
Parallel Algorithm for Hardware Implementation of
Inverse Halftoning

Umair F. Siddiqi, Sadiq M. Sait
Department of Computer Engineering

King Fahd University of Petroleum & Minerals
Dhahran, Saudi Arabia

{umair,sadiq}@ccse.kfupm.edu.sa

Aamir A. Farooqui
Synopsys Inc., Synopsys Module Compiler

700 Middlefield Road
Mountain View CA 94034, USA

aamirf@synopsys.com

Abstract— A Parallel algorithm and its hardware
implementation of Inverse Halftone operation is proposed in
this paper. The algorithm is based on Lookup Tables from
which the inverse halftone value of a pixel is directly
determined using a pattern of pixels. A method has been
developed that allows accessing more than one value from the
lookup table at any time. The lookup table is divided into
smaller lookup tables, such that each pattern selected at any
time goes to a separate smaller lookup table. The 15-pixel
parallel version of the algorithm was tested on sample images
and a simple and effective method has been used to overcome
quality degradation due to pixel loss in the proposed
algorithm. It can provide at least 4 times decrease in lookup
table size when compared with serial lookup table method
implemented multiple times for same number of pixels.

I. INTRODUCTION
The process of rendition of continuous-tone pictures on a
media on which only two levels can be displayed is defined
as halftoning. [1]. The problem has gained importance since
the time of printing press, when attempts were made to print
images on paper by adjusting the size of the dots according
to the local image intensity. This process is termed as analog
halftoning. The digital halftoning has also become important
with the availability and adoption of bi-level devices such as
fax machines and plasma displays [2]. The input to a digital
halftoning system is an image whose pixels have more than
two levels, (e.g., 256), and the result of the halftoning
process is an image that has only two levels. Inverse
halftoning, on the other hand, is the reconstruction of a
continuous tone image from its halftoned version. Inverse
halftoning finds applications in diverse areas of image
compression, printed image processing, scaling,
enhancement, etc. In these applications, image processing
operations cannot be directly performed on the image and
inverse halftoning is essential [1]. Inverse halftone operation
is generally considered to be an iterative process involving
complex iterative computations [3]-[6]. The Look up Table
(LUT) based method proposed by Murat Mese and
Vaidayanathan is a non iterative and computation free

method of inverse halftoning that also yields images of good
quality. They also suggested this method to be fastest among
all previously known ones [7]. To determine the inverse
halftone value at a point, the algorithm looks at the pixel’s
neighborhood. Depending upon the distribution of pixels in
the neighborhood, a contone (gray level) value is assigned
from a pre-computed lookup table. This algorithm is suitable
for parallel hardware implementation since each pixel’s
contone value is determined in isolation and is not dependent
on other pixels. However, the drawback of this method is
that it can only process one-pixel at a time. In this paper (a)
the algorithm proposed by Mese and Vaidyanathan in [7] has
been modified so that it can fetch more than one value from
the lookup table at any time, and, (b) a high throughput
FPGA implementation has been developed that shows that
the proposed algorithm can be implemented easily in
hardware.

The paper is organized as follows: Section 2 describes the
new algorithms for parallel access of lookup table. Section 3
presents the experimental results of the proposed algorithm,
followed by VLSI implementation results in Section 4.
Conclusion is given in Section 5.

II. ALGORITHM FOR PARALLEL TABLE ACCESS

A. Algorithm for distribution of “19pels”
As mentioned in the previous section that LUT method
looks at the distribution of pixels in the neighborhood of the
pixel that is going to be inverse halftoned to determine a
gray level value. The authors in [7] suggested a 19-bit
template named “19pels”, to select pixels from the
neighborhood and this “19pels” template is shown in Figure
1.

Figure 1: “19pels” template.

1 2 3 4 5
6 7 8 9 10
11 12 0 13 14

 15 16 17
 18

23770-7803-8834-8/05/$20.00 ©2005 IEEE.

This “19pels” is associated with each pixel that is to be
inverse halftoned. Thus for an n-pixels parallel system, we
have n “19pels” in parallel and the Lookup Table contains
inverse halftone values for all “19pels”. In the proposed
algorithm, the Lookup Table is divided into several smaller
lookup tables (SLUTs) such that every ”19pels” selected in
a cycle will go to a separate SLUT.

Figure 2: Illustration of Relative XOR Change (RXC).

Figure 3: Block diagram for “Relative XOR Change”.

The algorithm can be explained using a parameter Relative
XOR Change (RXC) as shown in Figure 2 and Figure 3.
Pattern(n) and pattern(n+1) are “19pels” of two column-
wise consecutive pixels in any row and signal ‘inner’ holds
the bit to bit exclusive-OR of pattern(n) with pattern(n+1).
The magnitude of RXC is the number of ones present in the
signal ‘inner’ and sign of RXC is positive when
pattern(n+1) is greater than pattern(n) and is negative
otherwise. The values of RXC can lie between -19 to +19.
RXC is easy to implement in parallel hardware.

To demonstrate how RXC can help develop efficient table
distribution algorithm the RXC have been calculated on
halftones of gray-levels obtained through (a) Error Diffusion
(ED) algorithm proposed by Floyd and Steinberg [8]; (b)
Green Noise ED algorithm proposed by D.L. Lau, G.R.
Arce and N.C. Gallagher [9] and (c) the Edge Enhancement
ED algorithm proposed by R. Eschbach and K. Knoxin [10]
(and further modified for adaptive threshold modulation by
N. Damera Venkata and Evans [11]). In Figure 4 the RXC
has been applied in form of a raster scan through halftones
and the results obtained are shown in Table 1. The halftones
were generated using MATLAB tool box available at [13].

Our task is to separate all input “19pels” from each other so
that they can go to separate SLUTs. It has been observed
that RXC can give unique numbers across consecutive

“19pels” in the image except for the regions of periodic
vibratory or zero response. Therefore, all “19pels” selected
in parallel can be represented by unique RXC values and
this property of RXC has been used to develop an efficient
table distribution algorithm.

Figure 4: Procedure and results obtained from RXC calculated over gray-

levels 0 to 255.

TABLE 1: PARAMETER VALUES FOR RESULTS IN FIGURE 4.
Halftone Algorithm g1 g2 g3 g4

Floyd & Steinberg ED 120 140 15 245
Green Noise ED (h=0) 136 141 10 245

Edge Enhancement ED

112
190

146
210

20 245

1.31

0.05

8.39

0.19

4.66

0

0 2 4 6 8 10

Clock (g1 and g2)

Clock (<g3 and >g4)

Boat (g1 and g2)

Boat (<g3 and >g4)

Lena (g1 and g2)

Lena (<g3 and >g4)

% pixels

Figure 5: Percentage of pixels present in the regions of periodic vibratory

and zero RXC response for Green Noise ED

Looking at the distribution of gray levels in different
standard images, it has been observed that the range of gray
levels over which RXC have Periodic vibratory or zero
response are quite limited in all images, as shown in Figure
5. It has been further observed that only gray levels of
aperiodic halftone patterns can be divided into separate
regions of RXC, as shown in Table 1. Therefore, all
halftones included in this paper are aperiodic and a
discussion on aperiodic and periodic halftones can be found
in [12].

Figure 6, illustrates the algorithm that can accept ‘N’
parallel “19pels” patterns and can distribute them among ‘t’
SLUTs, from where each “19pels” can fetch its inverse
halftone value independent of others.

Procedure:
input= gi (Any gray-level between 0 to 255)
1. x1[1:m, 1:n]= gi × ones(m, n);
2. x2[1:m, 1:n]= Halftone Algorithm(x1);
3. for i= 1: m
4. for j= 1: n
5. y(j)= RXC(x2(i,j), x2(i,j+1));
6. end;
7. output= concatenate[output, y];
8. end;

Results Obtained:

><

<<

≅
otherwise ;function Vibratory Periodic NOT

g4 and g3 ; Zero

g2 g1 ; function Vibratory Periodic

output ii

i

gg

g

1. Pattern(n)= “19pels” with pixel 0 at position (row, col);

2. Pattern(n+1)= “19pels” with pixel 0 at position (row,col+1);

3. inner= XOR(pattern(n), pattern(n+1));

4. Magnitude of RXC= |RXC|= Number of Ones(inner);

5. Sign of RXC= sgn(RXC)=

<+−
>++

|Pattern(n)| |1)Pattern(n|;
|Pattern(n)| |1)Pattern(n|;

2378

Input: Halftone Image Image[1:m, 1:n];

OutPut: Smaller Lookup Table Number y(0)…y(N)

1. for i=1:1:m

2. P(0)= zeros(1, 19);

3. for j=1:N:n

4. P(1)=Image(i, j), P(2)=Image(i,j+1),

 …, P(N)=Image(i, j+N);

5. R1=RXC(P(0),P(1)), R2=RXC(P(1),P(2)),

 …, RN=RXC(P(N-1),P(N));

6. P(0)= P(N);

7. y(0)= mod(R1, t); y(1)=mod(R2, t);

 …; y(N)=mod(RN, t);

11. end for;

12. end for;

Notes: (a) P(0),P(1),…,P(N) are “19pels” of total N pixels that were taken
parallel at a time. (b) t is the total number of SLUTs.

B. Algorithm for SLUT generation
The previous part has shown the algorithm for input “19pels”
that enables them to go to their separate SLUTs. Here we
will present the algorithm to develop SLUTs. The algorithm
is presented in Figure 7. It can generate SLUTs for any
training set comprising of any number of images. A
discussion on training sets and their suitable sizes can be
found in [7]. In hardware, the SLUTs tables can be stored in
terms of decoders that have hard-wired contone values for
corresponding “19pels.”

Figure 6: Proposed Algorithm to obtain SLUTS values for “19pels”.

Figure 7: Method for generation of SLUTs.

III. SIMULATION RESULTS
The proposed algorithm has been implemented in MATLAB
with parameters (N=15, t=19) and tested on several halftone
images including Boat, Clock and Lena. The results obtained
along with the image quality are shown in Table 2. It can be
noticed by comparing Table 2 and Figure 5 that images
having lesser pixels in gray-levels of periodic vibratory and
zero RXC response have good pixel coverage. It has been
observed that the algorithm can distribute 15 “19pels” in
parallel among 19 SLUTs with approximately 30% pixel
drop. To overcome this loss of pixels we have replicated

gray level values from the neighbors, this simple technique is
shown in Figure 6.

In calculating PSNR in Table 2, it has been assumed that all
“19pels” that can reach their SLUTs can also find their exact
inverse halftone values in their tables. Hence, the PSNR only
shows the quality of inverse halftones obtained as a result of
loss of pixels in the proposed algorithm. A discussion on the
quality of inverse halftones obtained through Lookup Table
based inverse halftoning can be found in [7].

Figure 8: Illustration of technique used for pixel compensation.

Figure 9 shows an image that has been obtained from our
algorithm with pixel replication. Lookup table inverse
halftoning is assumed to be ideal as before. The original
image was halftoned using Floyd and Steinberg ED method.
Electronic versions of many images obtained from our
algorithm are available at [14].

TABLE 2: SIMULATION RESULTS OF THE PROPOSED ALGORITHM
Image Halftone

Algorithm
% pixel coverage w/o
pixel compensation

PSNR Original & Inv.
Halftoned with pixel

compensation
Boat FS ED 65.0864 30.3749
Clock FS ED 70.6667 30.1671
Lena FS ED 70.9629 28.7139
Boat GN ED 63.7531 31.2554
Clock GN ED 69.8765 31.7895
Lena GN ED 69.7284 29.5628
Boat EG ED 67.3086 32.1370
Clock EG ED 68.5926 29.9289
Lena EG ED 71.0617 28.2293

Note: FS ED: Floyd & Steinberg ED, GN ED: Green Noise ED and EG ED:
Edge Enhancement ED (image size 50x50 pixels).

Figure 9: Inverse Halftoned Image (PSNR: 32.5685, 250x250 pixels)

Technique for pixel compensation:
Img=Inverse Halftoned image after passing through algorithms in Figure 6 and
[8]
1. [m,n]=size(Img);
2. for i=1:m
3. for j=1:n
4. if Img(i,j)== missed_pixel
5. Img(i,j)=Img(i,j-1);
6. end

Input: All “19pels” present in the training set P[1, ……, n]
Output: Nineteen SLUTs SLUT[1, 2, ……,19]
1. for i= 1:n
2. s1 = RXC(zeros(1,19), P[i]);
3. SLUT[s1] = P[i];
4. end
5. k[1, 2, ….. 19]= number_of_rows(SLUT[1, 2, ……, 19]);
6. for i1=1:19
7. for i2=1:k[1, 2, ….., 19]
8. s2= GenRXC(SLUT[i2], i1);
9. SLUT[k]= concatenate(SLUT[k], s2);
10. end
11. end
12. SLUT[1, 2, …., 19]= erase_duplicate(SLUT[1, 2, ……, 19]);
13. SLUT[1, 2, ….., 19]= training_set(SLUT[1, 2, ……, 19]
note: GenRXC() can generate patterns for any given RXC values and
training set() can return only those patterns that are present in the training set.

2379

IV. HARDWARE IMPLEMENTATION
The proposed algorithm has been implemented in hardware.
Figure 10 shows the block diagram of a system that can
implement the proposed algorithm on hardware. The
system is pipelined and the arrows in Figure 10 have
implicit registers to hold previous block outputs. The
SLUTs developed contains gray level values for all “19pels”
that occur in images Boat, Clock and Lena The design was
captured in VHDL, simulated in Modelsim and then
synthesized with Leonardo Spectrum. The results obtained
after synthesizes are shown in Figure 11.

For comparison, serial LUT inverse halftoning algorithm of
Murat and Vaidyanathan [7] was also implemented. The
implementation contains input registers whose outputs goes
into five “19pels” to gray-level decoders that together store
the contents of a single LUT and the outputs from decoders
feed bit to bit OR gates. The OR gates have been
decomposed into several clock cycles to reduce the critical
path. The maximum frequency for serial design has come to
be equal to the implementation of the proposed parallel
algorithm. The results of comparison are shown in Table 3.

Figure 10: System Block Diagram illustrating our FPGA implementation

Figure 11: Synthesis results of the system in Figure 10.

CONCLUDING REMARKS

A new parallel method for Inverse Halftone operation has
been successfully designed and implemented. The proposed
algorithm is found to be very effective on halftone
algorithms that have aperiodic halftone patterns and can be
implemented easily on a single FPGA.

 ACKNOWLEDGMENT
The authors like to acknowledge King Fahd University of
Petroleum & Minerals for all support. We also like to thank
Prof. Todd Reed, University of Hawaii at Manoa for his
useful advice in improving this paper, and VLSI Design
Research Center, Sir Syed University of Engineering &
Technology, Pakistan

 TABLE 3: COMPARISON OF OUR DESIGN WITH SERIAL LUT METHOD.
 Algorithm in [7] Proposed Algorithm

Cycles/pixel 1 0.066
LUT size 5.1 K entries 19 K entries
Latency 4 clock cycles 17 clock cycles

Time taken to inverse
halftone a 256x256 image

691.3502 ms 45.6389 ms

REFERENCES
[1] Murat Mese and P. P. Vaidyanathan, “Recent Advances in Digital

Halftoning and Inverse Halftoning Methods,” IEEE Trans. Circuits
and Systems I, June 2002.

[2] Ping Wong and Nasir D. Memon, “Image Processing for Halftoning,”
IEEE Signal Processing Magazine, Vol. 20, July 2003.

[3] S. Hein and A. Zakhor, “Halftone to continuous tone conversion of
error diffusion coded image,” IEEE Trans. Image Processing, vol. 4,
pp. 208-216, Feb. 1995.

[4] Z. Fan, “Retrieval of images from digital halftones,” ISCAS, pp. 313-
316, May 1992

[5] P. W. Wong, “Inverse halftoning and kernel estimation for error
diffusion,” IEEE Trans. Image Processing, vol. 4, pp. 486-498, Apr.
95

[6] Z. Xiong, K. Ramchandran and M. Orchard, “Inverse halftoning
using wavelets,” in Proc. Int. Conf. Image Processing, vol. 1,
Lausanne, Switzerland, 1996, pp. 569-572.

[7] M. Mese and Vaidyanathan, “Look up Table (LUT) Method for
Inverse Halftoning,” IEEE Trans. Image Processing, vol. 10, October
2001.

[8] R. Floyd and L. Steinberg, “An adaptive algorithm for spatial
greyscale,” Proc. SID, pp. 75-77, 1976

[9] RD.L. Lau, G.R. Arce and N.C. Gallagher, “Green Noise Digital
Halftoning,” Proceedings of the IEEE, Vol. 86, pp 2424-2442,
December 1998.

[10] R. Eschbach and K. Knox, “Error diffusion algorithm with edge
enhancement,” Journal of Optical Society Am. A, Vol. 8, No. 12, pp.
1844-1850, December 1991.

[11] N. Damera Venkata and Evans, “Adaptive Threshold Modulation for
Error Diffusion Halftoning,” IEEE Transactions on Image Processing,
Vol. 10, No. 1, January 2001

[12] Daniel L. Lau, Robert Ulichney and Gonzalo R. Arce, “Fundamental
Characteristics of Halftone Textures: Blue Noise and Green Noise,”
IEEE Signal Processing Magazine, Vol. 20, July 2003

[13] http://www.ece.utexas.edu/~bevans/projects/halftoning/index.html
[14] http://www.ccse.kfupm.edu.sa/~umair

Synthesis Results:

Tools used: VHDL and Leonardo Spectrum (with lowest effort and auto optimization):
Clock Frequency: 94.8 MHz Latency: 18 Clock Cycles
Device utilization (device used: 2V8000ff1517):
IOs 48.10% Global Buffers 06.25%
Function Generators 56.06% CLB Slices 56.06%
Dffs or Latches 16.80% Block RAMs 00.00%
Block Multipliers 00.00%

 285-bits (it contains fifteen 19-bits “19pels”)

 285-bits 285-bits

 75-bits (|RXC| for 15 “19pels”) 15-bits (sign bits)

 75-bits (SLUT for each “19pels”)

 19-bits each

 8-bits each

Note: Pipeline registers have been added between each block and critical paths of blocks
have been broken with registers to maintain clock frequency and pipelining.

Input registers to hold 15 “19pels”
P0, P1, …, P14

XOR gates (Bit to Bit)

Parallel adders to find |RXC| Comparators to detect sign (RXC)

Parallel Modular Adders (fixed mod value = ‘t’)

Decoder to assign SLUT values to “19pels” according to results
obtained from parallel modular adders (“19pels” are routed to their

SLUTS)

Total 19 SLUTS containing 19 K values

Registers to hold Gray-level values

2380

	MAIN MENU
	Front Matter
	Table of Contents
	Session Chair Index
	Author Index

	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

