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Abstract

Taillard, E., Robust taboo search for the quadratic assignment problem, Parallel Computing 17 (1991) 443-455.

An adaptation of taboo search to the quadratic assignment problem is discussed in this paper. This adaptation is
efficient and robust, requiring less complexity and fewer parameters than earlier adaptations. In order to
improve the speed of our taboo search, two parallelization methods are proposed and their efficiencies shown
for a number of processors proportional to the size of the problem.

The best published solutions to many of the biggest problems have been improved and every previously best
solution (probably optimal) of smaller problems has been found.

In addition, an easy way of generating random problems is proposed and good solutions of these problems,
whose sizes are between 5 and 100, are given.

Keywords. Combinatorial optimization; taboo search; parallel algorithms; quadratic assignment problem;
efficiency.

1. Introduction

For more than 30 years researchers have been proposing exact and heuristic methods for the
quadratic assignment problem (QAP). The problem is so hard that an instance of size 36
proposed in 1961 by Steinberg [18] has not been solved yet. More precisely, exact methods need
an amount of work that grows exponentially with the size of the problem and cannot be
applied effectively beyond a size of 20, as noted by Burkard [2]. For bigger sizes, heuristic
methods must be used. Two heuristics have performed particularly well for this problem:
simulated annealing (SA) first adapted to QAP by Burkard et al. [3], and taboo search (TS)
implemented by Skorin—Kapov [16,17].

Although obtaining the best results reported in the literature, TS has been applied in this
setting by performing multiple solution passes for each problem, starting from different initial
solutions and modifying parameters between the solutions. The goal of this paper is to propose
a more robust form of TS for QAP that has a minimum number of parameters and is very easy
to implement, capable of obtaining solutions comparable to the best previously found without
requiring multiple passes and altered parameter values. Our method is efficient and succeeds in
obtaining sub-optimal solutions (conjectured but not proved to be optimal) for problems up to
size 64.
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The paper is organized as follows: Section 2 presents a formulation of QAP and a summary
of practical methods for solving this problem. Section 3 gives specific ingredients we used for
QAP and, in particular justifies the values of the parameters we chose for our TS procedure.

The lack of homogeneity of the published problems led us to propose a simple method for
generating problems randomly, that allows larger (and hence harder) problems to be created
and tested by our TS procedure than those appearing in the literature. This is done in Section 4.

In the next section we propose two parallelization methods for TS. In particular we show
experimentally that a number of processors proportional to the size of the problem can be
efficiently used.

Finally, Section 6 reports numerical results obtained with our TS implementation.

2. The quadratic assignment problem

Mathematically, a concise way of presenting QAP is the following:
N N
Minimize ), Y a;;b,iye(;)  ¢: permutation of {1...N}.
i=1j=1

Practically, N units have to be assigned to N different locations, knowing that the distance
between the locations i and j is a;; and that a flow having a value of b,; goes from unit r to
unit s, such that the sum of products distance X flow is minimized. Examples of problems that
may naturally be expressed in terms of QAP include:

— the placement of logical modules in a chip such that the total length of the connections is
minimized;

— the distribution of medical services in a large hospital centre.

Many other examples exist and the reader is referred to the work of Finke et al. [8] for a recent

overview of this subject.

The QAP contains the travelling salesman problem as a special case and hence is NP-hard.
Moreover, no polynomial algorithm exists with a relative guaranteed error lower than a fixed
constant for every instance of QAP unless P = NP, as demonstrated by Sahni et al. [15].
However, the asymptotic behaviour of randomly generated problems, under some assumptions,
shows that the relative difference between the best and the worst solutions tends to zero if the
problem size tends to infinity.

Table 1 compares the value of the solutions obtained by some methods; first, the method
proposed by Nugent et al. [13], then the one of Elshafei [6]. The first results obtained using SA
are the best published either in the original paper of Burkard et al. [3] or those obtained by
Skorin—Kapov [16] using the SA code of Burkard et al.; the second results obtained using SA
are those published in Connolly [5].

The results obtained using TS originate first from the first paper of Skorin—Kapov (Tabu-
Navigation), second form her second paper where some extensions of TS (target analysis) for
the QAP are discussed and third from the connectionnist approaches of Chakrapani et al. [4].
We have also reported the best solution known up to now and obtained by the implementation
of TS of the present paper.

The best heuristic methods have been shown to provide very good solutions for sizes up to
40, which motivates the examination of problems of larger size. Accordingly, we include
consideration of problems up to a size of 100 in this study, making use of the procedure we
have designed for randomly generating problems of arbitrary size.

The fact that earlier versions of the TS procedure have obtained the best known results for
QAP, both in terms of solution quality and CPU times, underlies our motivation to focus on
this method and to seek a more robust and effective implementation.
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3. Taboo search

The main ideas of TS may be briefly sketched as follows. The first ingredient (common to
most heuristic and algorithmic procedures) is to define a neighbourhood, or a set of moves that
may be applied to a given solution to produce a new one.

Among all the neighbouring solutions, TS seeks one with a best heuristic evaluation. In the
simplest case such an evaluation dictates the choice of a move that improves most the objective
function. If there are no improving moves (indicating a kind of local optimum), TS chooses one
that least degrades the objective function. In order to avoid returning to the local optimum just
visited, the reverse move now must be forbidden. This is done by storing this move — or more
precisely a characterization of this move — in a data structure often managed like a circular list
and called taboo list. This list contains a number s of elements defining forbidden (taboo)
moves; the parameter s is called the taboo list size. However, the taboo list may forbid certain
relevant or interesting moves, as exemplified by those that lead to a better solution than the
best one found so far. Consequently, an aspiration criterion is introduced to allow taboo moves
to be chosen if they are judged to be interesting.

A complete version of TS contains additional elements (see e.g. Glover [10,11]), but we will
show how these basic notions alone can be used to construct an effective implementation for

QAP.
3.1. Moves

A natural type of move that is very well suited for this problem consists of exchanging two
units so that each occupies the location formerly occupied by the other. Starting from a

Table 1
Best solutions obtaind by some methods
Method

Problem Size  Nugent  Elshafei SA® SA® TS © TS ¢ TS® TS

Nugent 15 1206 1228 1150 1150 1150 1150 1150 1150
20 2678 2598 2570 2570 2570 2570 2570 2570
30 6379 6250 6148 6124 6124 6194 6124 6124

Krarup 30 - - 88900 - 88900 92210 88900 88900
30 - - 91420 - 91420 93520 91420 91420

Steinberg 36 - - 9572 - 9526 9654 9526 9526
36 - - 15852 ' - 15852 16978 15852 15852

Skorin-Kapov 42 - - 15956 - 15864 15864 15818 15812
49 - - 23662 - 23536 23472 23398 23386
56 - - 34916 - 34736 34788 34658 34458
64 - - 49020 - 48964 48928 48760 48498
72 - - 66924 - 66756 66794 66268 66256
81 - - 91432 - 91778 91770 91362 91008
90 - - 116460 - 116360 116258 116116 115534

Wilhelm and Ward 50 - - - 48816 - - - 48816

100 - - - 273400 - - - 273044

# Best solution found with SA implemented by Burkard et al. [3].

® Best solution found with SA implemented by Connolly [5).

¢ Best solution found with TS, published in Skorin-Kapov [16] (using either Tabu-Navigation or a long term memory).
9 Best solution found with TS, using target analysis (Skorin-Kapov [17]).

¢ Best solution found with a simulation of a Boltzmann machine that uses TS (Chakrapani et al. [4]).

f Best known solution (found with TS, using the implementation of the present paper).
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placement ¢, a neighbouring placement = is obtained by permuting units r and s:
m(k)=¢(k)Vk#r,s
7(r)=¢(s)
7(s) =¢(r).

If the matrices are symmetrical and with a null-diagonal (as it is the case for ‘classical’
examples) the value of a move, written A(¢, r, s) is given by:

N N
A($, r,s) =2 X (abyirecry = Gijbaiiyniiy)
i=1j=1

=2 Z (ag - ark)(b¢(s)¢(k) - b¢-(r)¢(k))‘ (1)
k+#r,s
If the matrices are not symmetrical and /or without a null-diagonal, the expression — still
computable in O(N) — is a bit more complicated and is given by Burkard et al. [3]. Moreover, if
the exchange of units r and s in a placement ¢ provides a placement =, it is possible (for u
and v different from r or s) to compute the value A(#, u, v) in a constant time if one takes
care to store the value of A(¢, u, v) at the previous step of taboo search:

A(m, u, v) =A(¢,u,v)

+ 2(aru —a, + Ay — asu)(bvr(s)w(u) - bﬂ(:)'n(u) + b'n(r)vr(v) - b'n-(r)vr(u))‘

()

If u or v is equal to r or s, it is possible to compute the value of A(x, u, v) by the use of the
expression (1). Consequently, the complete evaluation of the neighbourhood takes O(N 2)
operations, as shown in Frieze et al. [9].

A fast evaluation of the quality of the moves is an important factor contributing to the
efficiency of search. This evaluation may be exact as in the travelling salesman application of
Fiechter [7] or in the flow shop sequencing of Taillard [19] or approximate as in the job shop
scheduling of Taillard [20]. Moreover, the moves must have good properties in relation to the
problem considered. It would be inappropriate for QAP to employ a move that inserts a unit
adjacent to a unit s in a permutation ¢, because that would change the location of every unit
between r and s in the permutation — a real disaster!

3.2. Taboo list

We have now to define the type of the elements of the taboo list. Skorin—Kapov [16] has
proposed to forbid the exchange of two units that were exchanged during the preceding s
iterations. Formally, the taboo list is constituted of pairs (i, j) of units that cannot be
exchanged. The prohibition of the list may be implemented with a 2-dimensional array of
integers where the element (i, j) identifies the value of the future iteration at which these two
units may again be exchanged with each other. By this means, testing whether a move is taboo
or not requires only one comparison. It is important to evaluate a taboo condition in a constant
time in order to evaluate the neighbourhood in a time proportional to its size, and hence to
avoid a growth in the complexity of the search.

The implementation of Skorin—Kapov does not use formula (2) to accelerate the evaluation
of moves, which reinforces her conclusion of the superiority of TS to SA (as implemented by
Burkard et al. [3]).

In his diploma project, Rogger [14] has tried many types of taboo lists and we chose the one
that proves most convenient if the size s of the list is changed, because we employ a rule that
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varies the value of this parameter (advantages of such a list in general setting are described by
Glover [11]). Specifically, our taboo list is constructed as follows: for every unit and location,
the latest iteration at which the unit occupied that location is recorded. A move is taboo if it
assigns both interchanged units to locations they had occupied within the s most recent
iterations. This type of list provides results that are comparable to those obtained with the type
proposed by Skorin-Kapov when their ‘optimal’ sizes are given, but is less sensitive to the
parameter s.

3.3. Aspiration function

For every problem we use the classical aspiration function that allows a taboo move to be
selected if it leads to a solution better than the best found so far. However, the best known
solutions to some problems could not always be obtained with this minimal implementation —
i.e. by using only one type of move, one taboo list and the trivial aspiration function. Closer
examination of the problems where the implementation performed more poorly (in particular
the problem proposed by Elshafei [6]), disclosed what was conceptually wrong: these problems
have a very special flow matrix containing a lot of null or very small values and some very high
flows. If the search at some point badly locates the units with high flows at a local optimum,
then TS will perform moves with small costs because the first exchange of the crucial units
would greatly increase the value of the objective function.

The trick we propose to overcome this difficulty is very simple: for the problems with very
heterogeneous flows or costs, a move will pass the aspiration criterion and be selected, with
solution quality an entirely subordinate measure, if the exchange will place both units at
locations they have not occupied during the last 7 iterations. Conceptually, this function can be
viewed as a longer term diversification process that is activated to forbid moves that fail to
satisfy its condition whenever some pair of units meets the criterion successfully.

3.4. Taboo list size !

The choice of taboo list size is critical; if its value is too small, cycling may occur in the
search process while if its value is too large, appealing moves may be forbidden and leading to
the exploration of lower quality solutions, producing a larger number of iterations to find the
solution desired.

However, it is false to think that the cycling phenomenon invariably appears as a function of
a small taboo list size, because we observed, for the problem of size 15 of Nugent et al. [13], a
cycling with a taboo list size set to s = 30 and this cycling was not observed for sizes between
26 and 29. To overcome the problem related to the search of the optimal taboo list size, we
propose the following trick: rather than fixing the size s at a constant value during the whole
search, we propose to change this value randomly during the search. Practically, s will be
chosen between s, and s,,, = Sm. +4 and frequently changed, for example every 2 -s,,,
iterations (in order to have some probability to perform some iterations with s =s,,.).

In Fig. I, we are interested in the practical values that have to be given to s, and A to
solve (optimally) the Nugent’s problem with N =15. When we succeed in finding an optimal
solution 30 times, starting with independent initial solutions and using less than 10000
iterations, we plot by a black square in the figure. It must be noted that the allowed number of
iterations is about 20 times the mean number of iterations needed to solve this problem when
Smin and A are set to their ‘optimal’ values.

In Fig. I, we first note that the introduction of a random taboo list size (A > 0) makes the
search much more reliable. Second, there is a very wide range that may practically be given to
and A.

Smin
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Fig. 1. Feasible values of taboo list size for Nugent’s problem (N =15).

In fact, for most problems we found the best solutions known up to now using s, = 0.9 N |
and s,,, =[1.1 N]. However, these solutions are sometimes found more rapidly with a slightly
larger taboo list size for small problems (N < 15) and for problems with non-regular matrices
(Elshafei, Steinberg) or for big problems (Skorin—Kapov, Krarup) where the second aspiration
function is used, the taboo list size has to be reduced, approximately 30%. The parameter ¢ of
the second aspiration function depends strongly on the problem. For the most irregular one
(Elshafei) ¢ was set to 400 and for bigger problems it was set between 3000 and 10 000.

In Fig. 2 we are interested in the mean number of iterations to find a suboptimal solution,
for the first instance of Steinberg’s problem. So we try to ‘solve’ this problem 30 times, starting
with independent initial solutions and allowing at most 500000 iterations. This is done for 3
values of A (0, 5 and 10) and 7 values of s.;, (0, 5,..., 30).

When the taboo list size is fixed (A = 0), it is important to choose it adequately: for our
example, we observe a cycling for sizes inferior to 10, while the optimal size is about 20, and the
mean number of iterations increase of about 50% for a size of 30. But the introduction of
randomness (A = 5 or A = 10) makes it possible to find the searched solution in a more reliable
way (the interval of good values of s,;, is bigger) and one needs less iterations (—30%) than for
a fixed size.

It must be noted that the regularity of the curve of Fig. 2 is generally not reproducible for
every problem. There are often local minima at various places. This is due, as we are going to

Number of iterations

o

0 5 10 15 20 25 30
Minimal taboo list size

Fig. 2. Solving Steinberg’s problem sub-optimally.
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see in Section 5, to the number of iterations needed to find a sub-optimal solution: this number
is a random variable (the initial solution is chosen at random) from an exponential distribution.
As the standard deviation of this distribution is equal to the mean, the estimation of the mean
is very imprecise. Consequently we are interested in the mean of the logarithm (in base 10) of
the number of iterations. This measure seems to be an artificial one, but it is more precise since
the standard deviation is less than 0.7 for every problem considered.

4. Random problems

The problems published in the literature have a major disadvantage: duplicating and using
the data may be hard because the matrices are recorded in extensive tables, and sometimes
printed in a unreadable way.

Accordingly, we propose a simple way to generate problems automatically; these problems
will be generally more difficult to solve (with our TS) than the published ones because the
largest problems whose sub-optimal solutions can be routinely verified have a size of 35 to 40
and we have most probably solved optimally the problems of Steinberg (N = 36) and Skorin-
Kapov (N =42 to N = 64).

In our generating procedure, the coefficients of the distance and flow matrices are integers,
randomly and uniformly generated between 0 and 99 (contained). The random number
generator, analyzed in the book of Bratley et al. [1], is based on the recursive formula:

X, = (aX,_;)Mod m,
where a = 16807, m =2 —1 and X, = 123456789.
The generating procedure may be written in pseudo-code as follows:

k=0

For i=1 to N do
a;;=0
b;;:==0

End for

For i=1 to N-1 do
For j=i+1 to N do

k:=k+1
a;; =1€(100 X,)/m|
aji = @5
End for
End for
For i=1 to N-1 do
For j=1 to N do
k:==k+1
b;; =1(100 X,)/m|
by :=by;
End for
End for

This procedure may be implemented as written here, but the integers must be coded on 64
bits. It would be very easy to generate other problems by changing the initial value of Xj.

5. Parallel taboo search

Without changing the sequential algorithm significantly, the most efficient way of executing
a TS concurrently is to distribute on many processors the component that requires the most
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Fig. 3. Parallel efficiency of TS.

CPU time. For QAP, this component consists of evaluating the neighbourhood of currently
available moves, that is to say, the values A(¢, -, -). The parallelization idea is to divide the
neighbourhood into p parts having about the same size, and to evaluate each of these parts on
p different processors. In order to balance the work between the processors, the partition of the
neighbourhood must be done carefully since there are O(N) moves that need a computation
time of O(N) each, using formula (1), and since O(N?) moves need a constant computation
time using formula (2), both types of moves must be divided into p parts, such that every
processor has about the same amount of work.

Having done that, every processor computes the values of the moves that are attributed to it.
Then, it communicates to the others its proposed move (the best move it found) and receives
p — 1 moves proposed from the other processors. Every processor chooses and performs the
best move proposed to (or by) it, updating ¢ and the new value of A(¢,-,-). If there are many
proposed moves that are of the same quality, the processors will retain, for example, only the
move that was proposed by the processor that has not had an accepted proposition for the
greatest number of iterations.

This parallelization method is very general and provides good speed-up results (see Fiechter
[7] and Taillard [19]). In Fig. 3, we are interested in the efficiency of such a parallelization
method for QAP. So we have implemented our TS on a ring of transputers; the number of
processors of the ring was proportional to the size of the problem (precisely N/10).

We remark that the efficiency (the division of the theoretical CPU time with an ideal
speed-up by the CPU time effectively observed) decreases slightly as N increase, but an
efficiency of more than 85% is possible with 10 processors.

Another way of parallelizing consists in performing many independent searches, starting
every one with different initial solutions. This technique is widely used in sequential computa-
tion by the repeated execution of an algorithm (which could be TS or SA or any other method),
modifying the initial solution after each execution. These algorithms may be seen as procedures
that provide the desired solution with a probability p(¢) if they run during a time ¢. But, if
p(t)=1—e"™ with A> 0, it is perfectly equivalent (in terms of probability) to perform one
search during a time ¢ or p searches during a time p/t.

For many problems solved by TS (graph colouring (Mohr [12]), scheduling (Taillard [19,20]))
the empirical function p(#) approximates an exponential distribution. This trivially means that
TS implemented only with a short term memory (one taboo list, always active) and with no
long term memory, has no advantage in being restarted.

For QAP, we observe again the same behaviour, as shown in Fig. 4 where the empirical
probability is plotted as a function of the number of iterations. (This is equivalent to p(?)
because every iteration takes a constant time for a given size of problem.) In order to evaluate
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Fig. 4. Probability of not having found the sub-optimal solution (N =15).

this function, we have solved our randomly generated problem of size fifteen 300 times to
obtain the best known solution. We have then superimposed on the observed points the best
exponential curve (in the sense of a least mean squares fit).

We see that the empirical observations approximate an exponential curve, which means that
almost ideal speed-ups may be obtained by concurrent searches.

However, a minimal number of iterations have to be performed — let us say a number
proportional to N, corresponding to the number of permutations that a descent method
performs.

Finally, let us quote a quite different parallelization method, based on Boltzmann machine,
that was successfully implemented by Chakrapani et al. [4]. It is shown in this paper that it is
better to perform a TS process on the nodes of the Boltzmann machine rather than to perform

a usual SA process.

6. Numerical results

First, we show the quality of our TS approach by comparing in Table 2 some algorithms of
diverse complexity: first the arbitrary choice of a solution, whose complexity, including the
computation of the objective function, is O(N 2); second, the exchange algorithm, that stops
when the first local optimum is reached — empirically in O(N 3), see the work of Frieze et al. [9]
— and then our TS when 1000, 4N and N? iterations are performed — having respectively a
complexity of O(N?), O(N?) and O(N*). We choose such numbers of iterations first because
Skorin—Kapov [16] gives her results for 1000 and 4N iterations of TS in her paper and second
because we were interested in performing a number of iterations that grows faster than the size
of the problem.

In this table, we give the mean percentage above the best known solutions of these heuristic
methods. Let us mention that we have always obtained the best known solutions by our TS,
possibly allowing more iterations; in particular we improved the best known value of every
problem proposed by Skorin-Kapov. The results are obtained by ‘solving’ every problem 30
times, starting with different initial solutions, the same 30 starting solution for every heuristic
method.

In Table 3, we are interested in solving sub-optimally some of these problems. Again, we
have started with 30 different solutions and we give in this table the following;:

— The mean number of iterations needed to get the sub-optimum, but as the standard
deviation of this measure is about the same order of magnitude, we give a more precise
measure, that is
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Table 2
Percents above best known solutions provided by some heuristic methods
Source Size Random First TS TS TS Best known
(N) solution local 1000 4N N? solution
min. steps steps steps
Random S 36.1 * 89 * 0.0 * 0.0 * 0.0 * 12902 °©
(X, =123456789) 6 16.2 * 6.7 * 0.0 * 0.2 * 0.0 * 29432 ¢
7 18.1 45 * 0.0 * 2.7 * 0.5 * 53976 ©
8 21.3 8.6 * 0.0 * 1.3* 0.1* 77502 ¢
9 235 73* 0.0 * 0.7 * 0.1* 94622 ©
10 20.9 6.0 0.0 * 14 * 0.7 * 135028 ©
12 26.3 7.7 0.6 * 35 * 1.1* 224416 °©
15 16.8 4.0 0.1* 1.6 0.7 * 388214 ¢
17 19.2 4.8 0.6 * 22 1.1* 491812 ¢
20 19.1 5.4 0.9 * 2.7 1.5 703482 ©
25 17.5 4.8 1.3 2.8 1.5 1167256 ©
30 16.6 4.7 14 24 1.5 1818146 ©
35 17.4 4.5 1.6 25 1.5 2422002 ©
40 16.8 43 14 23 1.2 3146514
50 16.6 43 1.8 2.4 1.5 4951186
60 15.1 34 11 1.6 0.7 7272020
80 13.8 32 14 1.6 1.0 13582038
100 12.5 25 0.8 1.2 0.5 21245778
Nugent 5 15.5 * 6.9 * 0.0 * 04 * 0.1* 50 ¢
6 109 * 49 * 0.0 * 0.0 * 0.0 * 86 ¢
7 12.4 3.7 * 0.0 * 0.1* 0.0 * 148 ¢
8 184 25 * 0.0 * 01* 0.0 * 214°¢
12 242 40 * 0.0 * 1.5 * 09 * 578 ¢
15 26.7 32 0.0 * 1.0 * 02* 1150 ©
20 242 35 01* 14 * 04 * 2570 ©
30 271 35 03* 1.7 * 04 * 6124 ¢
Elshafei 19 122.6 44.5 3.349° 229 * 11.4 9 17212548
Krarup ? 30 43.8 73 29 * 4.5 30* 88900 °©
30 42.1 49 1.0 * 29 11* 91420 ©
Steinberg ? 36 106.7 11.9 4.1 6.5 36 9526 ©
36 320.7 25.5 9.2 16.4 8.5 15852 ¢
Skorin—Kapov ? 42 235 29 0.6 1.5 04 * 15812 ¢
49 21.3 2.9 0.6 1.7 02* 23386 ©
56 214 29 1.0 2.0 0.5 34458 ©
64 19.2 2.5 0.7 1.5 04 48498 ©
72 18.2 2.5 0.9 1.5 04 66256
81 17.7 2.1 0.8 1.2 04 91008
90 171 2.0 0.9 1.3 0.4 115534
Wilhelm and Ward ° 50 11.9 1.5 04 0.8 0.2 48816 ©
100 9.2 1.0 0.5 0.7 0.2 273044

* The best known solution was found once at most during the 30 trial.

Data obtained via J. Skorin-Kapov (private communication).
® Data obtained via D.T. Connolly (privvate communication).
¢ Provably or probably optimal solution.

4 The parameter t was set to N2/2.

a

— the mean of the logarithm (in base 10) of the number of iterations and
— the standard deviation of this measure; we then give the parameters we used (not necessary
optimal ones), these are:
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Table 3 )
Amount of work needed to solve sub-optimally some problems
Source Size Mean Mean Std. dev. Smin Smax t
(N) (iterations) log(iter.) log(iter.)
Random 5 7.6 0.839 0.205 4 6 00
(X, =123456789) 6 6.6 0.734 0.273 6 10 00
7 25.7 1.195 0.469 10 14 o
8 294 1.369 0.388 12 16 )
9 31.7 1.409 0.306 8 10 ©
10 137.1 1.975 0.414 15 20 )
12 210.7 2.032 0.495 12 18 )
15 2168.0 3.099 0.447 15 19 ©
17 5020.4 3.496 0.546 17 21 0
20 34279.0 4.373 0.464 18 22 )
25 80280.4 4.616 0.578 22 28 00
30 146315.7 4.967 0.451 27 33 00
30 70517.3 4.605 0.544 13 21 6000
35 448514.5 5.388 0.593 17 29 7000
Nugent 5 10.9 0.856 0.397 4 6 o
6 8.3 0.869 0.223 5 7 ©
7 14.5 1.047 0.341 6 8 o
8 13.8 1.058 0.272 7 9 0
12 231.5 2211 0.411 10 14 0
15 752.6 2.584 0.617 13 17 ©
20 1430.9 2.933 0.504 18 22 0
30 24712.8 4.070 0.711 27 33 0
30 14112.4 3.951 0.595 17 27 4000
Elshafei 19 4106.0 3.509 0.317 8 10 400
Krarup 30 239354 4.170 0.543 15 25 3000
30 30251.3 4.357 0.373 15 25 3000
Steinberg 36 41312.7 4.506 0.361 20 30 4000
36 11955.0 4.016 0.229 20 30 4000
Skorin-Kapov 42 26836.5 3.978 0.589 21 37 4000
49 280662.6 5.257 0.517 25 43 8000
56 537061.2 5.472 0.565 30 47 10000
64 687651.9 5.468 0.632 38 55 10000
Wilhelm et al. 50 277409.6 5.191 0.488 31 40 8000

— the minimal size s, of the taboo list and

— S its maximal size and finally

— the value of ¢, corresponding to the parameter of the second aspiration function (or oo if this
last was not used).

Although it is possible to solve Nugent’s and our random problem of size 30 without the
second aspiration function, we undertook to solve it with this facility and we see that the
introduction of a long term memory is useful for big problems. In general, the number of
iterations grows very fast with the size of the problem and it becomes very expensive to solve
problems having a size greater than 35 or 40.

Finally, let us mention that we used an implementation with 10 transputers (T800C-G20S)
to get these results. In these conditions, the CPU time per iteration is given approximately by
6.2-N? ps.
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7. Conclusion

We show in this paper that it is possible to find very good solutions to QAP using a
procedure based on TS and fixing its parameters a priori. In particular, if N 2 jteration are
allowed and the taboo list size is varied randomly in a range of 10% about the size of the
problem, it is possible to reach solutions of excellent quality, depending more on the type of
problem than on its size, for N > 20.

The implementation of our TS, in addition to its simplicity, reduces the computational
complexity of earlier TS implementations for QAP by a factor of N, and the complexity may be
reduced by a factor N once more with the use of a number of processors proportional to N.

It is shown that the use of an elementary TS — one taboo list and the trivial aspiration
function — works well for most problems up to a size of 30. For bigger problems, the use of
another aspiration function is proposed — adding a new parameter but without changing the
complexity (work and memory requirements) of the algorithm — and some problems up to the
size of 64 may be solved sub-optimally. However, we think that the search of sub-optimal
solutions for bigger problems must be done by another procedure, using for example more
elaborate concepts of TS (target analysis or a more sophisticated long term memory).

Finally, a reliable way of generating random problems is given, that considerably reduces the
work needed to get instances of them.
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