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Abstract: The problem of setting the Open Shortest Path First (OSPF) weights on links such that congestion can
be avoided is proved to be NP-hard. Many iterative heuristics have been applied to solve the OSPF weight setting
(OSPFWS) problem. As the size of any combinatorial optimization problem increases, it becomes more diffi-
cult to find an optimum solution using sequential algorithms. Parallelization of modern iterative heuristics has
been proven to produce improved solution precision and timing. In this paper, we investigate the parallelization
of Tabu Search and apply two variants of a Parallel Tabu Search (PTS) heuristic on the OSPFWS problem. It is
shown through experimental results that both PTS approaches produced better solutions quality compared to the
sequential heuristics; specifically for larger topologies. In one approach, we propose a new design for our parallel
cooperative search algorithm, which performs better than the conventional parallel heuristic. The purpose of this
new design is to induce diversification into the search to explore a larger search space. We also show that the new
approach performs better than the conventional parallel heuristic.
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1 Introduction Thoroup [3, 4]. They applied tabu search using their
proposed cost function [1]. We call this cost function
Open Shortest Path First (OSPF) is an intra au- FortzCF. Sqalli et .al. Rroposed a new cost funct.ion
tonomous system routing protocol which computes (NewCF) and applied Simulated Annealing [5], Sim-
the shortest paths based on the weights assigned to ulated Evolution [6], and Tabu Search [7] using both
the links. Routing on the Internet defines the traf- cost functions. They proved experimentally that the
fic flows over the selected shortest paths. Traffic en- new cost function minimizes the number of congested
gineering aims at providing the required Quality of links. Ericsson.et al. attempted Genetic Algorithm [2]
Service (QoS) to the users by efficiently utilizing the as well as hybrid GA [8] for the same problem.
available resources and managing these traffic flows. Tabu Search has also been used for many other
The rapid growth in Internet traffic underlines the im- optimization problems such as power system restora-
portance of traffic engineering. tion [9] and job shop scheduling problems [10]. In
OSPF uses the link Weights as its routing met- addition, Balicki [11] used an evolutionary algorithm
ric. The major networking vendor Cisco, assigns the based on a tabu search procedure for multi-criteria
link weights inversely proportional to the link capac- optimization of distributed systems. Sadegheih [12]
ity. This is termed as inverse capacity OSPF in the also discusses a global optimisation using evolution-
literature [1, 2]. Other methods of weight assignment ary algorithms, simulated annealing, and tabu search.
such as unit OSPF and random OSPF also exist. Given Adaptive Tabu Search (ATS) has been used as well
a set of traffic demands between each source and des- in the works of Sujitjorn et al.[13] and Kluabwang et
tination node, the OSPF weight setting problem con- al. [14].
sists of determining suitable OSPF link weights so as In this paper, we investigate parallelizing the Tabu
to optimize a certain criterion (cost function), aiming Search iterative heuristic to solve the OSPFWS prob-
at avoiding congestion in the network. This Problem lem which, to our knowledge, has not been attempted
is NP-hard [1]. yet. Enormous work has been done in the area of par-
The application of iterative heuristics to solve the allelization of iterative heuristics in general and Paral-

OSPFWS problem was first attempted by Fortz and lel Tabu Search (PTS) [15, 16, 17, 18] in particular to
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solve a range of combinatorial optimization problems.
Different implementation strategies are also proposed
in the literature which include, using dynamic Tabu
Search parameters [19] at different processors, using
a cluster in some hierarchical architecture [20, 21]
to enhance the search, integration of different paral-
lelization strategies [20], etc. A detailed survey of
various parallelization strategies and their application
to one or more classical or specific optimization prob-
lems can also be found in the literature [22, 23, 24].

The OSPFWS problem, like any other combina-
torial optimization problem, requires high computing
which grows exponentially with the problem dimen-
sion [25]. Parallelism has obvious advantages due
to the availability of more resources at hand. If ef-
ficiently done, it not only achieves good results in
relatively lesser time compared to it sequential coun-
terparts, but also can obtain superior solution quality
due to more comprehensive and independent parallel
search by multiple entities. In this paper, we present
a Parallelized Tabu Search (PTS) [26] heuristic using
two strategies to solve the OSPFWS problem by us-
ing the two cost functions available in the literature.
The objective is to achieve better solutions quality in
a given time, which could not be achieved by sequen-
tial heuristics; specifically for larger topologies and
higher traffic demands.

The rest of the paper is organized as follows; The
OSPFWS problem statement and the cost functions
proposed in the literature are presented in Section 2.
The two Parallel Tabu Search algorithms are discussed
in Section 3. This is followed by the experimental
results and conclusion.

2 Problem Statement

The OSPF weight setting problem can be stated as
follows: Given a directed network of nodes and arcs
G = (N, A), ademand matrix D, and capacity Cj, for
each arc a € A, determine a positive integer weight
Wq € [1,Wmaq) for each arc @ € A such that the
objective function or cost function ® is minimized.
When routing is perfromed using OSPF, the assigned
link weights completely determine the shortest paths,
and hence the traffic flows. Based on these traffic
flows, the partial loads on each arc for a given des-
tination are computed. This is done for all destina-
tion nodes. The aggregated partial loads for all des-
tinations on a particular arc give the total load [, on
that arc. The cost of sending traffic through this arc is
given by ®,(l,). The cost value depends on the uti-
lization of the arc and is given by the linear function
proposed by Fortz and Thoroup [1].
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1 for0 <1l/c, < 1/3,
for1/3 <l/c, < 2/3,

& (1) = 10 for2/3 <l/c, <9/10,
e/ ) 70 for9/10 <l/c, < 1,
500 for1 <1/e, < 11/10,
5000 for 11/10 < 1/cy < infinity
e))
The Fortz cost function is given in equation 2.

a€A

The objective is to minimize P, subject to these
constraints:

o= Y. fiaeA, 3)
(s,)ENXN
Fiot >0 (4)

In constraint 3, for traffic between a source and
a destination pair (s,t), f(gs’t) indicates the amount of
traffic flow that goes over arc a. The detailed steps
showing the formulation of this cost function can be
found in the literature [1, 5].

The New cost function [5] is shown in equation 5,

P = MU + ZaESetCA (la - C(l)

i )

This function contains two terms. The first term
is the maximum utilization (MU) in the network. The
second term represents the extra load on the network
divided by the number of edges present in the network
to normalize the entire cost function.

We have applied our proposed parallel heuristics
on both cost functions presented in this section.

3 Parallel Tabu Search (PTS)

In conventional parallel implementations of tabu
search, all the processors including the master inde-
pendently generate an initial solution and compute its
cost. After searching its part of the current neighbor-
hood, repeatedly for a certain number of iterations,
each slave process reports its best move back to the
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master. The master process selects the best among the
received best moves (subject to tabu conditions). If the
stopping criteria are met then the search stops; other-
wise the master broadcasts the selected move back to
the slaves. The selection criterion for the best move
and also the slaves to which this best move is broad-
casted, depend on the implementation strategy. The
search continues, where each processor sets the re-
ceived solution from the master as its current solu-
tion and explores the neighborhood. The master also
broadcasts the tabu list pertaining to the selected solu-
tion and all slaves update their individual tabu lists.

Two strategies, namely, PTS-Star and PTS-Ring
were implemented to parallelize Tabu Search. The
implementation aspects of the two strategies mainly
differ in the way the processors coordinate during the
periodic solution exchanges. From the functional as-
pect, they differ in the search space each processor
works on after each solution exchange. In this sec-
tion, we discuss the two strategies in detail.

3.1 PTS-Star

In the PTS-Star strategy, the parallel cluster consists
of n + 1 processors with 1 master and n slave proces-
sors/nodes. Each processor starts by generating a ran-
dom initial solution. Due to the independent random
number generation by each entity the initial solution
generated by a processor is different from the other.
Each slave processor starts Tabu Search and contin-
ues for K iterations. After each move the current and
best cost are computed. At the end of the K" itera-
tion, the best cost and solution are sent to the master.
The master waits to receive the cost and solution from
all slaves, after which it compares the received costs
and picks the best cost among the n slaves. Once the
comparison is done and the best cost is selected, the
master broadcasts the corresponding best solution to
all slaves. Each slave processor receives the new best
solution from the master and sets this received solu-
tion as the current solution. With this current solution,
Tabu Search is started for another K iterations.

This process of parallel Tabu Searches with pro-
cessor coordination by periodic solution exchange
continues until the termination criterion is met. The
master is the central point of coordination between
all slaves, which means that all communications go
through the master and each processor is directly con-
nected only to the master. The processor arrangement
resembles a star topology and hence the name PTS-
Star. The structure of the PTS-Star algorithm is shown
in Figure 1.

With multiple processors working on the solution
and exploring the search space, the convergence is ex-
pected to be faster and the final solution quality is also
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Algorithm: PTS-Star

Begin:
Slave:
1: Generate Initial Solution.
2: Continue TS for K Iterations.
3: Send the bestsol and bestcost to master.
Master:
4: Receive individual bestcost from each slave.
5: Compare the received costs.
6: Select the bestsol among all slaves.
7: if termination criteria is met: then
Save the results.

Stop.
8: else:

Broadcast bestsol to all slaves.
9: GoTo: 4

Slave:
10: Receive the solution from master.
11: Update current solution based on the received solution.
12: if termination criteria is met: Stop.
13: else: GoTo: 2
End:

Figure 1: Structure of the PTS-Star algorithm

expected to be better by visiting more points (solu-
tions) in the search space.

This technique however has the limitation that,
after every periodic solution exchange, all processors
start Tabu Search with the same current solution, and
hence searching in similar regions of the search space.
To prevent this redundant search, some technique is
required where different processors can coordinate to
explore a larger search space. The next strategy PTS-
Ring addresses this issue.

3.2 PTS-Ring

The primary objective of devising this new strategy
is to improve the solution quality by making the pro-
cessors work in different regions of the search space.
This is done by making different set of processors
start the search from different starting points (solu-
tions) after each solution exchange, thereby diversify-
ing the search considerably. It is practically important
to search a new region when the neighborhood search
fails to improve the best solution for a while; and di-
versification techniques can help achieve this goal. In
the PTS-Ring strategy, the parallel cluster consists of
n+1 processors with 1 master and n slaves. Each slave
node S; has a rank ¢ associated with it. A node ex-
changes its solution only with its neighbors. Neigh-
borhood is defined as a set of three nodes with ranks
i — 1, 4, ¢ + 1; hence the neighbors of node .5; are
(Si—1, Si+1). Further, the neighbors of the last node
Sy, are (S,_1, S1) while the neighbors of the first node
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S1 are (S, S2). This arrangement of nodes, with the
first and last node being neighbors, completes a ring
structure. The implementation logic of the PTS-Ring
strategy is explained below.

Each processor starts by generating a random ini-
tial solution. Each slave processor starts Tabu Search
and continues for K iterations (moves). After every
move, the current and best cost are computed and at
the end of K moves, the best cost and solution are sent
to the master. The master receives the cost and solu-
tion from all slaves. For each slave processor, the mas-
ter compares the slave’s cost with its neighbors and
sends the best solution in its (slave’s) neighborhood
to this slave processor. Hence, any slave S; receives
the best solution among the three processors (S;—1,
Si, Si+1). Each slave processor receives the new best
solution from the master and sets this received solu-
tion as the current solution. With this current solu-
tion, Tabu Search is started for another K iterations.
The process continues until the termination criterion
is met. The effect of this approach is that, with every
solution exchange, different sets of processors start
with a different solution as their starting point; unlike
the PTS-Star approach where the solution exchange
brings all processors to the same initial point for that
instance in the search.

The structure of the PTS-Ring algorithm is shown
in Figure 2.

4 Results

In this section, we present the experimental results
for the two Parallel Tabu Search algorithms. The test
cases and demand matrices are the same as used in the
literature [1, 4]. The generation of these test cases is
done using GT-ITM generator [27], based on a model
of Calvert [28] and Zegura [29].

Experimental results have been recorded for the
following four performance metrics:

1. Cost
2. Maximum Utilization (MU)
3. Percentage of Extra Load (PXLoad)

4. Number of Congested Links (NOCL)

The utilization of the link is the ratio of load on
the link to its capacity. If the utilization of the link is
more than one, the link is congested. The Maximum
Utilization is the utilization of the maximum utilized
link in the network. In other words, it is the utilization
of the link having the highest degree of congestion.
The extra load on a particular link is the load present
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in excess to its capacity. If the load on the link is less
than its capacity (utilization < 1), then the extra
load on that link is zero. The percentage of extra load
is the sum of the extra load present in the network di-
vided by the sum of capacities of congested links. As
explained earlier, congested links are the links which
have a utilization greater than 1 (i.e., load on the link
exceeds its capacity). The statistics for these perfor-
mance metrics are plotted with respect to both parallel
strategies PTS-Star and PTS-Ring, using the two cost
functions: FortzCF and NewCF.

Algorithm: PTS-Ring

Begin:
M=Master.
S={ S1, S2,...Sn }; n=No. of Slave Processors.
N(s): Neighbour of s.
Ring Arrangement:
N(S)=(Si-1, Si+1).
N(S1)=(S5n, S2).
N(S7)=(Srn—-1,51).
Slave:
1: Generate Initial Soln.
2: continue TS for K Iterations.
3: Send the bestsol and bestcost to M.
Master:
4: Receive costs from all slaves.
5: if termination criteria is met: then
Save the results.

Stop

6: else:
for each slave S;. do

7 Compare cost of S; and N(S;).

8: Select the best solution.

9: Send the bestsol to S;.
EndFor

EndIf GoTo: 4
Slave:

10: Receive the solution from master.
11: Update current solution based on the received solution.
12: if termination criteria is met: Stop
13: else: GoTo: 2
End:

Figure 2: Structure of the PTS-Ring algorithm

4.1 PTS-Star

In this section, we first present the results of the PTS-
Star strategy in which we show the Cost comparison
versus the number of processors for four test cases.
In Figure 3, the results for the maximum demand are
shown. It can be seen here that the cost improves with
the number of processors for all cases but this im-
provement for the cases h100N360a and w100N476a
is very minimal. The total demand and also the aver-
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age load per arc (Total Demand/Number of Links) on
these topologies is less when compared to the random
graphs (r100N403a, r100N503a). The cost of a solu-
tion is dependent on the utilization of the links, and
lower input demands lead to lesser utilization. Hence,
when the input demands are low, a large set of solu-
tions (weight combinations) will result in links with
low utilization and hence, a lower cost. These solu-
tion sets representing a good solution, form a slightly
bigger fraction of the search space and can also be
explored by sequential heuristics. Hence, for topolo-
gies with lower input demands, the improvement due
to parallelization is not significant when compared to
sequential heuristics.

The other two cost curves for r100N403a and
r100N503a graphs show a significant improvement in
cost with the increase in the number of processors.
The same trend is also observed for Demand-11, as
can be seen in Figure 4. The random graphs used in
this work are the graphs with large sizes and higher
demands when compared to any other topology. None
of the sequential heuristics mentioned in this paper
have achieved results close to PTS for these topolo-
gies. The final costs achieved using PTS are even
upto one third of the best achieved using the sequen-
tial Tabu Search heuristic (TS). TS has also the best
results among all sequential heuristics [7].

PTS-Star
Cost vs No. of Processors (Demand12)

60 4

50 4

40 | —e— h100N280a
= —=— w100N476a
o 30
o —a— r100N403a

20 4 —e— r100N503a

10 |

0
1 2 3 4 5 6

No. of Processors

Figure 3: Cost vs. # of Processors Using PTS-Star for
D12.

Time comparison for the PTS-Star strategy is
shown in Figure 5 and Figure 6 for Demand-12 and
Demand-11 respectively. The target cost is the best
cost achieved by the sequential heuristic in 1 hour
(3600 sec). The runtime for the parallel heuristics is
also 1 hour. With the increase in the number of proces-
sors, the parallel heuristics generally take lesser time
to reach the target cost. The time taken by the parallel
heuristic to achieve the target cost is recorded for dif-
ferent number of processors. The h100N280a topol-
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PTS-Star
Cost vs No. of Processors (Demand11)

16
RN . . o |—e—h100N280a
5 10 - —=&— w 100N476a
S s —a— r100N403a
i — o——9 —e— r100N503a
2
0

1P 2P 3P 4P 5P 6P

No. of Processors

Figure 4: Cost vs. # of Processors Using PTS-Star for
DI11.

ogy shows an almost linear speedup with the increase
in the number of processors. Other topologies show
faster convergence with the increase in the number of
processors when compared to the sequential heuristic,
but the speedup is not linear. It was observed that the
average time consumed in synchronization and mes-
sage passing between processors was about 25% of
the total time. Hence, the communication overhead
could be one of the reasons for not achieving faster
speedups. However, further investigation is required
to make a conclusive statement about the same.

PTS-Star
Time vs No. of Processors (Demand12)

4000 4

3500 —
3000 -\.\.\.: —e—h100N280a
2 2500
i) b, . —=— w100N476a
v 2000 : —a—r100N403
E15004 — o ., r a
F 1000 —e—r100N503

500

0
2P 3P 4p 5p 6P

No. of Processors

Figure 5: Time vs. # of Processors Using PTS-Star
for D12.

4.2 PTS-Ring

Cost comparison for the above mentioned four topolo-
gies is shown here for the PTS-Ring strategy. The
results for Demand-12 and Demand-11 are shown in
Figure 7 and Figure 8 respectively. It can be seen
that, with the increase in the number of processors,
the cost improves considerably for the two test cases
r100N403a, r100N503a. The PTS-Ring strategy also
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PTS-Star
Time vs No. of Processors (Demand11)

3500 -

3000 42—
< 2500 B\‘% —e—h100N280a
& 2000 — —=—W100N476a
2 1500 —a—r100N403a
F 1000 -t - —— |—e—rl00NS03

500

0

2P 3P 4P 5P 6P

No. of Processors

Figure 6: Time vs. # of Processors Using PTS-Star
for D11.

could not achieve a linear speedup with the increase
in the number of processors, but was again able to
achieve costs which are about three times better than
the sequential heuristics.

PTS-Ring
Cost vs No. of Processors (Demand12)

60 -

50 A
" —e—h100N280a
5 —=— W100N476a
o 30 .-
o o Nt‘:_‘ —a—r100N403a
—e— r100N503a

10

1P 4P 5P 6P

No. of Processors

Figure 7: Cost vs. # of Processors Using PTS-Ring
for D12.

4.3 PTS-Star Versus PTS-Ring

Results for the Fortz cost function show that the costs
achieved by PTS-Ring are slightly better than PTS-
Star for all the test cases and demands. This improve-
ment is expected and can be attributed to the diversi-
fication feature of the Ring approach. The slave pro-
cessors, in PTS-Ring, start from slightly different so-
lutions after every solution exchange; thereby cover-
ing a wider search space and achieving better solu-
tions when compared to the ring approach. The cost
curves for the FortzCF are shown in Figure 9 and 10
for Demand-12 and Demand-11 respectively.

Figure 11 and 12 shows the cost curves for
Demand-12 and Demand-11 respectively using the
new cost function (NewCF). The PTS-Ring Strategy,
with a better diversification mechanism, again pro-
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PTS-Ring
Cost vs No. of Processors (Demand11)

20 -

15 4 \ —e— h100N280a

*g 10 T~ M —=— w100N476a
3 \\‘\‘ —a—r100N403a
5 H —e—r100N503a

1P 4P 5P 6P

No. of Processors

Figure 8: Cost vs. # of Processors Using PTS-Ring
for D11.

Cost Comparison - Star vs Ring
Demand-12
60 -
o 50 N
O —o—r100N403a-Ring
N 40
5 20 \\T\. —%— rL00N403a-Star
L ) — —o—r100N503a-Ring
3 20 - ooo—X
8 —%—r100N503a-Star
10
0
1P 4p 5P 6P
No. of Processors

Figure 9: Cost Results of PTS For FortzCF for D12.

Cost Comparison - Star vs Ring
Demand-11

—o—r100N403a-Ring
—x—r100N403a-Star
—o—r100N503a-Ring
—x— r100N503a-Star

Cost (FortzCF)
=
o

1P 4p 5P 6P

No. of Processors

Figure 10: Cost Results of PTS For FortzCF for D11.
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duced better results than the PTS-Star Strategy for the
NewCF which can be seen from these results.

Cost Comparison - Star vs Ring
Demand-12

20

15

—x— r100N403a-Star-NC
—e—r100N403a-Ring-NC
—x— r100N503a-Star-NC
—e—r100N503a-Ring-NC

10

Cost ( NewCF )
o

1P ap 5P 6P

No. of Processors

Figure 11: Cost Results of PTS For NewCF for D12.

Cost Comparison - Star vs Ring
Demand-11
6 .
~5
('-'5 4] —x— r100N403a-Star-NC
3 3 —o—r100N403a-Ring-NC
23]
= ,\% —%— rL00N503a-Star-NC
3 —o— r100N503a-Ring-NC
O
0 : : :
1P 4p 5P 6P
No. of Processors

Figure 12: Cost Results of PTS For NewCF for D11.

The comparisons of other performance metrics
for both cost functions are shown in the following sub-
sections.

4.4 Number of Congested Links

The comparison of the Number of Congested Links
(NOCL) for both cost functions for the topology
r100N403a is shown in Figure 13. It can be ob-
served that for FortzCF, there is no improvement of
the NOCL with the increase in the number of proces-
sors. We have seen in previous results that there is
a significant improvement in cost with the number of
processors. Hence, we can conclude that the improve-
ment in cost is due to reducing the extra load on the
network at the expense of the number of congested
links. FortzCF attempts to load balance the conges-
tion on the network among all links by reducing the
load from the more congested links and placing it on
the lesser congested links. However, for the NewCEF,
there is a minimization in the NOCL. Similar results
are displayed in Figure 14 for Demand-11. Among
the two strategies, the PTS-Ring minimizes the NOCL

ISSN: 1109-2742

317

Sadiqg M. Sait, Mohammed H. Sqalli, Syed Asadullah

better than the PTS-Star for the same cost function, as
it also minimizes the overall cost better for both cost
functions. The best results for the NOCL were ob-
tained when optimizing weights using the NewCF and
the Ring Topology.

Number of Congested Links (r100N403a)
Demand-12
£ 120+
f=
3 100
5 55— O —x— Star-FC
2 80 !
é 0 — ——Ring-FC
c % —5 —x— Star-NC
8 40 |
et —e—Ring-NC
o 20
S o0 : : :
1P 4P 5P 6P
No. of Processors

Figure 13: NOCL Results of PTS Using Both CFs for
D12.

Number of Congested Links (r100N403a)
Demand-11
0 70 4
X
£ 60 B
B 50 - —x— Star-FC
2
g 40 W —e—Ring-FC
2 30 —_—— —— —x—Star-NC
8 20 —e—Ring-NC
© 10
o
zZ 0 T T T
1P 4p 5P 6P
No. of Processors

Figure 14: NOCL Results of PTS Using Both CFs for
D11.

4.5 Percentage of Extra Load

We now discuss the results for the Percentage of extra
load (PXLoad). In the case of Demand-12 as shown
in Figure 15, and Demand-11 as shown in Figure 16
the values of PXLoad are better for FortzCF when op-
timized using the PTS-Ring strategy compared to the
NewCF; and PTS-Ring performs better than PTS-Star.
Hence, it can be said that when weights are optimized
using the FortzCF, the links which are over-utilized
are not highly congested; while with the NewCF, a
lesser number of links are congested but each indi-
vidual congested link has a higher load. However,
from the results of NOCL and PXLoad, it is important
here to note that when weights are optimized using
the NewCF and the Ring topology, it is found to pro-
duce comparable values of PXLoad and at the same
time give better results for the Number of congested
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Links. Similar results for NOCL and PXILoad were
also achieved for the r100N503a topology.

Percentage of Extra Load (r100N403a)

Demand-12
10 -

s .//’:\\)\‘x
\.\ —° —x— Star-FC
8 6 —% —e—Ring-FC
S 4 —x— Star-NC
2 —e—Ring-NC

0
1P 4p 5P 6P

No. of Processors

Figure 15: PXLoad Results of PTS Using Both CFs
for D12.

Percentage of Extra Load (r100N403a)
Demand-11

6 -

5 e
o 4 ’\ +STar-FC
< —o—Ring-FC
2 3
x —x— Star-NC
o 24

—o—Ring-NC
1
0
1P 4P 5P 6P
No. of Processors

Figure 16: PXLoad Results of PTS Using Both CFs
for D11.

4.6 Maximum Utilization

The results for the Maximum Utilization (MU) are
shown in Figure 17 and Figure 18. From this figure, it
can be seen that the Maximum Utilization in the case
of FortzCF is better than that of the NewCF.

From the above results it was observed that the
PTS-Ring strategy produced better results for both
cost functions and the NewCF produced very good re-
sults for minimizing the Number of congested links.
The percentage of extra load was found to be best
(Minimum) using the FortzCF and the Ring topology.
However, in many cases, the NewCF also produced
values close to the FortzCF. For both topologies, a sig-
nificant improvement in the performance metrics was
observed using parallelization.

As the size of any combinatorial optimization
problem increases, not only its search space increases
exponentially but also it becomes more complex as the
fraction of solutions that are close to the optimal one
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Figure 18: MU Results of PTS Using Both CFs for
D11.

becomes smaller. Sequential heuristics often fail to
explore this small fraction from the huge search space.
Having seen the results of sequential heuristics, PTS-
Star, and PTS-Ring in terms of speedup and final cost,
it is evident that, as the size and routing complexity of
the network increases, there is a significant improve-
ment in the solution quality with parallelized heuris-
tics.

5 Conclusion

Two different Parallel Tabu Search iterative heuristics
were implemented on several networks using two cost
functions. Results for four performance metrics are
reported for FortzCF and NewCF. Both PTS heuris-
tics produced the desired results in the case of large
topologies in terms of cost. The PTS-Ring strategy
which was designed to induce diversification into the
search was found to achieve better cost than any other
approach including the PTS-Star for the same run
time. However, linear speedup could not be achieved
in any strategy. Both the strategies produced better re-
sults for smaller topologies also, but did not provide
a significant improvement in cost as achieved for the
larger topologies. Hence, it can be concluded that if
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the problem size is large, parallel Tabu Search or any
other parallel algorithm can be efficiently applied to
the OSPFWS problem to achieve a solution quality
which can not be achieved by using sequential algo-
rithms within the same or comparable time frame.
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