
been developed. The concurrent algorithm has been im-
plemented in a program package and tested on a variety
of circuits. Its performance has been measured and the
results presented. We have shown that the total commu-
nication overhead is low and that an efficiency close to
unity can be achieved, given that each processor is as-
signed a sufficiently large subset of cells. The concurrent
algorithm allows the placement of large circuits (several
thousand cells) on desktop workstations within acceptable
computation times, thereby eliminating the necessity of a
large mainframe computer.

Our paper has shown the application of an evolution-
based heuristic for solving problems which are not easily
solved in a closed form by using the cell placement ap-
plication as an example. We believe that evolution-based
heuristics have a variety of features which make them
useful in almost all areas of engineering. Our future re-
search will focus on the improvement of the ESP place-
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ment program and the development of an evaluation-based
global and detailed routing program. This will allow chip
designers to use ESP as an integrated physical chip design
package. We are also investigating the theoretical aspects
of convergence properties of evolution-based heuristics
for combinatorial optimization problems using the con-
cept of Markov chains.
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