
ORIGINAL ARTICLE

Multi-objective optimal path selection in electric vehicles

Umair Farooq Siddiqi • Yoichi Shiraishi •

Sadiq M. Sait

Received: 6 March 2012 / Accepted: 19 June 2012

� ISAROB 2012

Abstract This work proposes a memory-efficient multi-

objective optimization algorithm to perform optimal path

selection (OPS) in electric vehicles (EVs). The proposed

algorithm requires less computational time and executes

efficiently on fast-processor-based embedded systems. It is

a population-based simulated evolution algorithm that

incorporates innovative functions for calculating the

goodness of particles and performing the allocation oper-

ation. The goodness and allocation operations ensure the

exploration of new paths and the preservation of Pareto-

optimal solutions. We executed our algorithm on an Intel

Celeron processor, which is also used in embedded systems

and compared its performance with that of the non-domi-

nated sorting genetic algorithm-II (NSGA-II). Our experi-

ments used real road networks. The comparison shows that

on an average, our algorithm found 5.5 % more Pareto-

optimal solutions than NSGA-II. Therefore, our proposed

algorithm is suitable for performing OPS in EVs.

Keywords Multi-objective shortest path (MOSP) �
Simulated evolution (SimE) � Electric vehicles (EVs)

1 Introduction

Navigation systems of modern vehicles are equipped with

optimal path selection (OPS) units, which are responsible

for finding shortest paths between source and destination

nodes in a road network. The increasing popularity of

electric vehicles (EVs) [1] demands that OPS units should

also meet the requirements of EVs. The criteria for

selecting shortest paths in EVs are different from the

criteria used in internal combustion engine (ICE) vehicles.

The criteria generally used for shortest paths in ICE

vehicles are traveling time and distance. In contrast, OPS

units in EVs should include recharging time in their cri-

teria for shortest paths in addition to traveling time and

distance.

The two main obstacles that hamper the popularity of

EVs are their traveling limits and recharging time. The

traveling limit of an EV is the maximum time that it can

travel without recharging. Rechargeable batteries with

higher capacities and greater ranges have been proposed to

increase the traveling limits of EVs. Rapidly rechargeable

batteries that can be recharged in as short a time as 10 min

are currently available [2, 3]. However, suitably placed

recharging stations will be the primary means of enabling

EVs to travel distances that significantly exceed their

traveling limits. Several researchers have investigated the

feasibility of placing an adequate number of recharging

stations in cities and have proposed several ways to do this

[3, 4]. The rapid progress in EVs and EV-related fields will

soon bring about the infrastructure that is required for

trouble-free use of EVs. This makes it even more important

to develop efficient OPS units that meet the requirements

of EVs.

A car’s OPS unit is situated in its navigation system. Car

navigation systems are generally connected with the global

This work was presented in part at the 17th International Symposium

on Artificial Life and Robotics, Oita, Japan, January 19–21, 2012.

U. F. Siddiqi (&) � Y. Shiraishi

Department of Production Science and Technology,

Gunma University, Ota, Gunma, Japan

e-mail: umair@emb.cs.gunma-u.ac.jp

S. M. Sait

Department of Computer Engineering, King Fahd University

of Petroleum and Minerals, Dhahran, Saudi Arabia

123

Artif Life Robotics

DOI 10.1007/s10015-012-0025-5

positioning system (GPS) or V2X communication systems

[5] in order to obtain information related to road networks.

An OPS unit uses the information in the navigation system

to determine shortest paths. There can be more than one

objective in the shortest path problem; hence, the problem

of finding shortest paths with OPS units is a multi-objective

shortest path (MOSP) problem. MOSP problems are NP-

hard discrete optimization problems [6, 7]. The objectives

in an MOSP problem can be contradictory, and therefore, a

set of Pareto-optimal solutions is required. A Pareto-opti-

mal set is a subset of the solutions that can be found by any

algorithm; it includes all solutions that are not dominated

by other solutions.

Evolutionary computational (EC) algorithms have been

predominately used to solve multi-objective optimization

problems. EC algorithms differ from each other in the

manner they mimic the biological process of evolution and

adapt their parameters during their searches. EC algorithms

can operate on a single solution or on a population of

solutions. The population-based algorithms are suitable for

finding Pareto-optimal solutions to multi-objective opti-

mization problems because they simultaneously optimize

several solutions. Genetic algorithms (GAs) and their

variants, along with particle swarm optimization (PSO), are

among the most well-known population-based algorithms.

Simulated evolution (SimE) and simulated annealing (SA)

[8] are two popular single-solution algorithms. SimE is fast

and has been shown to be efficient in solving path opti-

mization problems [9]. In contrast, population-based EC

algorithms produce good results but generally require a

large amount of memory. This paper presents a population-

based SimE algorithm for solving the MOSP problem in

EVs.

The purpose of developing population-based SimE

algorithms is to improve the quality of the solutions pro-

duced by single-solution SimEs. Our proposed algorithm is

memory efficient and requires only an amount of memory

that is directly proportional to the population size. Con-

ventional algorithms which include Dijkstra’s algorithm,

A* [10], and Martin’s algorithm [11] for MOSP problem

work well for small size networks, however, in huge size

networks, their computational times increase significantly.

The OPS units of EVs require memory efficient and fast

algorithms. Two important features that distinguish our

proposed algorithm with the other algorithms are, it is

memory efficient than the previous EC algorithms and it

can compute the MOSPs in huge size networks in short

time because unlike conventional algorithms it does not

need to visit all nodes in the road network. We compare the

performance of our proposed algorithm with that of the

non-dominated sorting genetic algorithm-II (NSGA-II).

NSGA-II is one of the most successful and widely used

multi-objective evolutionary computation algorithms. It

has been found to have a very promising performance in

solving multi-objective optimization problems in many

different applications [12, 13]. Therefore, NSGA-II can act

as a benchmark algorithm [14]. Our comparison shows that

given the same amount of execution time and memory

usage, our proposed algorithm performs better than NSGA-

II. Therefore, our algorithm is suitable for solving the OPS

problem in EVs.

The rest of this paper is organized as follows: Sect. 2

discusses previous related work. Section 3 formally

describes the MOSP problem for EVs. Section 4 contains a

detailed description of our proposed algorithm. Section 5

shows the calculation of the memory requirements of our

algorithm. Section 6 presents our simulation results and

compares our proposed algorithm with NSGA-II, and

finally, Sect. 7 concludes the paper.

2 Related work

This section briefly describes some existing algorithms for

solving the multi-objective optimization problem, existing

research on the suitable placement of recharging stations,

and existing research on parallel SimE algorithms.

Elitist evolutionary multi-objective optimization (EMO)

algorithms are the most recently introduced EMOs for

finding Pareto-optimal solution sets. Elitist EMO algo-

rithms preserve the good solutions during their iterations.

Some examples of popular elitist EMOs are as follows.

Deb et al. [15] proposed the elitist multi-objective genetic

algorithm NSGA-II, which has low computational com-

plexity. During its iterations, it preserves two types of

solutions: non-dominated solutions and solutions that are

the most distinct in the population. By doing so, the

algorithm maintains both quality and diversity among its

solutions. Experimental results have shown that this algo-

rithm is very successful in finding diverse Pareto-optimal

sets of solutions for multi-objective optimization problems.

Bora et al. [16] added greedy reinforcement learning to

NSGA-II for self-tuning its parameters. Their new algo-

rithm, NSGA-RL, tunes four NSGA-II parameters—the

probabilities of crossover and mutation operations and the

distribution indexes in crossover and mutation opera-

tions—on the basis of the results of previous generations.

NSGA-RL is slower than NSGA-II; however, its results are

closer to the NSGA-II results that have the best possible

parameter values. Li [17] proposed a multi-objective

optimization algorithm based on PSO called ‘‘Non-domi-

nated Sorting Particle Swarm Optimization’’ (NSPSO). In

NSPSO, any one non-dominated particle is considered to

be the global best position and is used for calculating

particle velocities. Experimental results show that NSPSO

is competitive with NSGA-II.

Artif Life Robotics

123

Kriz et al. [18] investigated the placement of recharging

stations on road networks. They proposed that the traffic

flow on a road network should be known to determine the

optimal placement of recharging stations. Recharging sta-

tions have been optimally placed when the maximum

number of unique paths in a network with non-zero traffic

flow contains recharging stations. Kriz et al. determined the

locations using integer linear programming (ILP) optimi-

zation in which the total number of recharging stations is

also constrained.

To date, only a few studies have addressed the devel-

opment of parallel SimE algorithms. Sait et al. [19] pre-

sented an interesting overview of three types of parallel

strategies for SimE algorithms. The first type evaluates

moves in parallel, with traversal of a solution through the

search space remaining unaltered. The second type parti-

tions a complete solution into smaller subsolutions that are

optimized in parallel. At the end of each iteration, subso-

lutions are combined to form a complete solution and then

re-partitioned for the next iteration. The third type of par-

allel strategy performs multiple searches in the search

space. Our proposed algorithm is based on this third type,

with the elements in the population independently explor-

ing the search space.

3 Description of the problem

3.1 Description of the road network

Let us assume that the road network is represented by an

undirected graph G = (V, E, Q), where V is the set of

nodes, E is the set of edges, and Q contains the EVs that are

traveling on the road network. The nodes in the set

V ¼ n0; n1; . . .; nN
V�1

n o
, where Nv is the total number of

nodes, represent the intersections in the road network and

the edges in the set E ¼ e0; e1; . . .; eNe�1

n o
, where Ne is the

total number of edges, represent the roads that join the

intersections. The nodes also contain recharging stations at

which EVs can be recharged. The members of the set

Q ¼ q0; q1; . . .qNEV�1

n o
, where NEV is the total number of

EVs in the road network, represent the EVs. The road

network is illustrated in Fig. 1. The navigation systems of

the EVs in the road network can communicate with the

traffic control station through GPS or V2I communication.

The properties of the nodes, edges and EVs are shown in

Table 1. The symbols ni, ej and qk represent elements from

the sets V, E and Q, respectively. The property ni 9 RT is

the time that the recharging station at node ni takes to fully

recharge an EV. The properties of each edge ej include

ej 9 st, which is the starting node of the edge, ej 9 en,

which is the ending node of the edge, ej 9 l, which rep-

resents the length of the edge, and ej 9 ST, which is the

average traveling time along the edge ej. The property

qk 9 Tl is the traveling limit of the EV qk, i.e., the maxi-

mum time that qk can travel without recharging, and the

property qk 9 Bs is the battery charge of qk at the source

node, which can range between 0 and 100 %.

3.2 Description of the MOSP problem

We assume that individual EV will independently solve the

MOSP problem through their OPS units. Figure 2 shows a

block diagram of the proposed EV OPS units. The OPS

unit receives information about the road network through

GPS or V2X communication and is told the starting and

ending nodes of the journey by the driver and it sends its

output to the navigation system display unit.

The MOSP problem that the OPS unit of the EV qk must

solve is as follows. Assume that qk desires to travel

Fig. 1 Illustration of the road network for intelligent vehicles

Table 1 Properties of nodes, edges and electric vehicles

Symbol Description Range of values

Properties of any node ni [V

ni 9 RT Recharging time for the EVs {x [R?}

Properties of any edge ej [E

ej 9 st Starting node of the edge {x [V}

ej 9 en Ending node of the edge {x [V}

ej 9 ST Average traveling time on it {x [R?}

ej 9 l Length of the edge {x [R?}

Properties of any electric vehicle qk [Q

qk 9 Tl Traveling limit of the EV {x [R?}

qk 9 Bs Battery level at the source node x 2 Z 0\xj � 100f g

Artif Life Robotics

123

between the source node s and destination node d, (where

s, d [V). The solution will be a set of Pareto-optimal

solutions. Let PTK = {P0, P1, …PM-1}, where M is the

total number of Pareto-optimal solutions, be the Pareto-

optimal set for the EV qk. Each Pj [PTk is a solution that

consists of two parts represented as Pj = {PA, PB}, where

PA � E stores a path between the nodes s and d and PB �
V stores the nodes at which qk should be recharged. The

nodes in PB are starting nodes of some of the edges in PA.

The value of any element pi [PA can be determined as

follows:

pi ¼
ex 2 E; s:t: ex � st ¼ s if i ¼ 0

ex 2 E; s:t: ex � st ¼ pi�1 � en if i [0

null if pi�1 � en ¼ d or pi�1 ¼ null

8<
:

A solution is feasible if the length of each edge in the

solution is equal to or less than the traveling limit of the EV

qk, i.e., ex � l� qk � Tl 8ex 2 E. Each solution Pj has

an attribute ParetoOptimal, and this attribute is true only if

Pj is a Pareto-optimal solution.

The proposed MOSP problem is a minimization prob-

lem that has three objective functions:

Minimize(f1(Pj), f2(Pj), f3(Pj)), where

f1(Pj) is the time consumed in recharging the EV on path

Pj,

f2(Pj) is the total length of path Pj, and

f3(Pj) is the total traveling time on path Pj.

The values of the functions fk(Pj), 1 B k B 3, are cal-

culated as follows:

f1 Pj

� �
¼
X
8nx2PB

nx � RT ð1Þ

f2 Pj

� �
¼
X
8ex2PA

ex � l ð2Þ

f3 Pj

� �
¼
X
8ex2PA

ex � ST : ð3Þ

4 Proposed algorithm for the MOSP problem

This section describes our proposed algorithm. There are

four user inputs: s and d, the source and destination nodes

for the EV’s journey, the probability of mutation Mb, which

should be a value in the range x 2 Rj0� x� 1f g, and the

population size N. The value of Mb should be kept small

because high mutation probabilities lead to random sear-

ches. The steps that comprise the proposed algorithm are

shown in Fig. 3. The stopping criterion can be the maxi-

mum number of optimization iterations or the maximum

execution time for the iterations. The following subsections

describe each step in detail. In addition to allocation, our

algorithm also uses the mutation operation to explore new

Fig. 2 Block diagram of the optimal path selection unit of the

electric vehicles

Start

Initialization

Evaluation

Selection

Allocation

Mark Pareto Optimal
Solutions in the Population

if stopping criteria
is reached

End

Mutation

if rn < Mb
YesNo

Source (s) & destination (d) nodes
Parameters:
N: Population size
Mb: Probability of mutation
operation

No

Yes

Fig. 3 Proposed algorithm

Artif Life Robotics

123

solutions. The allocation operation mutates a solution by

altering the elements of the selection set [8]. On the other

hand, mutation operation mutates a solution by altering

randomly selected elements. The operation Mark Pareto-

optimal solutions, is also introduced in order to preserve

Pareto-optimal solutions from one generation to next gen-

eration. The preservation of Pareto-optimal solutions is

known as elitism and many latest EC algorithms use it to

maximize the number of Pareto-optimal solutions in their

final solution set.

4.1 Initialization

In this first step, maximum N solutions are initialized to

random paths between the source and destination nodes.

The population is denoted by POP = {P0, P1, …, PN-1}.

Any Pj 2 POP can be represented as Pj ¼ PA;PB
� �

. PA is

a complete path from the source to the destination nodes.

PB contains the recharging stations at which the EV should

be recharged in order to complete its journey on the path

PA. The function form_path(s,d), shown in Fig. 4, is used

to generate a random path between the nodes s and d. In

line 1, a set Q, a path y and a variable done are initialized.

The for loop between lines 2 and 4 performs the initiali-

zation of the two attributes (sel and p) that are associated

with all nodes for the purpose of finding the random paths.

The attribute sel of each node is initially set to false (or 0),

but it changes to true value when the associated node is

inserted into Q. After changing to true, its value remains

true until the end of the function. The attribute p for each

node stores the node that is preceding it in the path from

source to destination nodes. In line 5, source node (src) is

added to Q. The while loop between the lines 6 and 21

executes until the destination node is reached. g is a node

which is randomly selected from Q. The for loop between

lines 8 and 14 selects the nodes that are adjacent to g. nx

represents a node which is adjacent to g. If nx is the des-

tination node then the attribute p of nx is updated to g and

the value of variable done is set to true which causes the

outer-most while loop to terminate. If nx is not equal to the

destination node and in addition nx is never inserted in

Q then nx is inserted into Q. When nx is inserted into Q, the

value of its sel is set to true. The while loop between lines

17 and 20 forms a complete path in the reverse order. Line

21 calls a function Reverse_Order to correct the order

to nodes in y which is from the source to the destination

node.

The function selectStations(PA), shown in Fig. 5, selects

recharging stations on the path PA. In line 1, PB is ini-

tialized to null, and CB is initialized to the distance that

the EV can travel with the battery level it has at the

source node. In line 2, Lp stores the total length of path PA.

The while loop between lines 3 and 14 executes until CB

contains a value that is greater than or equal to the total

length of the path PA (Lp). Line 4 initializes variables. The

for loop between lines 5 and 11 populates the sets Ps, ds

and as. The set Ps contains the ending nodes of edges in PA

such that the length of the sub-path from the source node to

those nodes is between Ls and CB. The set ds stores the

distances of nodes in Ps from the source node. For each

node in Ps, the set as stores the sum of the recharging time

and the reciprocal of the distance of that node from the

source node. Line 12 sets Isel to contain the index of the

element in as that has the minimum value and Vsel to

contain the value of the element at position Isel in ds;

moreover, it adds the node at position Isel in Ps to the set

PB. Line 13 updates the values of CB and Ls. This proce-

dure is repeated until the outermost while loop terminates.

At the end of this procedure, the algorithm selects the

recharging stations that have the minimum recharging time

and that are also near the points where the EV is

approaching its traveling limit. After initialization, the

functions form_path() and selectStations() are also used in

the allocation and mutation operations to find new sub-

paths between any two nodes and select recharging

stations.

Fig. 4 Function to find a random path, y = form_path(s,d)

Artif Life Robotics

123

4.2 Evaluation

The evaluation step determines the goodness values of

the set of edges in each solution. Figure 6 shows the

method for finding the goodness of any edge ei (where

ei [PA and PA [Pj). The sets Pa
A and Pa

B contain all

elements of the sets PA and PB except ei. The goodness

value has three components with values lying in the range

[0,1].

4.3 Selection

For each solution, the selection operation aims to select

some elements of low goodness values into its selection set.

The selected elements will be later used in the allocation

operation. The selection operation is applied independently

to each solution. For each solution Pj, a set Sj that contains

three elements (corresponding to the three objectives) is

produced. Each element ik [Sj, 0 B k B 2 is the index of

the edge that has minimum value for the kth goodness

objective in the solution Sj. Figure 7 shows the proposed

selection operation.

4.4 Allocation operation

For each solution, the allocation operation performs

mutation by altering the elements in the selection set. The

allocation operation is applied to each solution in the

population with probability 1-Mb. Figure 8 shows the

allocation operation for a solution Pj. The operation con-

sists of a for loop that selects a different edge from the set

Sj in each iteration. Line 2 sets nx to be the starting node of

the currently selected edge. Line 3 initializes Pa and sets

Pa
A to contain a path between the nodes nx and d. Line 4

Fig. 5 Function to select recharging stations, selectStations(PA)

Fig. 6 Proposed goodness calculation

Fig. 7 Proposed selection operation

Fig. 8 Proposed allocation operation

Artif Life Robotics

123

forms Pa
A by combining the upper portion of PA (where PA

[Pj) with the lower portion of Pa
A. If Pj is a Pareto-optimal

solution, then Pj is updated to Pa only if Pa dominates Pj.

If Pj is not a Pareto-optimal solution then Pj is updated

to Pa if Pa is better than Pj for any objective function

value.

4.5 Mutation operation

The mutation operation causes random changes in solu-

tions. In our algorithm, it is used to escape local minima.

The mutation operation is applied with probability Mb to

each solution in the population. The proposed mutation

operation is shown in Fig. 9. Line 1 initializes the variables

cnt and Pa. The for loop between lines 2 and 6 sets the

value of cnt to the number of non-null elements in the

solution PA [Pj. Line 7 sets rn to be a random integer

between 0 and cnt-1. nx is the starting node of the edge that

lies at position rn in PA of Pj. Using nx, a new path Pa is

formed with the function form_path() that is also used in

the allocation operation. Pj is updated to Pa under different

conditions that are based on whether Pj is a Pareto-optimal

solution.

4.6 Mark Pareto-optimal solutions

In this step, the solutions in the population that are Pareto-

optimal are marked by setting the value of their attribute

ParetoOptimal to true.

5 Estimation of memory requirements

Now, we estimate the memory required to store the number

of paths generated by our proposed algorithm. The number

of solutions stored by the algorithm is equal to the popu-

lation size N. The algorithm also creates an additional path

(Pa) in the allocation and mutation operations. Therefore,

the total number of paths that are stored in the memory is

N ? 1. If we assume that one solution consumes d units of

memory, our proposed algorithm requires (N ? 1)d units

of memory. For comparison purposes, we also estimate the

memory required by the NSGA-II. The number of paths

stored by NSGA-II is twice its population size because the

number of children it creates is equal to its population size.

Therefore, if N0 is the population size in the NSGA-II,

2 N0d units of memory are required. The ratio of the

number of paths created by NSGA-II to that created by our

proposed algorithm is memNSGA�11

memproposed
¼ 2N 0

Nþ1
. This reduction of

memory usage is effective for the implementation on an

embedded system with insufficient resources.

6 Simulations

We implemented our proposed algorithm and NSGA-II in

Visual Studio C# and ran them on an Intel Celeron 2-MHz

laptop computer with 2 GB RAM. The Celeron is one of

Intel’s low-cost processors that are also used in embedded

systems in EVs. The rest of this section describes the

details of the experiments and analyzes the results.

The experiments used the San Francisco Bay Area

(BAY) and Colorado (COL) road networks [20]. BAY con-

tains 321,250 nodes and 800,172 edges and COL contains

435,666 nodes and 1,057,066 edges. The road networks

contain information about the starting and ending nodes of

the edges (ej 9 st and ej 9 en), the length of the edges

(ej 9 l), and the average traveling time on the edges

(ej 9 ST). Therefore, the values of four out of the seven

properties described in Table 1 are based on road network

information. The values of properties related to the nodes

and EVs were determined as follows. Recharging stations

were assumed to be present at all nodes. Recharging sta-

tions that can support rapid recharging have recharging

times as short as 10 min [2]; however, some rapidly

recharging stations have recharging times as long as

30 min [21]. Therefore, the recharging times at the nodes

(ni 9 RT) are assumed to lie between 10 and 30 min. The

traveling limit of the EVs (qk 9 Tl) is generally 120 km

[22]. The last property, the battery level at the source node,

was assumed to randomly vary between 60 and 100 %.

Assume that the geographical locations of the source (s)

and destination (d) nodes are represented as s(xs, ys) and

d(xd, yd), respectively. The distance (d) between s and d

Fig. 9 Proposed mutation Operation

Artif Life Robotics

123

nodes can be determined using the distance formula, i.e.,

d ¼
ffi
xd � xsð Þ2þ yd � ysð Þ2

q
. Each experiment involved

randomly selecting s and d nodes, such that, 100 km\
d\300 km and using our proposed algorithm and NSGA-II

to find Pareto-optimal paths between them. In road net-

works, many obstacles exist between s and d nodes,

therefore, shortest path between them is generally much

longer than d. Many US cities have total area around

300 km2 [23], therefore, the EV can travel within a small

city in the selected range of d. The experiments were

performed under the following four conditions: (1) in

BAY1, up to 100 experiments were executed on the BAY

road network with N = 10, N0 = 10 (recall that N is the

population size for our proposed algorithm and N0 is the

population size for NSGA-II), (2) in BAY2, up to 100

experiments were executed on the BAY road network with

N = 20, N0 = 10, (3) in COL1, up to 100 experiments were

executed on the COL road network with N = 10, N0 = 10,

(4) in COL2, up to 100 experiments were executed on the

COL road network with N = 20 and N0 = 10. When

N = 10 and N0 = 10, memNSGA�11

memproposed
¼ 1:82, and when N = 20

and N0 = 10, memNSGA�11

memproposed
¼ 0:95.

Therefore, for the experiments in BAY1 and COL1, our

proposed algorithm requires approximately half amount of

memory required by NSGA-II, and for the experiments in

BAY2 and in COL2, our proposed algorithm and NSGA-II

require the same amount of memory. The values of the

remaining parameters of the algorithms were as follows.

Mb, which is the mutation probability, was set to 0.15. The

crossover and mutation probabilities in NSGA-II were set

to 1 and 0.15, and the algorithm selected parents for the

crossover operation using tournament selection based on

Table 2 Results of the Wilcoxon rank sum tests

Experiments P values

BAY1 0.94

BAY2 1.00

COL1 0.90

COL2 0.87

Fig. 10 Box-and-whisker plots

Artif Life Robotics

123

crowding distance. The crossover and mutation operations

proposed by Ahn [24] were used. The stopping criterion in

all experiments was set to an execution time of 30 s.

The hypervolume of the Pareto-optimal solutions found

for the experiments was determined using the hypervolume

calculation tool proposed by Carlos et al. [25], and the

bounding point in the hypervolume calculation was deter-

mined using the method proposed by Knowles [26]. The

results of the hypervolume calculations in the experiments

are shown with box-and-whisker plots in Fig. 10. In addi-

tion, we used Wilcoxon rank sum test [27] to compare the

hypervolumes of the Pareto-optimal solutions obtained by

the two algorithms in the different experiments. The tests

were applied with the significance level a = 0.05. The rank

sum tests yield P values and when the P values are less

than or equal to a, the hypervolume distributions of the two

algorithms are not significantly different from each other.

The results of the rank sum tests are shown in Table 2. The

P values in all test cases are greater than a = 0.05, and

therefore, the difference between the hypervolumes

obtained from the proposed algorithm and NSGA-II is

insignificant.

In the experimentation, it was noted that an increase in

the execution time to 120 s can allow one to double the

population size and increase the upper bound on the value

of d to ??.

In addition, the performance of the algorithms was

measured by determining their share in the overall Pareto-

optimal solutions. The algorithm that has a higher share is

better, and this can be determined by the following method.

During any experiment, the results of the two algorithms

were combined and an overall Pareto-optimal set was

calculated. The number of solutions found by an algorithm

that is member of the overall Pareto-optimal set determines

its share in the overall Pareto-optimal set. The results,

which are displayed with bar graphs in Fig. 11, show that

the performance of our proposed algorithm was better than

that of NSGA-II in most of the test cases. On an average,

our proposed algorithm found 5.5 % more solutions in the

overall Pareto-optimal sets than NSGA-II.

7 Conclusion

This study solves the OPS problem for EVs. We assumed

that road networks have recharging stations located at their

nodes. A population-based SimE algorithm was used to

perform OPS. Our proposed algorithm has innovative

functions for calculating goodness values and performing

the SimE allocation operation. The algorithm stores N ? 1

paths in the memory, where N is the population size. The

performance of our proposed algorithm was compared with

that of NSGA-II both running on an Intel Celeron processor,

which can also be used in embedded systems in EVs. Our

proposed algorithm found an average of 5.5 % more Pareto-

optimal solutions than NSGA-II. Therefore, the experi-

mental results show that our proposed algorithm is suitable

for implementation on the embedded systems used in EVs.

References

1. Saber AY, Venayagamoorthy GK (2009) One million plug-in

electric vehicles on the road by 2015. In: International IEEE

Conference on Intelligent Transportation Systems, St. Louis

2. Amoli ME, Choma K, Stefani J (2010) Rapid-charge electric-

vehicle stations. IEEE Trans Power Delivery 25(3):1883–1887

3. Li Z, Sahinoglu Z, Tao Z, Teo KH (2010) Electric vehicles

network with nomadic portable charging stations. In: IEEE 72nd

Conference on Vehicular Technology Fall, VTC-2010 Fall,

Ottawa

4. Sundstorm O, Binding C (2010) Planning electric-drive vehicle

charging under constrained grid conditions. In: Internal Confer-

ence on Power System Technology (POWERCON), Zhejiang

5. Strom E, Hartenstein H, Santi P, Wielsbeck W (2010) Vehicular

communications: ubiquitous networks for sustainable mobility.

Proc IEEE 98(7):1111–1112

6. Tarapata Z (2007) Selected multicriteria shortest path problems:

an analysis of complexity, models and adoption of standard

algorithms. Int J Appl Math Comput Sci 17(2):269–287

7. Garey MR, Johnson DS (1997) Computers and intractability: a

guide to the theory of NP-completeness. W. H Freeman, New

York

8. Sait SM, Youssef H (1999) Iterative computer algorithms with

applications in engineering. IEEE Computer Society Press, New

York

9. Siddiqi UF, Shiraishi Y, Sait SM (2011) Multi constrained route

optimization for electric vehicles using SimE. In: International

Conference on Soft Computing and Pattern Recognition (SoC-

PaR), Dalian

10. Song Q, Wang X (2011) Efficient routing on large road networks

using hierarchical communities. IEEE Trans Intell Trans Systems

12(1):132–140

11. Martins E, Santos J (1999) The labeling algorithm for the mul-

tiobjective shortest path problem, Departamento de Matematica,

Universidade de Coimbra, TR-99/005, Portugal

Fig. 11 Contribution of the algorithms to the overall Pareto-optimal

solutions

Artif Life Robotics

123

12. dos Santos Coelho PAL (2008) Multiobjective electromagnetic

optimization based on a nondominated sorting genetic approach

with a chaotic crossover operator. IEEE Trans Magnetics 44(6):

1078–1081

13. Yinhong L, Xianzhong D, Zhihuan L (2010) Non-dominated

sorting genetic algorithm-ii for robust multi-objective optimal

reactive power dispatch. IET Generation Trans Distribution

4(9):1000–1008

14. Chandrasekaran K, Kandaswamy A, Rio G, D’Souza L (2010)

Improved NSGA-II based on a novel ranking scheme. J Comput

2(2):91–95

15. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and

elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans

Evol Comput 2(6):182–197

16. Lebensztajn L, Coelho LDS, Bora TC (2012) Non-dominated

sorting genetic algorithm based on reinforcement learning to

optimization of broad-band reflector antennas satellite. IEEE

Trans Magnetics 48(2):767–770

17. Li X (2003) A nondominated sorting particle swarm optimizer for

multiobjective optimization. In: International Conference on

Genetic and Evolutionary Computation (GECCO 2003) Part I,

Chicago

18. Villez K, Gupta A, Venkatasubramanian V (2011) Resilient

design of recharging station networks for electric transportation

vehicles. In: Fourth International Symposium on Resilient Con-

trol Systems (ISRCS), Boise

19. Sait SM, Ali MI, Zaidi AM (2007) Evaluating parallel simulated

evolution strategies for vlsi cell placement. J Math Model

Algorithms 6(3):433–454

20. 9th DIMACS Implementation Challenge—Shortest Paths

[Online]. http://www.dis.uniroma1.it/challenge9/download.shtml

21. North Carolina Advanced Energy Corporation (2011) Charging

station installation handbook

22. Kiyama N, Aoshima H, Kashiyama M, Kobayashi Y (2011) A

route search method for electric vehicles in consideration of

range and locations of charging stations. In: IEEE Intelligent

Vehicles Symposium (IV), Baden

23. List of United States cities by area [Online]. http://en.wikipedia.

org/wiki/List_of_United_States_cities_by_area

24. Ramakrishna RS, Ahn CW (2002) A genetic algorithm for

shortest path routing problem and the sizing of populations. IEEE

Trans Evol Comput 6(6):566–579

25. Fonseca MC, Paquete L, Paquete ML (2006) An improved

dimension–sweep algorithm for the hypervolume indicator. In:

2006 IEEE Congress on Evolutionary Computation (CEC’06),

Piscataway

26. Knowles J (2005) ParEGO: a hybrid algorithm with on-line

landscape approximation for expensive multiobjective optimiza-

tion problem. IEEE Trans Evol Comput 10(1):50–66

27. Hollander M, Wolfe DA (1999) Nonparametric statistical meth-

ods. Wiley, New York

Artif Life Robotics

123

http://www.dis.uniroma1.it/challenge9/download.shtml
http://en.wikipedia.org/wiki/List_of_United_States_cities_by_area
http://en.wikipedia.org/wiki/List_of_United_States_cities_by_area

	Multi-objective optimal path selection in electric vehicles
	Abstract
	Introduction
	Related work
	Description of the problem
	Description of the road network
	Description of the MOSP problem

	Proposed algorithm for the MOSP problem
	Initialization
	Evaluation
	Selection
	Allocation operation
	Mutation operation
	Mark Pareto-optimal solutions

	Estimation of memory requirements
	Simulations
	Conclusion
	References

