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Abstract

The acceleration of the product to market cycle of VLSI based technology products dictates continuously refining design and implementation methodologies.  Circuit partitioning is a physical design methodology ?? which divides a given circuit into segments abiding by some constraints and meeting certain objectives.  The circuit partitioning problem is NP hard; that means for this class of problems no algorithm of polynomial complexity was found.  In this thesis work, a biologically inspired heuristic (ant colony) is used to solve such problem.  The ant colony implemented is closely rooted at the biological and behavioral model of the real social insects.  It is a non-deterministic heuristic and could be used as both constructive and iterative.  The solution uses many ants of simple nature and limited memory requirements.  The intelligence of this heuristic is not portrayed by individual ants, but rather is expressed by the colony as a whole.  Careful presentation of the problem to the ant colony model facilitates the close biological solution derivation.  The solution obtained by this method will be evaluated against the one obtained by other traditional heuristics.
Keywords:  VLSI physical design, circuit bi-partitioning, non-deterministic heuristics, multi-optimization, ant colony, super-organism, fuzzy logic, cut-set, circuit delay, low power.
Background

Introduction

In the advent (meaning?) of VLSI production acceleration, many conflicting design decisions have to be made.  Optimizing one design aspect may lead to performance degradation in others.  Attempts are continuously being made to come up with a method to reach a compromising design decision such that the complete product performance is acceptable in the ever increasing marketing competition.  In addition, the time to market is of utmost importance.  The marketing window has become very narrow such that delivering the product to market in the right time is a company survival issue.
Circuits are constituted by the interconnection of logic gates and sequential elements.  As the function complexity performed by the circuit increases, the circuit components and interconnects increase.  Performance driven large circuits have to be divided in such a way to minimize critical path delay, power, and number of partition interconnects.  The partitioning process is not trivial; in fact, it is NP-Hard [7].
No theoretically proven method was found to solve this class of problems in polynomial time.  Instead, “heuristics” are used to produce solutions with acceptable quality.  Heuristics are “smart” methods that are known, rather than proven, to find a solution that most of the time is not the optimum.  Indeed, the optimal solution for the problem at hand may never be found, or at best, not within the feasible product marketing window.  Measurable criteria should be devised to evaluate the produced solution and an acceptance level classifies the obtained results.
Heuristics could be grouped in two classes, constructive and iterative [7].  Constructive heuristics build the solution from scratch, whereas iterative ones “iterate” many times in improving a previously obtained one.  Furthermore, heuristics can be identified either as deterministic or non-deterministic.  Deterministic heuristics will attempt to solve a given problem in organized, but repeatable steps.  Several attempts to solve the problem will definitely lead to an identical solution.  On the other hand, non-deterministic heuristics use probability in defining the search path; this guarantees a fresh search path each time the heuristic is run.  Non-deterministic heuristics although more complex, lead to a better quality solution and in a shorter time; than that produced by the deterministic counterpart.  This is attributed to their nature of accepting bad solutions, whenever is advisable, hoping that the investigated path may lead to a much better solution at the end [8].
The solution is evaluated against conflicting objectives while enforcing important requirement constraints.  The idea is to find a unified acceptance measure that integrates the objectives and the constraints while preserving the relative importance of each.  The use of fuzzy rules (Fuzzy rule is mentioned for the first time without any reference to what it is or what is fuzzy logic) devised to give each design aspect an importance weight such that the complete design can be evaluated.  Each conflicting optimization criterion is assigned a value reflecting its deviation form the acceptable level, the fitness membership value.  This methodology is widely applied and was known to produce the sought after acceptance measure [???].
Literature Review

Introduction to Circuit Bi-partitioning 
The essence of netlist partitioning is to divide a system into clusters such that the number of inter-cluster connections is minimized. The partitioning task is ubiquitous to many subfields of VLSI CAD. Most top-down hierarchical (i.e., divide and conquer) approach in system design must rely on some underlying partitioning technique. There are several reasons why partitioning has recently emerged as a critical step in many phases of VLSI system synthesis, and why the past several years have seen so much research activities on this subject [10, 14].

Partitioning heuristics are used to address the increasing complexity of VLSI design; systems with several million transistors are now common, presenting instance complexities that are unmanageable for existing logic level and physical level design tools. Partitioning divides a system into smaller, more manageable components; the number of signals which pass between the components corresponds to the interactions between the design sub-problems. In a top-down hierarchical design methodology, decisions made early in the system synthesis process (e.g., at the system and chip levels) will constrain succeeding decisions. Thus, the feasibility not to mention the quality of automatic placement, global routing, and detailed routing will somewhat depend on the quality of the partitioning solution.

A bottom-up clustering approach may also be applied to reduce design complexity, typically in cell-level or gate-level layout. The current emphasis on a quick turn-around design cycle reinforces the need for reliable and effective algorithms.  Partitioning heuristics also have a great impact on system performance as designs become dominated by interconnects.

Finally, partitioning heuristics affect the layout area; wires between clusters at higher levels of the hierarchy will tend to be longer than wires between clusters at lower levels, and total wire length is directly proportional to layout area due to minimum wire spacing design rules. The traditional minimum-cut objective is natural for this application, if the layout area is divided into a dense uniform grid. Total wire length can be expressed in “grid" units or equivalently as the sum over all gridlines of the number of wires crossing each gridline. This view can also improve auto-routability since it suggests reducing the wire congestion in any given layout region. All of these considerations motivate the development of netlist partitioning algorithms that identify interconnection and communication structure in a given system design. In the following section, we discuss different approaches to partitioning which consider only cutset as an objective.

Approaches to Partitioning

As the partitioning problem is NP-complete [15, 11], an exact (globally optimal) solution cannot be found in a feasible amount of time. Therefore, heuristics must be used to reach a good solution within reasonable time limits. Major research directions in netlist partitioning can be categorized into four types of approaches:
·  Move-based Approaches [16, 17, 18, 19].

·  Geometric Representation Approaches [20, 21, 22].

·  Combinatorial Approaches [23].

·  Cluster-based Approaches [24].

Move-based Approaches: This category explores the solution space by moving from one solution to another. Greedy and iterative exchange [12] approaches are most common. These always try to make the best move, but can easily be trapped in local minima. To avoid this behavior, many other strategies have been proposed including Stochastic Hill-Climbing (Simulated Annealing), Evolutionary Algorithms, and the Multi-start strategy [25]. A partitioning approach is move-based if it iteratively constructs a new candidate solution based on two considerations:
· A neighborhood structure is defined over the set of feasible solutions.

· The previous history of optimization is maintained.

The first consideration requires the notion of a local perturbation of the current solution; this is the heart of the move-based paradigm. The type of perturbation used determines the topology over the solution space, known as the neighborhood structure. For the objective function to be smooth over the neighborhood structure, the perturbation (also known as a neighborhood operator) should be small and local.

Typical neighborhood operators for partitioning include swapping a pair of modules or shifting a single module across a cluster boundary. For example, two partitioning solutions are neighbors under the pair-swap neighborhood structure if one solution can be derived from the other by swapping two modules between clusters. In general, the solution space is explored by repeatedly moving from the current solution to a neighboring solution. With respect to previous history, some approaches are memoryless, e.g., a simple greedy method might rely only on the current solution to generate the next solution. On the other hand, methods such as Kernighan-Lin [12] or Fiduccia-Mattheyses [13] implicitly remember the entire history of the pass. Hybrid genetic-local search or Tabu Search approaches must also remember the lists of previously seen solutions. Move-based approaches dominate in both the literature and industry practices for several reasons. First, they are generally very intuitive; the logical way of improving a given solution is to repeatedly make it better via small changes, such as moving individual modules. Second, iterative algorithms are simple to describe and implement. For this reason, the bi-partitioning method of Fiduccia-Mattheyses [13] and the Multi-way partitioning method of Sanchis [26] are standards against which nearly all other heuristics are measured. Third, the move-based approach encompasses more sophisticated strategies for exploring the solution space e.g., Simulated Annealing, Tabu Search, and Genetic Algorithms which yield performance improvements over greedy iterative methods while retaining the intuitiveness associated with local search. 

Finally, the move-based approach is independent of the nature of the objective function that is used to measure the solution quality. While other approaches might require the objective to be of a particular form, or a relatively simple function of solution parameters, the move-based approach can flexibly incorporate arbitrary constraints (e.g., on critical path delays or I/O utilization). Thus, the move-based approach has been applied successfully to virtually every known partitioning formulation.  The main algorithms, included in this approach are:
· Fiduccia-Mattheyses Algorithm [13].

· Kernighan-Lin Algorithm [24].

· Sanchis' Multi-Way Partitioning Algorithm [26].

· Simulated Annealing Algorithm [27].

· Tabu Search [28].

· Genetic Algorithms [29].

Geometric Representations Approaches: A geometric representation of the circuit netlist can provide a useful basis for a partitioning heuristic. These approaches discuss finding a geometric representation of a graph or hypergraph and applying geometric algorithms to find a partitioning solution. This means that the circuit netlist is embedded in some type of geometry, e.g. a 1-dimensional linear ordering or a multi-dimensional vector space; the embeddings are commonly constructed using Spectral methods [21]. Spectral methods are of primary importance in constructing geometric representations.
Combinatorial Formulations: An approach is classified under this category if the partitioning problem can be transformed into some other “classic" type of optimization problem (e.g., maximum flow, mathematical programming, graph labeling etc.). These approaches are promising since complex formulations that include timing, module pre-assignment, replication, and other hard constraints can often readily be expressed in terms of a mathematical program or flow networks. In addition, the constantly changing user requirements for solution quality and runtime, and the improved computing platforms, have made such approaches more practical.
It is possible, that the next frontier of optimization strategies for CAD applications will involve large-scale mathematical programming instances, including mixed integer-linear programs that require branch-and-bound search. Following are some of the methods employed under this category: 
· Min-Delay Clustering by Graph Labeling, first considered by Lawler et al.[30], assumes that the module and intra-cluster delays (i.e., delays between modules in the same cluster) are negligible compared to inter-cluster delay that results from placing clusters onto different chips.

· Mathematical Programming optimizes an objective function subject to inequality constraints on the variables (an equality constraint can be captured by two inequality constraints). A linear program (LP) requires every equation to be linear in terms of each variable. An LP can be solved in an average case polynomial time using the simplex method. An integer linear program (ILP) is an LP with the additional constraint that the variables must take on integer values; solving general ILP instances is NP-Hard. A quadratic program (QP) [23] is an LP with an objective that is quadratic in the variables, and a Quadratic Boolean program (QBP) additionally restricts the variables to 0-1 values.

· Fuzzy partitioning or the Fuzzy k-means (FKM) [31] algorithm is a well-known optimization technique for clustering problems that arise in such fields as geological shape analysis, medical diagnosis, etc. The problem formulation generally involves clustering data points in multi-dimensional space. A fuzzy partitioning [32] can partially assign a module to several clusters. FKM begins with an initial fuzzy partitioning X, and then iteratively modifies X to optimize the objective function.

Clustering Approaches: A clustering solution is typically used to induce a smaller and more tractable problem instance. Many clustering algorithms utilize a bottom-up approach where each module initially belongs to its own cluster. Clusters are gradually merged or grown into larger clusters until the desired decomposition is found.  Bottom-up approaches are agglomerative, if new clusters are formed one at a time and hierarchical, if several new clusters may be formed simultaneously. 
The agglomerative approach [33] begins with n-way clustering (where each module is a cluster) and iteratively constructs the new clusters by choosing a pair of clusters, and merging them into a new cluster. The criterion for choosing the two clusters is what distinguishes among agglomerative variants, e.g., [33] merges the two clusters that minimize the diameter of the newly formed cluster. This approach is applied to hypergraphs by picking a random net (perhaps with size-dependent probability) and contracting two random incident clusters (or all incident clusters).An alternative greedy approach would be to simply merge the two clusters with high connectivity.
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Figure 1: An 8-module example, (a) an agglomerative and (b) a hierarchical construction.

Generally, agglomerative methods will not be very efficient.  Finding the best pair of clusters to merge require O(k2) time, unless a list of cluster merging costs is stored and updated (which will likely require O(n2) space). An alternative strategy is to find many good clusters to merge, and then perform all merges simultaneously; this is called hierarchical strategy. 

The difference between agglomerative and hierarchical strategies is illustrated for the 8-module example in Fig. 1. In (a), the diagram reveals the order in which clusters are merged; each dotted horizontal line is a level in the hierarchy, and an agglomerative algorithm will have n-1 levels. 

Fig. 1(b) shows a hierarchical algorithm that simultaneously merges as many cluster pairs as possible, yielding a hierarchy with 
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Other intuitive approaches involve random walks, iterative peeling of clusters, vertex orderings, and simulated annealing. Another set of approaches are specific to (acyclic) combinational Boolean networks [34, 35]. However, move-based approaches, and iterative improvement in particular, are the most common partitioning algorithms in current CAD tools. Clustering techniques are motivated by the fact that a common weakness of move-based approaches is that the solution quality is not stable, i.e., unpredictable. It is highly dependent on the starting solution and the choices taken during the optimization process. 

Hagen et al. [16] used a random multi-start approach to FM, where the algorithm is executed many times from random starting points and returning the best solution found. However, it may need hundreds of runs to achieve stable performance.

The hierarchical clustering algorithm groups a set of objects according to some measure of closeness. Two closest objects are clustered first and considered to be a single object for future clustering. Clustering continues by grouping two individual objects, or an object or cluster with another cluster on each iteration. 

The process stops when a single cluster is generated and a hierarchical cluster tree is formed. A cut-line through the tree indicates a set of segments in a partition. Clustering can be integrated into other move-based algorithms. The simplest way to incorporate a clustering solution into a bi-partitioning heuristic is via the two-phase approach, i.e., to run FM on the contracted netlist, and then use the result as the starting solution of a second run on the flattened netlist [36]. However, more sophisticated techniques may be preferable.

Performance-Driven Circuit Partitioning in Physical Level
This section reviews some recent approaches for performance driven partitioning (power, delay) in CMOS VLSI circuits. Different techniques are applicable and have been reported at different steps of the VLSI design process [10].  In standard CMOS VLSI circuits, switching activity of circuit nodes is responsible for most of the power dissipation. It is reported in [37] that this switching activity contributes up to 90% of the total power dissipation in the circuit. Therefore, most of the reported techniques focus on this aspect [38]. 

Quite a reasonable number of techniques aiming at low power objective are proposed for all phases in physical design including partitioning of circuit, floor-planning, placement and routing [2].

For the partitioning phase, two low-power oriented techniques based on Simulated Annealing (SA) algorithm have recently been presented in [39]. One of the algorithms uses the Shannon expansion-based scheme and the other uses the Kernel-based scheme. These algorithms partition the circuit into a number of sub-circuits and a single sub-circuit needs to be active at a particular time. In this way, the unnecessary signal transitions are prevented. Circuit partitioning is performed by using an adaptive SA algorithm. The cost function is modeled for low-power consumption under given area constraint. A partitioning solution is obtained by recursive bi-partitioning of the circuit and the solution space is represented as a binary tree. The stopping criterion used is non-improvement in the solution for a constant number of moves. The performance of the algorithm is evaluated by its application to MCNC benchmark circuits and its comparison with the results of Synopsis design analyzer show an 8.7% power reduction over the latter without allowing any increase in the layout area.

An optimal delay partitioning algorithm targeting low power is proposed in [14] which provides a formal mechanism to implicitly enumerate the alternate partitions and selects a partition that has the same delay but less power dissipation. One disadvantage of this algorithm is that the runtime is one to two orders of magnitude higher than that of Lawler's clustering algorithm [30]. Another disadvantage of this enumeration technique is that as the size of the circuits grows, the algorithm runtime will increase sharply hence this technique is not suitable for industries seeking a faster time to design and market the chips.

A circuit partitioning algorithm under path delay constraint is proposed in [40]. The proposed algorithm consists of the clustering and iterative improvement phases.  In the first phase, the problem size is reduced using a new clustering algorithm to obtain a partition in a short computation time. The first phase consists of the following steps:
1. Clustering considering timing constraints

2. Clustering considering timing and area constraints

In step 1, the path which violates the timing constraint (i.e., if the path is cut) is clustered.  This means assigning all nodes in the path to the same cluster. 

In step 2, clustering is performed again considering the timing and area constraints so as to obtain a better partition in reasonable computation time. This is done by clustering nodes based on a cost function in which the timing and area constraints are considered. 

Phase 2 is an iterative improvement phase with an extended FM method in which a term to handle the timing constraints was introduced into the gain of the original FM. Phase 2 consists of the following three steps:
1. Initial partitioning

2. Iterative improvement with the extended FM method

3. Removal of timing violations.

In the following sub-section I (do not use first person in text, you may say “a new technique is proposed”… in passive voice for instance) introduce the conventional Ant Colony Optimization Algorithm to be followed by a description of the biologically inspired version.  The biologically inspired Ant Colony heuristic can be differentiated from the conventional algorithm by the fact that it closely represents how real and biological ant live and behave to solve the food collecting “foraging” problem.
The Conventional Ant Colony Optimization Algorithm
The Ant Colony Optimization (ACO) algorithm is a meta-heuristic that has a combination of distributed computation, autocatalysis (positive feedback), and constructive greediness to find an optimal solution for combinatorial optimization problems. This algorithm tries to mimic the ant’s behavior in the real world. Since its introduction, the ACO algorithm has received much attention and has been incorporated in many optimization problems, namely the network routing, traveling salesman, quadratic assignment, and resource allocation problems [39].

The ACO algorithm has been inspired by the experiments run by Goss et al. [40] using a colony of real ants. They observed that real ants were able to select the shortest path between their nest and food resource, in the existence of alternate paths between the two. The search is made possible by an indirect communication known as stigmergy amongst the ants. While traveling their way, ants deposit a chemical substance, called pheromone, on the ground. When they arrive at a decision point, they make a probabilistic choice, biased by the intensity of pheromone they smell. This behavior has an autocatalytic effect because of the very fact that an ant choosing a path will increase the probability that the corresponding path will be chosen again by other ants in the future.  When they return back, the probability of choosing the same path is higher (due to the increase of pheromone). New pheromone will be released on the chosen path, which makes it more attractive for future ants. Shortly, all ants will select the shortest path.
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Figure 2: Double bridge experiment. (a) Ants start exploring the double bridge. (b) Eventually most of the ants choose the shortest path [38].

Figure 2 shows the behavior of ants in a double bridge experiment [38]. In this case, because of the same pheromone laying mechanism, the shortest branch is most often selected. The first ants to arrive at the food source are those that took the two shortest branches. When these ants start their return trip, more pheromone is present on the short branch than the one on the long branch. This will stimulate successive ants to choose the short branch. Although a single ant is in principle capable of building a solution (i.e., of finding a path between nest and food resource), it is only the colony of ants that presents the “shortest path finding” behavior. In a sense, this behavior is an emergent property of the ant colony.

This behavior was formulated as Ant System (AS) by Dorigo et al. [39]. Based on the AS algorithm, the Ant Colony Optimization (ACO) algorithm was proposed [41]. In ACO algorithm, the optimization problem is formulated as a graph G = (C; L), where C is the set of components of the problem, and L is the set of possible connections or transitions among the elements of C. The solution is expressed in terms of feasible paths on the graph G, with respect to a set of given constraints. The population of agents (ants) collectively solves the problem under consideration using the graph representation. Though each ant is capable of finding a (probably poor) solution, good quality solutions can emerge as a result of collective interaction amongst ants.  Pheromone trails encode a long-term memory about the whole ant search process. Its value depends on the problem representation and the optimization objective.

A general outline of the ACO algorithm is presented in Figure 3 [41].

Algorithm ACO meta heuristic();

while (termination criterion not satisfied)

ant generation and activity();

pheromone evaporation();

daemon actions(); “optional”
end while

end Algorithm

Figure 3: Ant Colony Algorithm.
Informally, the behavior of ants in ACO algorithm can be summarized as follows. A colony of ants concurrently and asynchronously moves through adjacent states of the problem by moving through neighbor nodes of G. They move by applying a stochastic local decision policy which makes use of the information contained in the local node and ant’s routing table. By moving, ants incrementally build solutions to the optimization problem. When the solution is being built, every ant evaluates the solution and puts the information about its goodness on the pheromone trails of the connection used. This pheromone information will direct the search of future ants, until a feasible solution is found.

The ants in ACO algorithm have the following properties [39]:

1. Each ant searches for a minimum cost feasible partial solution.

2. An ant k has a memory Mk that it can use to store information on the path it followed so far. The stored information can be used to build feasible solutions, evaluate solutions and retrace the path backward.

3. An ant k can be assigned a start state sks and more than one termination conditions ek.

4. Ants start from a start state and move to feasible neighbor states, building the solution in an incremental way. The procedure stops when at least one termination condition ek for ant k is satisfied.

5. An ant k located in node i can move to node j chosen in a feasible neighborhood Nki through probabilistic decision rules. This can be formulated as follows:

An ant k in state sr =< sr-1; i > can move to any node j in its feasible neighborhood Nki , defined as Nki = {j | (j Є Ni) Λ (< sr, j >Є S)} sr Є S, with S is a set of all states.

6. A probabilistic rule is a function of the following.

a) The values stored in a node local data structure Ai = [aij ] called ant routing table obtained from pheromone trails and heuristic values,

b) The ant’s own memory from previous iteration, and

c) The problem constraints.

7. When moving from node i to neighbor node j, the ant can update the pheromone trails τij on the edge (i, j).

8. Once it has built a solution, an ant can retrace the same path backward, update the pheromone trails and die.

In order to get more insight on the algorithm, an example of using ACO algorithm for Traveling Salesman Problem (TSP) is given as follows.  Consider, the 5-city TSP problem shown in Figure 4.  The objective is to find the minimal tour required to visit all the 5 cities. The connectivity matrix of the graph is given in Table 1. The values given in the table denotes the distance “d” between each city. Assume that it is a symmetric TSP problem, in which dij is equal to dji.
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Figure 4: Example of a TSP problem.

Table 1: Connectivity matrix of TSP example shown in Figure 4.

	
	A
	B
	C
	D
	E

	A
	0
	100
	125
	100
	75

	B
	100
	0
	50
	75
	125

	C
	125
	50
	0
	100
	125

	D
	100
	75
	100
	0
	50

	E
	75
	125
	125
	50
	0


Each edge in the graph is given an initial pheromone value (τ) equal to 1. Let heuristic value (η) is equal to the reciprocal of the distance. The probability of selecting an edge is then equal to [41]:
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Where N is the set of neighboring cities, and α and β are two parameters that control the relative weight of pheromone trail and heuristic value. In this example, for the sake of simplicity, the value of α and β are set equal to 1.

Table 2 shows the heuristic value (η) for each edge.

Table 2: Heuristic value for each edge in Figure 4.

	
	A
	B
	C
	D
	E

	A
	0.000
	0.010
	0.008
	0.010
	0.013

	B
	0.010
	0.000
	0.020
	0.013
	0.0008

	C
	0.008
	0.020
	0.000
	0.010
	0.008

	D
	0.010
	0.013
	0.010
	0.000
	0.020

	E
	0.013
	0.008
	0.008
	0.020
	0.000


Since there are 5 cities, assume that the size of the colony of ant is 5. Each ant will start its tour from different city. For example, the first ant starts from city A, the second ant starts from city B, and so on. The following explains how the ants construct the solution [Mention the source of this example in the reference and cite to it….].
Iteration 1

The first ant starts the tour from city A. There are four neighboring cities to be considered by the ant. The probability of choosing any edge leading to certain city is calculated using Equation 1 and is given in the following table.

	B
	C
	D
	E

	0.24
	0.19
	0.24
	0.32


Using a stochastic process, i.e., Roulette Wheel, the ant chooses the next city. Assume that the ant takes city B as the next city to visit. The ant will update its memory and put city B in its Tabu List

When the ant arrives at city B, there are 3 cities left to visit. The probability of choosing these cities is given in the following table.

	C
	D
	E

	0.48
	0.32
	0.19


Assume that city D is taken. The ant will then update its Tabu List by adding city D.

There are two neighbors of city D: C and E. The following table shows the probability of choosing each of these cities.

	C
	E

	0.33
	0.66


Assume that the ant selects city E. The content of its Tabu List is then: A, B, D, and E.

Since there is one remaining city to visit, the next process will certainly take C. The path that was built by the ant is then: A ( B ( D ( E ( C. The length of this path is L = AB + BD + DE + EC = 100 + 75 + 50 + 125 = 350.

The remaining ants will proceed according to the same procedure. The following table summarizes the solutions built by all ants. The last column in Table 3 is the gain obtained by each ant. Since the longest distance between cities is 125. The solution built by the ant must not exceed 4 *125 = 500. Thus, the gain of each ant can be formulated as 500/L, with L is the length of the path of the solution.

Table 3: Solutions built by the ant in the first iteration.

	Ant
	Path
	Length of the path (L)
	∆τ = 500/L

	ant1
	A (  B (  D (  E (  C
	350
	1.43

	ant2
	B (  C (  D (  E (  A
	275
	1.82

	ant3
	C (  B (  D (  E (  A
	250
	2.00

	ant4
	D (  E (  A (  B (  C
	275
	.82

	ant5
	E (  A (  B (  C (  D
	325
	1.54


When all ants finish their tour, they will back track and update the pheromone along their path by putting additional pheromone (∆τ). Note that, the amount of ∆τ is proportional to the gain obtained by the ant. The new pheromone value is given by the following.

τ = τ + ∆τ

Consider, for example, edge AB was used by ant1, ant4 and ant5. The new pheromone value for edge AB is therefore equal to 1 + 1.43 + 1.82 + 1.54 = 5.79.

Then, pheromone will evaporate according to the following formula:

τ = (1 - ρ) * τ

Assume that ρ is equal to 0.2. Then the pheromone value on edge AB is equal to

0.8 * 5.79 = 4.63. The calculation of pheromone value is performed for all edges.

Table 4 shows the new pheromone values on each edge at the end of iteration 1.

Table 4: Pheromone values for each edge after iteration 1.

	
	initial pheromone value
	new pheromone value

	A
	B
	C
	D
	E
	A
	B
	C
	D
	E
	

	A
	0.00
	1.00
	1.00
	1.00
	1.00
	0.00
	4.63
	0.80
	0.80
	6.54

	B
	1.00
	0.00
	1.00
	1.00
	1.00
	4.63
	0.00
	6.54
	3.54
	0.80

	C
	1.00
	1.00
	0.00
	1.00
	1.00
	0.80
	6.54
	0.00
	0.80
	0.80

	D
	1.00
	1.00
	1.00
	0.00
	1.00
	0.80
	3.54
	0.80
	0.00
	6.45

	E
	1.00
	1.00
	0.80
	1.00
	0.00
	6.54
	0.80
	0.80
	6.45
	0.00
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Figure 5: (a) Visualization of pheromone values and (b) Best solution built in the first iteration.

Figure 5 (a) shows the visualization of pheromone values on the edges. In this figure, the darker the edge, the higher the pheromone. The best solution found by the heuristic in the first iteration is shown in Figure 5 (b).

Iteration 2

The same process that was performed in the first iteration is repeated in the second. However, the initial pheromone values on all edges have changed. Thus, the probability of selecting a certain edge will also change. The higher the pheromone on the edge, the more attractive the edge for an ant to choose.

Assume that all ants have finished their tour construction. The following table summarizes the solutions built by all ants.

Table 5: Solutions built by the ant in the second iteration.

	Ant
	Path
	Length of the path (L)
	∆τ =5 00/L

	ant1
	A(E(D(B(C
	250
	2.00

	ant2
	B(C(D(E(A
	275
	1.82

	ant3
	C(B(D(E(A
	250
	2.00

	ant4
	D(E(A(B(C
	275
	1.82

	ant5
	E(A(D(B(C
	300
	1.67


The pheromone update and pheromone evaporation procedures are then performed.  This will change the value of pheromone on each edge. Table 6 shows these values.

Table 6: Pheromone values for each edge after iteration 2.

	
	initial pheromone value
	new pheromone value

	
	A
	B
	C
	D
	E
	A
	B
	C
	D
	E

	A
	0.00
	4.63
	0.80
	0.80
	6.54
	0.00
	6.45
	0.80
	2.47
	15.84

	B
	4.63
	0.00
	6.54
	3.54
	0.80
	6.45
	0.00
	15.84
	9.21
	0.80

	C
	0.80
	6.54
	0.00
	0.80
	0.80
	0.80
	15.84
	0.00
	2.62
	0.80

	D
	0.80
	3.54
	0.80
	0.00
	6.45
	2.47
	9.21
	2.62
	0.00
	14.09

	E
	6.54
	0.80
	0.80
	6.45
	0.00
	15.84
	0.80
	0.80
	14.09
	0.00


Figure 6 (a) shows the visualization of pheromone values on the edges. As we can see, the lines representing edge AE, ED and BC are very thick. These lines are thicker than the corresponding ones in the previous iteration (see Figure 5).
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Figure 6: (a) Visualization of pheromone values and (b) Best solution built in the second iteration.

The thickness of these lines corresponds to their high pheromone values. This is because more ants are using these edges (see Table 6). On the other hand, the lines representing edge AC, BE and CE are very thin. Since no ant is using these edges, there is no additional pheromone given. In addition, pheromone evaporation reduces the intensity of pheromone values on these edges. This will make these edges less attractive for future ants.

The algorithm will proceed until a criterion is met. From Figure 6(a), it can be seen that the best solution for the given TSP problem will likely be equal to the one illustrated in Figure 6(b).

It has been shown that ACO algorithm produced better quality results compared to those obtained by other heuristics when it is applied to combinatorial optimization problems such as TSP and QAP [42]. Unfortunately, only few published works found in literature that uses ACO algorithm for evolutionary logic design (Coello et al. [37]). Therefore, there is a need for investigating further the use ACO for evolutionary design of digital circuits.
In the following sub-section, I define concisely the problem to be solved in the scope of this thesis work and then, I present the biologically inspired Ant Colony heuristic designed to solve the circuit bi-partitioning problem.
Problem definition
The circuit bi-partitioning optimization is focused on finding an acceptable solution based on the delay, power, and cut-set cost [9].  The cut-set cost is the number of inter-partition connects, which if not selected carefully, will immensely degrade the overall solution quality.  Fuzzy logic rules are used to balance the different optimization criteria [9].
Ant colony optimization algorithm is used for partitioning the circuit.  This algorithm mimics biological ants in finding their food and marking their own territory in a real habitat [4].  In this work the biological ant’s model is followed as closely as possible.  Other approaches using the same heuristic rely on “smart” ants; which are “aware’ of their environment and calculate distances to targets.  These heuristics use small number of ants to solve their problems.  In this work, many “simple” ants are used to accomplish the same task.  Simple ants are oblivious to their environment and require very small memory which makes this model match closely that of the biological model.  There is no central organization; simple rules applied by all ants will collectively form the new solution.
The principal idea this approach is based on is self-organization in a “super-organism.” Societies of social insects composed of thousands of individuals, which have “cognitive abilities” that by far transcend the abilities of each of the individual members. This happens, as if the society is ruled by the invisible hand of a central organizer [1].  Each individual in the community works according to simple instinctive rules.  They are totally unaware of the direction their entire society is heading.  In fact, there is no direct connection between the individual behavior and the society direction as a whole.  The integration of all individuals in the society produces an overall flow that has a definite purpose and direction.  By carefully devising the individual instinctive rules, we can steer the entire society into exploring the combinatorial optimization solution space and finding our acceptable solution.
Facilitating the simple individual mission requires carefully adapting the problem to the solution concept.  The circuit is laid out as the ant habitat.  The habitat is presented to ants in such a way that matches the ant’s instinctive behavior.  The circuit to be partitioned is mapped into a grid.  The grid cells contain the circuit components and are considered the “food” for ants to seek and store at their nest (the pertinent partition.)  The following summarizes the ant’s instinctive behavioral rules.

· Each ant look for food “forage”, once found, it heads back to colony “storage.”

· Ants prefer the paths with high pheromone level.
· Trail information is communicated among ants by reading the pheromone value.

· Although unaware of the distances, ants deposit more pheromones on shorter paths and would prefer them.
The Implementation Method

The following are important definitions:
· Habitat: the place where ants live.  Implemented as a grid.

· Ants: artificial intelligence agents.  Implemented as a simple data structure.

· Colony: a part of the habitat where member ants deposit collected items.

· Nest locus: the colony location on the grid.

The circuit graph is mapped onto a grid such that the number of vertices in each cell is limited by a parameter.  The grid is a two dimensional doubly linked list which makes the ants totally oblivious to their location and orientation and, thus, react only to their instinctive behavior.  Ants are generated and start foraging “collecting circuit components” from their nest locus and the number of colonies will define the number of desired circuit partitions.  The number of ants is selected in relation to the circuit size.
The Ant Colony Optimization heuristic is based on three components habitat, colony, and ants.  The careful design of these components will make the ant society navigates into the solution space in a smart way.
Habitat

Designed as a two dimensional doubly linked list, each grid cell has a link to the north, south, east, and west neighbors.  Figure 7 below shows a representation of a grid cell.
Figure 7: a habitat grid cell structure and methods.
Each grid cell contains a “Bag” of nodes.  The Bag is a data structure consists of a linked list and a set of controlling methods.  A pointer to the bag is maintained in the grid structure.  The grid cell Bag has a maximum capacity set to an integer value at the iteration beginning.  In addition, the cell contains a floating point variable for the pheromone value, a Boolean variable to signify an ant needing help (to be explained later in the ant sub-section).  In addition, the grid cell contains colony ID variable to signify that the cell has become part of a colony cells collection.
Furthermore, the grid cell structure contains methods to restore the pheromone value to the default one if the pheromone was faded away by ants passing by that cell and not finding any nearby food “gates” (as will be explained in the ant sub-section.)  Pheromone, help, and colony ID have setters and getters methods, so they can be accessed by ants and colony entities.
The colony

The number of colonies is the same as the number of partitions the solution requires.  The colony is basically a data structure containing a pointer to a Bag of grid cells.  In addition, it contains methods to calculate the number of gates stored and others to check against the dictated partition balance criterion.  Of course, colonies contain ants.  Figure 8 below depicts the colony structure.


Figure 8: the colony methods.
When a grid cell is added to the colony, the new cell is not extracted from habitat; rather a copy of the pointer to the grid cell structure is added to the colony Bag.  At each iteration end the colony will store all the gates pertinent to the partition the colony is assigned to.
Ant

The ant was carefully designed to be both simple and flexible.  Each ant structure contains a Bag of predetermined capacity of gates, three sets of simple arrays containing vital information on the immediate environment.  Figure 9 below depicts the ant structure.

[image: image5]
Figure 9: the ant’s data structure and methods
Scout is an array containing a pointer to an immediately surrounding grid cell and the number of gates contained in that cell’s Bag.  This information is saved in each row for the cell on the left, ahead, and right of the ant.  Similarly, the vision array keeps the calculated sum of the pheromone and help value for the n cells ahead of each cell of that of the Scout. The number of cells ahead is another parameter to be set for optimum performance.  Finally Track keeps record of the grid cell pointers as well as the coordination north, south, east, and west pointers to the surrounding cells in the grid habitat.  Each ant keeps a track record of the current cell and the immediately one before “here and previous.”  When the ant turns, simple ordering of the coordination pointers will guarantee the directions ahead, left, and right are reoriented with respect to the absolute ones in the grid cell habitat.
Ants go in a continuous cycle of forage and storage, until all cells are collected where a new iteration starts.  Figure 10 and Figure 11 are flow chart diagrams of these parts of the ant’s life.

[image: image6]
Figure 10: Flow chart of the ant’s “forage” lifecycle [Can this be put in an algorithmic for instead of a flow chart? Maybe done later too.].
The following is a list of function prototypes used for the ant.  Figure 10 and Figure 11 provide the ways these functions are linked and how finally the ant community would be organized to solve the partitioning problem.

void scout(GridCell* currentGridCell);

void vision(GridCell* currentGridCell, int visionLimit);

GridCell* Naviagte(GridCell* currentGridCell, int reorientPenalty);

void move(GridCell* currentGridCell);

void Reorient();

void updateForagePheromone(GridCell* currentGridCell, Alpha, Tau0);

int whoseColony(GridCell* currentGridCell);

double weighing(int gateMapNumber);

void updateGateInfo(int gateMapNumber);

SimpleNode* pickItUp(GridCell* currentGridCell, int pickUpParameter);

void flipDirection(Track* currentTrack);

void writeGridCellHelp(GridCell* currentGridCell);

void clearGridCellHelp(GridCell* currentGridCell);

int readGridCellHelp(GridCell* currentGridCell);

int helping(int gateMapNumber);

void updateStoragePheromone(GridCell* currentGridCell, Alpha);

void putItDown(GridCell* currentGridCell, GridCellCapacity);

void storeIt(GridCell* currentGridCell);

void addGridCellToColonyBag(GridCell* currentGridCell);

Colony.Bag.GridCell.Bag* findVacantCell(int GridCellBagCapacity);

Double readGridCellPheromone(GridCell* currentGridCell);

Ant()
// constructor initialize Track

int IsItMyColony();

bool IsMyColonyFullCapacity(int balaneLimit);


[image: image7]
Figure 11: Flow chart of the ant’s “storage” lifecycle.
Cost functions
The power, delay, cut-set, and imbalance cost functions are combined using fuzzy rules to formulate an integrated value serving as an indication of how good or “fit” the obtained solution is.
First, the optimum values for the above mentioned cost functions are calculated.  The optimum value is obtained when there is only one partition, i.e. all nets are not cut.  The base cost is calculated by dividing the current iteration cost by the optimum cost.  Next, the base cost is compared to the optimum and the worst value.  If current value is better than or equal to the optimum value it will have a goodness membership of 1.0.  On the other hand, if the current cost is worse than the worst cost value, then it is assigned a membership value of 0.0.
However, most of the values will lie somewhere in between these extremes.  In this case, the cost function is calculated as follows:

Current member value = (base value – worst value) / (1-worst value)

The lowest membership value amongst power, delay, cut-set, and imbalance cost functions is selected and used to calculate the overall solution fitness value as follows:

Fitness = β * (lowest membership value) + (1- β) * (membership value for power + membership value for balance + membership value for cut-set+ membership value for delay) /4.0;

Where β is a parameter set to 0.4.

The individual cost functions are detailed below.
Power cost function

The power cost function calculates the power dissipated by the nets connecting to more than one partition.  Figure 12 below illustrates how the power dissipation is calculated.


Figure 12
Delay cost function

The delay cost function calculates the total delay for each circuit long path.  The maximum path delay is calculated as in Figure 13 below.


Figure 13. [Caption…]
Cut-set cost function

The cut-set cost is incremented each time a net has at least a connection in another partition.  The pertinent net is checked for each node in the circuit; once found, the net is checked if it has connections in the other partition.  A net that has connections in more than one partition means these connections will have to be cut, i.e. increases the undesirable cut-set.
Imbalance Constraint

The partitions imbalance is the difference between the numbers of nodes of the partitions.  The imbalance constraint is verified to be within a predetermined value, namely the imbalance tolerance.  That tolerance value is entered by the program user at the beginning of the execution.  The final solution will not be accepted unless it is within the imbalance tolerance.
Ant Colony Deployment
This section is dedicated to the details of how the circuit bi-partitioning is solved using the ant colony heuristic.  The heuristic can work in two modes, constructive and iterative.  The circuit gates are distributed randomly on the habitat grid cells.  A random number between 0 and the number of gates is generated for each (x, y) cell coordinate.  The corresponding gate is inserted into the cell’s bag.  Then, ants start foraging from their nest locus and, in their way; they deposit pheromones (update that value on the passed-by grid cells).  When an ant finds a gate, it extracts the pointer to the gate, the cell will lose the gate pointer and the ant will gain custody of it.  The ant will try to retrace its way back to the colony by sensing pheromone values it had updated on its way out.  On its way it changes the values of the pheromones on the grid cell.  The ant reaches its colony with a probability, and the way is marked for other ants to sense.  Storing the gate in the colony will mark that cell pertinent to the partition that colony is in.  The solution fitness is then evaluated based on power, delay, and cut-set.  By collecting all the gates, the first heuristic mode is completed.
In the second mode, the Ant Colony Optimization heuristic iterates to improve the starting solution.  Gates are redistributed randomly on the habitat grid cells once again, but this time the gate partition information had been marked.  And the cost of assigning each gate to a partition is evaluated against the previous assignment.  This process can be repeated until no further improvement had been made.  The cost obtained is plotted and the heuristic performance will be evaluated based on both performance and solution quality.

The heuristic’s hill climbing capability (escaping local minima) is further enhanced by changing the relative location of the colonies.  The purpose of this technique is to influence the “Raid” function of the ants.  Ants from different colonies will raid other nests and assign the most suited gates to their own new partition.  This will result in a much better iterative improvement capability for the heuristic.
Objectives
The objective of this thesis work is to design and implement a heuristic that matches closely the biological model of social insects.  The heuristic is based on the idea of using many logically simple and memory inexpensive “agents” that work independently without master coordination and collectively express inherent organization which is cultivated in solving combinatorial optimization problems.  Simulated Evolution heuristic could be used to fine-tune the sensing capacity of the ants and other environment related parameters.  This does not violate the design principal, because it follows the theme of biological evolution.  Ants will evolve and adapt dynamically to the problem as the solution is being refined.
Tasks Outline
To design and implement this heuristic it is important to stay conscious of the theme of “super organism” where each agent “ant” will be very simple and has limited resources.  In addition there should be no outside influence on the ant’s behavior.  The major tasks for this proposal are listed below:

1. Map the circuit definition into a form that is autonomous to the theme of the heuristic.
2. Design and implement the habitat, colony, and ant data structures.

a. The habitat should hold the circuit definitions.

b. The colony should hold the partition information.

c. Ants should be designed to adapt to the habitat changes and the circuit components.

d. Ants should be simple data structures with limited logical capabilities.

3. Specify the ant individual and social rules such that the entire ant society has purpose which can be used to solve the circuit bi-partitioning problem.

4. Make all design parameters accessible from outside the modules so that Simulated Evolution can be used to improve the problem adaptability.
5. For sound comparison with previous work, I would use the same fuzzy logic and cost functions implemented in (Evolutionary Techniques for Multi-Objective VLSI Netlist Partitioning)[9]
6. Test the heuristic on the same circuit benchmarks as the work mentioned above.

7. Compare the obtained results to that of the previous work and comment on the results.

8. Formulate suggestions for possible improvements over the technique portrayed in this proposal.
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For each net in the circuit


	If the net crosses to another partition


		Switching probability of the crossing net* 100.


	For each gate on the net


		Add parallel input capacitance of the gates on the net.


	Add the switching factor and the capacitance factor, the sum is the net 


contribution.


Circuit power dissipation = (0.5 *25) * (“Frequency”100 E +6 “100MHz”) * (net-


Contribution) * 1 E -15





For each long path


	For each circuit component on the path


		For each gate on the net of the circuit component


			Add parallel capacitance of the gates (sumc).


		If the net crosses to another partition


			Delay = inherent cell delay + [cell load factor “Ohms” *(sumc + 


100)/1000]


		Else


			Delay = inherent cell delay + [cell load factor “Ohms” * (sumc)] 


/1000


		Path delay = sum of delay contribution of net gates + inherent path gate 


delay
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