
Parallel Strategies for Stochastic Evolution

Sadiq M. Sait, Khawar S. Khan, Mustafa I. Ali
(Computer Engineering Department

King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
{sadiq,khawar,miali}@kfupm.edu.sa)

Abstract: This paper discusses the parallelization of Stochastic Evolution (StocE)
metaheuristic, for a distributed parallel environment. VLSI cell placement is used as
an optimization problem. A comprehensive set of parallelization approaches are tested
and an effective strategy is identified in terms of two underlying factors: workload divi-
sion and the effect of parallelization on metaheuristic’s search intelligence. The strate-
gies are compared with parallelization of another similar evolutionary metaheuristic
called Simulated Evolution (SimE). The role of the two mentioned underlying factors
is discussed in parallelization of StocE.

Key Words: Parallel metaheuristics, combinatorial optimization, Stochastic Evolu-
tion, Simulated Evolution, VLSI cell placement, Cluster computing

Category: F.1.2, I.2.8, I.2.11

1 Introduction

Evolutionary metaheuristics are being increasingly applied to a variety of combi-
natorial optimization problems, especially with vast multi-modal search spaces,
which cannot be efficiently navigated by deterministic algorithms. Stochastic
Evolution (StocE) [Saab and Rao 1991] and Simulated Evolution (SimE)
[Kling and Banerjee 1989] are evolutionary iterative search algorithms, similar
to other well known iterative non-deterministic heuristics such as Simulated An-
nealing (SA), Genetic Algorithms (GA) and Tabu Search (TS)
[Sait and Youssef 1999]. The two algorithms are inspired by the alleged behavior
of biological processes, however, they differ fundamentally in how the principles
of evolution are applied. Both algorithms have demonstrated improvements in
runtime and solution quality over the more established heuristics when applied
to the same problem instance [Sait et al. 2001].

Parallelization of metaheuristics aims to solve complex problems and traverse
larger search spaces in a reasonable amount of time [Crainic and Toulouse 2003,
Alba 2005]. However, when parallelizing metaheuristics, not only speed-ups are
important but also the maximum achievable qualities. Therefore, to achieve any
benefit from parallelization requires not only a proper partitioning of the prob-
lem for a uniform distribution of computationally intensive tasks, but more im-
portantly, a thorough and intelligent traversal of a complex search space for
achieving good quality solutions. The tractability of the former issue is largely
dependent on parallelization of both the cost computation and perturbation

Journal of Universal Computer Science, vol. 14, no. 15 (2008), 2471-2490
submitted: 18/2/08, accepted: 30/6/08, appeared: 1/8/08 © J.UCS

functions. For the latter issue, the interaction of parallelization strategy with
the intelligence of the heuristic must be considered, as it directly affects the
final solution quality, and indirectly the runtime due to its effect on algorithm’s
convergence. Parallelization of metaheuristics is an actively researched topic
[Crainic and Toulouse 2003, Alba 2005]. However, unlike other heuristics, par-
allelization of StocE has not been studied before. In this work, parallel algo-
rithms for StocE are presented, considering a spectrum of parallel strategies
[Crainic and Toulouse 2003]. The approaches are also compared with parallel
SimE [Sait et al. 2007] due to the similarities between the two heuristics to eval-
uate the effectiveness of StocE parallelization. VLSI cell placement is used as an
optimization problem and the goal is to achieve scalable speed-ups using a low-
cost cluster computing environment. The best parallel strategies for both SimE
and StocE are compared with respect to the effectiveness of parallelization in
terms of workload division and the effect of parallelization on metaheuristic’s
intelligence.

This paper is organized as follows: Section 2 briefly discusses the optimization
problem and costs functions. This is followed by a description of StocE and
SimE algorithms in Section 3 and the sequential algorithms’ runtime analyses
in Section 4. Section 5 presents the related work, proposed parallel strategies,
experimental results and comparison. Section 6 concludes the paper.

2 Optimization Problem and Cost Functions

In this section, the optimization problem is formulated along with the cost func-
tions and constraint used in the optimization process.

2.1 Problem Formulation

This work addresses the problem of VLSI standard cell placement with the
objectives of optimizing power consumption, timing performance (delay), and
wirelength while considering layout width as a constraint. Semi-formally, the
problem can be stated as follows:

A set of cells or modules M = {m1,m2, ...,mn} and a set of signals S =
{s1, s2, ..., sk} is given. Moreover, a set of signals Smi

, where Smi
⊆ S, is as-

sociated with each module mi ∈ M . Similarly, a set of modules Msj
, where

Msj
= {mi|sj ∈ Smi

} is called a signal net, is associated with each signal sj ∈ S.
Also, a set of locations L = {L1, L2, ..., Lp}, where p ≥ n is given. The problem
is to assign each mi ∈ M to a unique location Lj, such that all of the considered
objectives are optimized subject to the constraints [Sait and Youssef 2001].

Following is the description of the cost functions modeling used for estimating
the values of three objectives and the constraint as stated above.

2472 Sait S.M., Khan K.S., Ali M.I.: Parallel Strategies ...

2.2 Wirelength Cost:

A Steiner tree approximation, which is fast and fairly accurate in estimating
the wire length is adopted [Sait et al. 1999]. To estimate the length of net using
this method, a bounding box, which is the smallest rectangle bounding the net,
is found for each net. The average vertical distance Y and horizontal distance
X of all cells in the net are computed from the origin which is the lower left
corner of the bounding box of the net. A central point (X,Y) is determined
at the computed average distances. If X is greater than Y then the vertical
line crossing the central point is considered as the bisecting line. Otherwise, the
horizontal line is considered as the bisecting line. Steiner tree approximation of
a net is the length of the bisecting line added to the summation of perpendicular
distances to it from all cells belonging to the net. Steiner tree approximation is
computed for each net and the summation of all Steiner trees is considered as
the interconnection length of the proposed solution.

X =
∑n

i=1 xi

n
Y =

∑n
i=1 yi

n
(1)

where n is the number of cells contributing to the current net.

Steiner Tree = B +
k∑

j=1

Pj (2)

where B is the length of the bisecting line, k is the number of cells contributing
to the net and Pj is the perpendicular distance from cell j to the bisecting line.

Interconnection Length =
m∑

l=1

Steiner Treel (3)

where m is the number of nets.

2.3 Power Cost:

In VLSI circuits with well designed logic gates, the dynamic power consumption
contributes the 90% to the total power consumption [Devadas and Malik 1995,
Chandrakasan et al. 1992]. Minimizing the dynamic power consumption is among
the objectives as mentioned before. Power consumption pi of a net i in a circuit
can be given as:

pi � 1
2
· Ci · V 2

DD · f · Si · β (4)

where Ci is total capacitance of net i, VDD is the supply voltage, f is the clock
frequency, Si is the switching probability of net i, and β is a technology depen-
dent constant.

2473Sait S.M., Khan K.S., Ali M.I.: Parallel Strategies ...

Assuming a fix supply voltage and clock frequency, then power dissipation of
a cell depends on its capacitance and its switching probability. Hence, the above
equation reduces to the following:

pi � Ci · Si (5)

The capacitance Ci of cell i is given as:

Ci = Cr
i +

∑
j∈Mi

Cg
j (6)

where Cg
j is the input capacitance of gate j and Cr

i is the interconnect capaci-
tance at the output node of cell i.

At the placement phase, only the interconnect capacitance Cr
i can be ma-

nipulated while Cg
j comes from the properties of the cell from the library used

and is thus independent of placement. Moreover, Cr
i depends on wirelength of

net i, so Equation 5 can be written as:

pi � li · Si (7)

The cost function for estimate of total power consumption in the circuit can
be given as:

Costpower =
∑
i∈M

pi =
∑
i∈M

(li · Si) (8)

2.4 Delay Cost:

A digital circuit comprises a collection of paths. A path is a sequence of nets and
blocks from a source to a sink. A source can be an input pad or a memory cell
output, and a sink can be an output pad or a memory cell input. The longest
path (critical path) is the dominant factor in deciding the clock frequency of the
circuit. A critical path makes a problem in the design if it has a delay that is
larger than the largest allowed delay (period) according to the clock frequency.
Thus, this cost is determined by the delay along the longest path in a circuit.
The delay Tπ of a path π consisting of nets {v1, v2, ..., vk}, is expressed as:

Tπ =
k−1∑
i=1

(CDi + IDi) (9)

where CDi is the switching delay of the cell driving net vi and IDi is the
interconnect delay of net vi. The overall circuit delay is equal to Tπc

, where
πc is the longest path in the layout (most critical path). The placement phase
affects IDi because CDi is technology dependent parameter and is independent
of placement. Using the RC delay model, IDi is given as:

IDi = (LFi + Rr
i) × Ci (10)

2474 Sait S.M., Khan K.S., Ali M.I.: Parallel Strategies ...

where LFi is load factor of the driving block, that is independent of layout, Rr
i

is the interconnect resistance of net vi and Ci is the load capacitance of cell i

given in Equation 6 .
The delay cost function can be written as:

Costdelay = max{Tπ} (11)

2.5 Width Cost:

Width cost is given by the maximum of all the row widths in the layout. The
layout width is constrained not to exceed a certain positive ratio α to the average
row width wavg, where wavg is the minimum possible layout width obtained by
dividing the total width of all the cells in the layout by the number of rows in
the layout. Formally, width constraint can be expressed as below:

Width − wavg ≤ α × wavg (12)

2.6 Overall Fuzzy Cost Function:

Since three objectives are being optimized simultaneously, there should be a
cost function that represents the effect of all three objectives in form of a single
quantity. In this work, the use of fuzzy logic is proposed to integrate these
multiple, possibly conflicting objectives into a scalar cost function. Fuzzy logic
allows us to describe the objectives in terms of linguistic variables. Then, fuzzy
rules are used to find the overall cost of a placement solution. The following
fuzzy rule has been used:

IF a solution has SMALL wirelength AND LOW power consumption AND
SHORT delay THEN it is an GOOD solution.

1.0
C i/O i

1.0

g i
* g i

i
cμ

Figure 1: Membership functions

The above rule is translated to and-like OWA fuzzy operator [Yager 1988]
and the membership μ(x) of a solution x in fuzzy set GOOD solution is given
as:

2475Sait S.M., Khan K.S., Ali M.I.: Parallel Strategies ...

μ(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

β · min
j=p,d,l

{μj(x)} + (1 − β) · 1
3

∑
j=p,d,l

μj(x);

if Width − wavg ≤ α · wavg,

0; otherwise.

(13)

Here μj(x) for j = p, d, l, width are the membership values in the fuzzy sets
LOW power consumption, SHORT delay, and SMALL wirelength respectively. β

is the constant in the range [0, 1]. The solution that results in maximum value
of μ(x) is reported as the best solution found by the search heuristic.

The membership functions for fuzzy sets LOW power consumption, SHORT
delay, and SMALL wirelength are shown in Figure 1. The preference of an ob-
jective j in overall membership function can be varied by changing the value
of gj . The lower bounds Oj for different objectives are computed as given in
Equations 14-17:

Ol =
n∑

i=1

l∗i ∀vi ∈ {v1, v2, ..., vn} (14)

Op =
n∑

i=1

Sil
∗
i ∀vi ∈ {v1, v2, ..., vn} (15)

Od =
k∑

j=1

CDj + ID∗
j ∀vj ∈ {v1, v2, ..., vk} in path πc (16)

Owidth =
∑n

i=1 Widthi

of rows in layout
(17)

where Oj for j ∈ {l, p, d, width} are the optimal costs for wire-length, power,
delay and layout width respectively, n is the number of nets in layout, l∗i is the
optimal wire-length of net vi, CDi is the switching delay of the cell i driving net
vi, IDi is the optimal interconnect delay of net vi calculated with the help of li,
Si is the switching probability of net vi, πc is the most critical path with respect
to optimal interconnect delays, k is the number of nets in πc and Widthi is the
width of the individual cell driving net vi.

3 Evolutionary Metaheuristics

3.1 Stochastic Evolution (StocE)

The StocE algorithm seeks to find a suitable location S(m) for each movable
element m ∈ M , which eventually leads to a lower cost of the whole state S ∈ Ω,
where Ω is the state space. A general outline of the StocE algorithm is given
in Figure 2 for a minimization problem. The inputs to the StocE algorithm are,

2476 Sait S.M., Khan K.S., Ali M.I.: Parallel Strategies ...

ALGORITHM Stochatic Evolution(S0, p0, R);
Begin

BestS= S = S0;
BestCost= CurCost= Cost(S);
p = p0;
ρ = 0;
Repeat

PrevCost= CurCost;
/* perform a search in the neighborhood of S */

S = PERTURB(S, p);
CurCost= Cost(S);

/* update p if needed */
UPDATE(p, PrevCost, CurCost);
If (CurCost< BestCost) Then

BestS=S;
BestCost= CurCost;

/* Reward the search with R more generations */
ρ = ρ − R;

Else
ρ = ρ + 1;

EndIf
Until ρ > R
Return (BestS);

End

Figure 2: The StocE algorithm.

an initial state (solution) S0, an initial value p0 of the control parameter p, and
a stopping criterion parameter R. Throughout the search, S holds the current
state (solution), while BestS holds the best state. If the algorithm generates
a worse state, a uniformly distributed random number in the range [−p, 0] is
drawn. The new uphill state is accepted if the magnitude of the loss is greater
than the random number, otherwise the current state is maintained. Therefore,
p is a function of the average magnitude of the uphill moves that the algorithm
will tolerate. The parameter R represents the expected number of iterations the
StocE algorithm needs until an improvement in the cost with respect to the best
solution seen so far takes place, that is, until CurCost≤BestCost. If R is too
small, the algorithm will not have enough time to improve the initial solution,
and if R is too large, the algorithm may waste too much time during the later
generations. Experimental studies indicate that a value of R between 10 and 20
gives good results [Saab and Rao 1991]. Finally, the variable ρ is a counter used
to decide when to stop the search. ρ is initialized to zero, and R − ρ is equal to
the number of remaining generations before the algorithm stops.

After initialization, the algorithm enters a Repeat loop Until the counter
ρ exceeds R. Inside the Repeat body, the cost of the current state is first cal-
culated and stored in PrevCost. Then, the PERTURB function (Figure 3)
is invoked to make a compound move from the current state S. PERTURB
scans the set of movable elements M according to some apriori ordering and
attempts to move every m ∈ M to a new location l ∈ L. For each trial move,

2477Sait S.M., Khan K.S., Ali M.I.: Parallel Strategies ...

a new state S′ is generated, which is a unique function S′ : M → L such that
S′(m) 	= S(m) for some movable object m ∈ M . To evaluate the move, the gain
function Gain(m) = Cost(S) − Cost(S′) is calculated. If the calculated gain is
greater than some randomly generated integer number in the range [−p, 0], the
move is accepted and S′ replaces S as the current state, assuming a minimization
problem. Since the random number is ≤ 0, moves with positive gains are always
accepted. After scanning all the movable elements m ∈ M , the MAKE STATE
routine makes sure that the final state satisfies the state constraints. If the state
constraints are not satisfied then MAKE STATE reverses the fewest number
of latest moves until the state constraints are satisfied. This procedure is required
when perturbation moves that violate the state constraints are accepted.

FUNCTION PERTURB(S, p);
Begin

ForEach (m ∈ M) Do
/* according to some apriori ordering */

S′ = MOV E(S, m);
Gain(m) = Cost(S) − Cost(S′);
If (Gain(m) > RANDINT (−p, 0)) Then

S = S′
EndIf

EndFor;
/* make sure S satisfies constraints */

S =MAKE STATE(S);
Return (S)

End

Figure 3: The StocE PERTURB function.

The new state generated by PERTURB is returned to the main proce-
dure as the current state, and its cost is assigned to the variable CurCost.
Then the routine UPDATE (Figure 4) is invoked to compare the previous cost
(PrevCost) to the current cost (CurCost). If PrevCost= CurCost, there is a
good chance that the algorithm has reached a local minimum and therefore, p

is increased by pincr to tolerate larger uphill moves, thus giving the search the
possibility of escaping from local minima. Otherwise, p is reset to its initial value
p0.

At the end of the loop, the cost of the current state S is compared with the
cost of the best state BestS. If S has a lower cost, then the algorithm keeps S

as the best solution (BestS) and decrements R by ρ, thereby rewarding itself
by increasing the number of iterations (allowing the search to live R generations
more). This allows a more detailed investigation of the neighborhood of the
newly found best solution. If S, however, has a higher cost, ρ is incremented,
which is an indication of no improvements.

2478 Sait S.M., Khan K.S., Ali M.I.: Parallel Strategies ...

PROCEDURE UPDATE(p, PrevCost, CurCost);
Begin

If (PrevCost=CurCost) Then
/* possibility of a local minimum */

p = p + pincr;
/* increment p to allow larger uphill moves */

Else
p = p0; /* re-initialize p */

EndIf;
End

Figure 4: The StocE UPDATE procedure.

ALGORITHM Simulated Evolution(B, Φinitial)
NOTATION
B: Bias Value. Φ: Complete solution.
mi: Module i. gi: Goodness of mi.
ALLOCATE(mi, Φi): Allocates mi in partial solution Φi

Begin
INITIALIZATION;
Repeat

EVALUATION: ForEach mi ∈ Φ DO evaluate gi;
SELECTION: ForEach mi ∈ Φ DO

IF Random > Min(gi + B, 1) THEN
S = S ∪ mi; Remove mi from Φ

Sort the elements of S
ALLOCATION: ForEach mi ∈ S DO ALLOCATE(mi, Φi)

Until Stopping Condition is satisfied
Return Best solution.

End

Figure 5: The SimE algorithm.

3.2 Simulated Evolution (SimE)

The structure of the SimE algorithm is shown in Figure 5. SimE assumes that
there exists a solution Φ of a set M of n (movable) elements or modules. The algo-
rithm starts from an initial assignment Φinitial, and then, following an evolution-
based approach, it seeks to reach better assignments from one generation to the
next by perturbing some ill-suited components while retaining the remaining
ones. A cost function Cost associates with each assignment of movable element
mi a cost Ci. The cost Ci is used to compute the goodness (fitness) gi of an el-
ement mi, for each mi ∈ M . The goodness measure must be strongly related to
the target objective of the given problem. Hence in SimE approach, the quality
of a solution can be measured as the quality of all its constituent elements.

The algorithm has one main loop consisting of three basic steps, Evaluation,
Selection, and Allocation. The three steps are executed in sequence until the so-
lution average goodness reaches a maximum value, or no noticeable improvement
to the solution fitness is observed after a number of iterations.

The Evaluation step consists of evaluating the goodness gi of each element

2479Sait S.M., Khan K.S., Ali M.I.: Parallel Strategies ...

mi of the solution Φ. The goodness measure must be a single number expressible
in the range [0, 1]. It is generally defined as gi = Oi

Ci
, where Oi is an estimate

of the optimal cost of element mi, and Ci is the actual cost of mi in its current
location. Since three objectives are being optimized, a fuzzy goodness measure
developed in [Sait et al. 2001] is used.

The second step of the SimE algorithm is Selection. Selection takes as input
the solution Φ together with the estimated goodness of each element, and a bias
value B to compensate for non-ideal nature of the calculated goodness values.
It partitions Φ into two disjoint sets; a selection set S and a partial solution
Φp of the remaining elements of the solution Φ. Each element in the solution is
considered separately from all other elements. The probability of assigning an
element mi to the set S is based on its goodness gi. The selection operator has a
non-deterministic nature, i.e, an individual with a high goodness (close to one)
still has a non-zero probability of being assigned to the selection set S. It is
this element of non-determinism that gives SimE the capability of escaping local
minima. In this work, a biasless selection function developed in [Sait et al. 2001]
has been used.

Allocation is the SimE operator that has the most important impact on the
quality of solution. Allocation takes as input the set S and the partial solution Φp

and generates a new complete solution Φ′ with the elements of set S mutated ac-
cording to an allocation function Allocation [Sait and Youssef 1999]. The goal of
Allocation is to favor improvements over the previous generation, without being
too greedy. A variety of heuristics can be used in this step
[Kling and Banerjee 1989]. In this work, the sorted individual best fit method
[Sait et al. 2001] has been used.

4 Sequential Algorithms’ Profiling

Prior to formulating parallelization strategies, the profiling of sequential algo-
rithms is presented to identify the time intensive routines and performance bot-
tlenecks, thus serving as a basis to engineer effective parallel approaches. The
profiling was done using the GNU ‘gprof’ utility. For sequential StocE, the per-
centage of time taken by problem-specific cost computations versus all remain-
ing functions is documented in columns 4 and 5 of Table 1. The profiling results
clearly demonstrate that more than 90% of time is spent in the cost function
calculations of wirelength, power and delay, thereby identifying where the com-
putational effort is concentrated. Note that these computations are part of StocE
PURTURB routine (Section 3.1). For the sequential SimE, on average 98.85%
of time is spent in the Allocation function.

2480 Sait S.M., Khan K.S., Ali M.I.: Parallel Strategies ...

Table 1: Sequential algorithms’ runtime profile.

StocE SimE
Circuit # of # of Cost Others Allocation Others

Cells Rows Functions Function
s1494 661 11 93.1% 6.8% 97.6% 2.3%
s3330 1961 17 92.9% 7.1% 99.3% 0.6%
s5378 2993 22 93.4% 6.6% 99.2% 0.7%
s9234 5844 22 92.9% 7.1% 99.3% 0.4%

5 Parallel Strategies and Experiments

The field of parallel metaheuristics has rapidly expanded in the past ten to fifteen
years and parallel versions of metaheuristics have been increasingly proposed.
Several excellent surveys, taxonomies and syntheses have also been published
[Crainic and Toulouse 2003, Alba 2005], which present a global view of the field
and generalize the various strategies used into broad classes. The various ap-
proaches can be classified into three comprehensive types according to the source
of parallelism [Crainic and Toulouse 2003]. These are:

1. Type I (Low-Level Parallelization): The limited functional or data paral-
lelism of a move evaluation is exploited or moves are evaluated in parallel.
This strategy, called low-level parallelism, aims to simply speed-up the se-
quential algorithm without changing the search space traversal path taken
by the algorithm.

2. Type II (Domain Decomposition): This approach obtains parallelism by par-
titioning the set of decision variables. The partitioning reduces the size of
solution space, but it needs to be repeated to allow the exploration of the
complete solution space. The traversal is different than the sequential algo-
rithm.

3. Type III (Parallel Searches): Parallelism is obtained from multiple concurrent
explorations of the solution space.

This work explores StocE parallelization considering the complete spectrum
of parallelization types discussed here. The effectiveness of a parallel strategy is
analyzed in terms of workload division and its effect on metaheuristic’s intelli-
gence.

Following is the description of the parallel strategies and their experimental
results. All parallel programs were written in C using the MPI library
(MPICH 1.2.5). A dedicated cluster of 2.8 GHz Pentium 4 machines, with 512MB
of RAM, connected with 100 Mbps Ethernet, running Fedora Core Linux was

2481Sait S.M., Khan K.S., Ali M.I.: Parallel Strategies ...

used. Only the large ISCAS-89 benchmarks circuits are used to be able to ob-
serve gain from parallelization. In all the results tables, runtimes are in seconds
and the solution qualities, denoted by μ(s), is the fuzzy cost measure (Section
2).

5.1 Low-Level Parallelization

Given the StocE profiling results, parallelizing cost functions to achieve work
load division may seem intuitive. However, with fine grained dependencies in cost
computation/perturbation functions coupled with a high node-to-node commu-
nication cost, this strategy is not well suited to the given parallel environment.
This was confirmed by the results obtained when this strategy was applied to
parallelize SimE for the same problem [Sait et al. 2007].

5.2 Parallel Searches

In cooperative parallel searches approach, parallel threads each running a com-
plete StocE/SimE process cooperate with each other (by exchanging good solu-
tions) to quickly converge. This strategy exploits the capability of multiple, con-
current threads to cooperatively navigate the search space. Parallel search aims
to achieve speed-up by enhancing the search behavior rather than workload divi-
sion. This type of parallelization has reportedly worked well with Asynchronous
Multiple Markov Chains (AMMC) SA [Sait et al. 2006].

A similar approach is adopted in this work for StocE, utilizing the advantages
of AMMC in terms of relaxing the synchronization requirements among individ-
ual processors. Since StocE is strictly sequential in nature, the asynchronous
feature of AMMC reduces the inter-processor communication cost, and can be
intuitively considered to perform well. Moreover, StocE follows a search path
based on randomization, which determines the acceptance/rejection of moves.
Hence, each of these paths can be viewed as as a separate Markov chain explor-
ing a different region of the solution space (by using different random seeds).
Moreover, the search process is biased by propagating the best solution among
all processors. Thus, whenever any processor reaches a solution better than the
others, it is communicated to all participating nodes, thus intensifying explo-
ration around that region of search space. This AMMC approach uses a master-
slave topology, the details of which are shown in Figure 6 and Figure 7. The slave
processor upon reaching a better solution sends the cost metric to the master
node. The master compares this received metric with the current best it has. If
found better, the slave is instructed to send the entire solution; else, the master
sends the better solution it has to the slave.

Table 2 shows the performance of the AMMC approach. It can be seen that
the parallel algorithm achieves no gain beyond using 2 processors. The reason for

2482 Sait S.M., Khan K.S., Ali M.I.: Parallel Strategies ...

ALGORITHM TypeIII Parallel StocE Master Process
Begin

Read User Input Parameters;
Read Input Files;
Construct Initial P lacement;

/* Only master has the initial Solution */
CurS = S0 ;
BestS = CurS ;
CurCost = Cost(CurS);
BestCost = Cost(BestS);
Broadcast(CurS);
Repeat

Receive frm Slave(BestCost);
Send to Slave(verdict);
If (verdict == 1)

Receive frm Slave(BestS);
Else

Send to Slave(BestS);
EndIf

Until All slaves are done
Return(BestS);

End (*Master Process*)

Figure 6: Master Process for Parallel AMMC StocE Algorithm.

ALGORITHM TypeIII Parallel StocE Slave Process
Begin

Read User Input Parameters;
Read Input Files;
Receive Initial Sol(CurS);
CurS = S0;
BestS = CurS ;
CurCost = Cost(CurS);
BestCost = Cost(BestS);
Repeat

S = PERTURB(S, p);
/* Perform a search in the neighborhood of S */
CurCost= Cost(S);
UPDATE(p, PrevCost, CurCost); /* update p if needed */
If (CurCost< BestCost) Then

BestS=S;
BestCost= CurCost;

/* Reward the search with R more generations */
ρ = ρ − R;

Else
ρ = ρ + 1;

EndIf
Send to Master(BestCost);
Receive frm Master(verdict);
If (verdict == 1)

Send to Master(BestS);
Else

Receive frm Master(BestS);
EndIf

Until ρ > R
Return (BestS);

End

Figure 7: Slave Process for Parallel AMMC StocE Algorithm.

2483Sait S.M., Khan K.S., Ali M.I.: Parallel Strategies ...

this limited performance is that each StocE thread performs a compound move
that optimizes the solution to a large extent without any cooperation. Further-
more, the self-rewarding criteria of StocE, triggered on finding good solutions,
relaxes the termination criteria (Section 3.1). Due to this, each processor keeps
attempting to further improve the solution by itself without cooperation from
other processors. The net effect is no noticeable benefit from cooperative parallel
searches. It should be noted that similarly poor results were obtained for SimE
with this strategy [Sait et al. 2007].

Table 2: Results for Parallel AMMC StocE.
Circuit Number µ(s) Time for Time for Parallel StocE
Name of Cells StocE Sequential StocE p=2 p=3 p=4 p=5
s1494 661 0.6 94 32.78 32.72 32.73 32.79
s3330 1961 0.6 186 96.92 95.87 89.07 92.66
s5378 2993 0.6 479.93 268.98 270.78 265.89 270.59
s9234 5844 0.6 1143 799.36 802.63 800.83 799.42

5.3 Domain Decomposition

Domain decomposition parallelization divides the solution into independent do-
mains, each to be operated in parallel [Crainic and Toulouse 2003]. This strategy
seems attractive as it distributes the total cost calculations among the proces-
sors. It attempts reduction in workload by assigning a non-overlapping subset
of rows to each processor and thus it is termed as rows division strategy. In this
approach, every node is responsible for perturbing cells only within its assigned
subset of rows in the overall solution. Two different row allocation patterns are
alternated between the successive iterations. This ensures that a cell has the
freedom to move to any place in the solution. Figure 8 shows the allocation pat-
tern of twelve rows among three processors. The left and right patterns show
the distributions in odd and even numbered iterations, respectively.

Figures 9 and 10 show the parallel StocE algorithms for the master and slave
processes, respectively, for the rows division approach. Each processor starts
with the same initial solution and calls the PERTURB function on its allocated
subset of non-overlapping rows. The placement generated by a node is termed as
a partial solution. These are sent to the master, which combines all the partial
placements to generate a new complete solution. The master then evaluates this
new solution and depending on the new cost, either increments ρ or decrements
it by R. This new solution is then again broadcasted to all the slaves. This
process continues till the target fitness value is achieved or termination criteria

2484 Sait S.M., Khan K.S., Ali M.I.: Parallel Strategies ...

Figure 8: Rows distribution in even and odd numbered iterations.

is met. It should be noted that the search behavior of the parallel algorithm will
differ from the serial algorithm owing to this partitioning.

ALGORITHM TypeII Parallel StocE Master Process
Begin

Read User Input Parameters;
Read Input Files;
Construct Initial P lacement;
Repeat

/* Broadcast current placement */
ParFor

Slave Process(S, p);
EndParFor
/* For each slave process */
ParFor

Receive Partial Solutions;
EndParFor
S = Make Complete Solution;
CurCost= Cost(S);
/* Update p if needed */
UPDATE(p, PrevCost, CurCost);
If (CurCost< BestCost) Then

BestS=S;
BestCost= CurCost;

/* Reward the search with R more generations */
ρ = ρ − R;

Else
ρ = ρ + 1;

EndIf
Until ρ > R
Return (Best Solution)

End. (*Master Process*)

Figure 9: Outline of master process for rows division parallel StocE.

Similar to the parallel StocE, for domain decomposition parallel SimE, the
elements are partitioned row wise among the m processors. A processor s, 1 ≤
s ≤ m would be assigned a subset Φs of the solution Φ. Then, each processor s

will evaluate the goodness of each element in Φs and run the Selection step to
partition Φs into a selection subset Ss and a partial solution of remaining cells

2485Sait S.M., Khan K.S., Ali M.I.: Parallel Strategies ...

Φp
s (See the serial algorithm in Figure 5 for comparison).

ALGORITHM TypeII Parallel StocE Slave Process(S, p)
Begin

Receive P lacement;
/* perform a search in the restricted neighborhood of S */
S = PERTURB(S, p);
Send Partial Solution(S);

End. (*Slave Pocess*)

Figure 10: Outline of slave process for rows division parallel StocE.

The results of rows division strategy for StocE and SimE are given in Table 3
and Table 4, respectively. Up to 5 processors are used as no significant gains are
observed beyond this number due to the size of benchmarks. The μ(s) values
represent the highest solution quality achieved by sequential algorithm. The
results shown are the average of 10 runs per set of processors. For circuits s3330,
s5378 and s9234 the maximum standard deviation was 25 seconds. Due to the
relatively small size of benchmark circuit s1494, no gains are observed beyond 2
processors. Also the standard deviations for this circuit were high.

In case of parallel SimE, since there is a degradation in the highest μ(s)
values achieved with increase in processors, the highest μ(s) achieved and the
corresponding time is given for different processor counts in Table 4. Also, the
row labeled ’Common’ gives the time to achieve the common lowest quality.
As can be seen, for parallel StocE the domain decomposition approach delivers
significant runtime reductions while achieving the target sequential qualities,
especially for larger circuits. On the other hand, a domain decomposition parallel
SimE implementation achieves lower than highest achievable sequential solution
qualities along with a degradation in maximum solution qualities with increase
in processors.

Table 3: Results of rows division parallel StocE.

Circuit µ(s) Serial Runtimes for parallel StocE
Name Time p=2 p=3 p=4 p=5
s1494 0.6 60 49 55 112 -
s3330 0.7 1087 355 214 190 186
s5378 0.65 1047 495 365 311 305
s9234 0.65 2140 1261 917 704 616

Figure 11 depicts a comparison between parallel StocE and SimE implemen-

2486 Sait S.M., Khan K.S., Ali M.I.: Parallel Strategies ...

Table 4: Results of rows division parallel SimE.

Circuit Sequential Runtimes for parallel SimE
p=2 p=3 p=4 p=5

s1494 µ(s) 0.54 0.54 0.54 0.54 0.54
Time 368 111 52 62 179

Common 368 111 52 62 179
s3330 µ(s) 0.7 0.68 0.68 0.63 0.54

Time 23695 30342 20533 13194 6644
Common 1900 5632 3776 10634 6644

s5378 µ(s) 0.7 0.67 0.64 0.62 0.6
Time 44701 76650 43803 20253 18493

Common 2750 4691 5573 9846 18493
s9234 µ(s) 0.67 0.61 0.61 0.59 0.55

Time 125311 152424 71751 61864 39250
Common 5774 19498 13000 14000 39250

tations using the s9234 ISCAS-89 benchmark. s9234 was the largest common
benchmark among the two algorithms and was thus selected for comparison. As
can be observed in Table 3, sequential StocE achieves much higher fitness values
when compared to sequential SimE. This is due to the difference in stochastic
natures and evolutionary search approaches employed by the two algorithms. It
is important to mention here that, for comparison, restricting StocE to target
low fitness values, as achieved by SimE, resulted in poor speed-up trends by
StocE. This is due to the fact that parallel StocE employing just 2 processors
achieved the attempted low fitness values quite early in its search process while
exploiting the minimum advantage of parallelization. Therefore, increasing the
number of processors did not result in any further time reduction.

Thus, the focus is on the speed-ups for the fitness values achieved by both
the algorithms when they are close to the steady state and the variance in results
is minimal. This comparison highlights the two important points. It shows that
StocE achieves better solution qualities than SimE as well as it achieves these
high qualities in runtimes quite lower than what SimE requires for achieving low
quality solutions.

The speed-up is defined as follows [Akl 1997]: Let t1 denote the worst case
running time of the fastest known sequential algorithm for the problem, and
let tp denote the the worst case running time of the parallel algorithm using
p processors. Then, the speedup provided by the parallel algorithm is given
by S(1, p) = t1

tp
. The speedups have been calculated using the best sequential

time available, which is that of sequential StocE. As can be seen in Figure 11,
StocE rows division outperforms the SimE rows division by achieving the target
solution quality of 0.65 in 616 seconds with 5 processors, while SimE achieves a
far lesser quality of 0.55 in 39250 seconds with the same number of processors.

2487Sait S.M., Khan K.S., Ali M.I.: Parallel Strategies ...

1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Number of Processors

T
im

e
(s

ec
)

Time Reduction Trend (s9234)

StocE (Fixed Row−Division, 0.65)
SimE (Fixed Row−Division, 0.55)

1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

Number of Processors

S
pe

ed
up

Speedup Trend (s9234)

StocE (Fixed Row−Division, 0.65)
SimE (Fixed Row−Division, 0.55)

Figure 11: StocE Vs SimE. The left and right figures show the average run-times
trend and average speedup, respectively.

The results obtained with parallel StocE and SimE using domain decompo-
sition strategy can be analyzed from the aspects of algorithm’s intelligence and
workload division. A parallel strategy may effect the metaheuristic’s ‘decision
variables’, as in case of domain decomposition, and this change can either con-
strain the search or enhance it. In this respect, if a parallel strategy constrains
or at best maintains the sequential algorithm’s search behavior, the only way to
achieve any speed-up is through effective workload division. In case of strate-
gies that enhance the search behavior, speed-ups are possible without workload
division, while workload division can lead to further speed-ups in this case.

In case of domain decomposition based parallel StocE and SimE, there is a
significant workload division by dividing the solution among multiple processors
because of the parallelization of the perturbation functions in both the cases.
However, the consequence of dividing the solution is that each processor only has
a limited freedom of cell movement, which reduces even further with increasing
number of processors on a given number of total rows. This affects the optimum
cell movement, making it more difficult for cells to reach their optimal locations
in the same number of iterations as the sequential algorithm. Also, some error in
optimum cell position determination is introduced as each processor considers
the cells outside its partition as not changing positions. Owing to the largely
stochastic nature of PERTURB operation in StocE, the solution distribution
does not negatively effect the algorithm’s intelligence. However, in case of SimE,

2488 Sait S.M., Khan K.S., Ali M.I.: Parallel Strategies ...

the Selection and Allocation of elements is more of a deterministic process rather
than stochastic as it is determined by the goodness values of each element. In
SimE, the parallelization of Selection and Allocation operators constrains the
algorithm’s intelligence, resulting in lower than sequential algorithm solution
qualities with parallelization and a degradation of qualities with increasing the
subdivisions (using more processors).

6 Conclusions

This paper discussed parallelization of Stochastic Evolution applied to VLSI cell
placement optimization problem. A comprehensive set of parallel strategies were
considered and these strategies were compared with parallel Simulated Evolu-
tion applied to the same optimization problem. It was found that a low-level
parallelization was not applicable because of the structure of optimization cost
functions. Also, a parallel search strategy was not found useful for StocE paral-
lelization because of nature of StocE heuristic. The best results were obtained
with a domain decomposition approach using rows division, and furthermore,
these results far exceeded the best results obtained using a similar parallel SimE
approach. The strategy was compared based on two underlying principles of
workload division and interaction of parallelization strategy with a heuristic’s
search intelligence, discussing why parallel StocE achieved an effective paral-
lelization compared to parallel SimE for the same optimization problem.

Acknowledgment

The authors would like to thank King Fahd University of Petroleum & Min-
erals, Dhahran, Saudi Arabia, for support under project code # COE/CELL
PLACE/263.

References

[Akl 1997] Akl, S. G. :“Parallel Computation: Models and Methods”; Prentice-Hall,
Inc., New Jersey (1997).

[Alba 2005] Alba, E.:“Parallel Metaheuristics: A New Class of Algorithms”; Wiley-
Interscience, (2005).

[Chandrakasan et al. 1992] A. Chandrakasan and T. Sheng and R. W. Brodersen
:“Low Power CMOS Digital Design”; Journal of Solid State Circuits,(1992)

[Crainic and Toulouse 2003] Crainic, T. G., Toulouse, M.:“Parallel Strategies for
Metaheuristics in Handbook of Metaheuristics”; Springer, (2003).

[Devadas and Malik 1995] Srinivas Devadas and Sharad Malik :“A Survey of Op-
timization Techniques Targeting Low Power VLSI Circuits”; 32nd ACM/IEEE
DAC,(1995)

[Kling and Banerjee 1989] Kling, R. M., Banerjee, P.: “ESP: Placement by Simulated
Evolution”; IEEE TCAD, 8, 3 (Mar 1989), 245-256.

2489Sait S.M., Khan K.S., Ali M.I.: Parallel Strategies ...

[Saab and Rao 1991] Saab, Y. G., Rao, V. B.: “Combinatorial Optimization by
Stochastic Evolution”; IEEE TCAD, 10, 4 (Apr 199l), 525-535.

[Sait and Youssef 1999] Sait, S. M., Youssef, H. :“Iterative Computer Algorithms with
Applications in Engineering: Solving Combinatorial Optimization Problems”; IEEE
Computer Society Press, California (1999).

[Sait and Youssef 2001] Sait, S. M. and Youssef, H. :“VLSI Physical Design Automa-
tion: Theory and Practice”; World Scientific Pubishers, (2001)

[Sait et al. 1999] Sadiq M. Sait and H. Youssef and Ali Hussain :“Fuzzy Simulated
Evolution Algorithm for Multiobjective Optimization of VLSI Placement”; IEEE
Congress on Evolutionary Computation,(1999), 91-97

[Sait et al. 2001] Sait, S. M., Youssef, H., Khan, J. A., El-Maleh, A.: “Fuzzified It-
erative Algorithms for Performance Driven Low Power VLSI Placement”; Proc.
ICCD’01, IEEE Comp. Society, Washington DC (2001), 484-487

[Sait et al. 2006] Sait, S. M., Zaidi, A. M., Ali, M. I. :“Asynchronous MMC Based
Parallel SA Schemes for Multiobjective Standard Cell Placement”; Proc. ISCAS’06,
IEEE (2006)

[Sait et al. 2007] Sait, S. M., Ali, M. I., Zaidi, A. M. :“Evaluating Parallel Simulated
Evolution Strategies for VLSI Cell Placement”; Springer JMMA, 6, 3 (Sept 2007),
433-454.

[Yager 1988] Yager, R. R.:“On Ordered Weighted Averaging Aggregation Operators
in Multicriteria Decisionmaking”; IEEE Transaction on Systems, MAN, and Cy-
bernetics, (1988), 183-190

2490 Sait S.M., Khan K.S., Ali M.I.: Parallel Strategies ...

