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educing the ‘time to market’ is
one of the greatest challenges
facing the electronics industry
today. This includes the time to
design, manufacture, and test new products.
Reducing design time, in particular, is actu-
ally more important than optimizing the area
or performance of an IC. Saving time is
especially important in the case of Applica-
tion Specific Integrated Circuits (ASICs)
since, unlike a microprocessor, they are not
programmable, and have a limited market.

Reducing design time requires a high
degree of automation. Automation can be
achieved by standardizing the design proc-
ess. Such a design automation environment
for chips, developed at The King Fahd Uni-
versity of Petroleum and Minerals
(KFUPM), helps to reduce design time and
effort at both the architectural and layout
levels.

The KFUPM design automation system,
called Universal AHPL (A Hardware Pro-
gramming Langunage), is a blend of tools
developed locally and those developed at the
University of Arizona, University of Cali-
fornia at Berkeley, University of Washing-
ton, and the Microelectronics Center of
North Carolina (MCNC). The UAHPL sys-
tem is suitable for design of synchronous
digital systems in VLSI. It has been success-
fully used to synthesize designs such as data
compression chips, protocol processors,
programmable CRC checkers, digital con-
trollers, computer arithmetic algorithms,
and small microprocessors. In addition to
providing workable designs with short turn-
around time, the system is an excellent edu-
cational tool to convey concepts related to
digital system design, synthesis, and VLSI
design automation.

Literature Review

Logic synthesis has become the norm for
today’s ASIC design. These have evolved
from schematic capture based systems, in
which the designer expresses the design
graphically, to hardware description lan-
guage (HDL) systems, which take a HDL
representation of the system and produce a
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Prototype system for standard cell based
ICs will ultimately reduce ‘time to market’

netlist of logic gates and flip-flops. These
systems are coupled with physical design
systems that produce the layout of mask
geometries required for fabrication. The
logic synthesis systems are analogous to
software compilers.

A number of such systems have been
proposed. Some of them are targeted to-
wards specific application domains such as
digital signal processing (DSP). In the do-
main of data flow applications, DSP has
been at the forefront of high-level synthesis
systems. One of the most industrially suc-
cessful HLS system has been CATHE-
DRAL [1]. Other systems have also been
built [2]. These mostly used applicative pro-
gramming languages such as SILAGE,
SDL, and so on to specify the design.

The control flow oriented systems are
fewer, and not as successful. Most of these
have adopted VHDL as the specification
language due to its success in hardware de-
scription domain. The main developments
in this area have come from large compa-
nies. IBM, for example, presented its high-
level IBM synthesis system (HIS) [3], and a
Siemens research team developed CALLAS
[4]. Contributions from the universities in-
clude AMICAL [5] and ALLIANCE [6].
Each of these systems have their own subset
of VHDL as the synthesis specification, re-
sulting in different design spaces. They han-
dle the issues of allocation and scheduling
to synthesize a circuit from abstract VHDL
descriptions.

Among the commercially available sys-
tems, a number of them are based on
VHDL/Verilog as the HDL. These include
Synergy from Cadence Design Systems
Inc., Epoch/Finesse from Cascade Design
Automation, and ASIC Synthesizer from
Compass Design Automation Inc. [7]. Many
of these systems provide the capability to
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program PLDs apart from synthesizing
ASICs.

UAHPL System

Register transfer or RT-level HDLs have an
established formal foundation and have
been used widely in the industrial world.
The UAHPL system belongs to this category
of systems. It takes input at the register
transfer level. This specification undergoes
logic synthesis to give a gate level specifica-
tion in terms of a netlist of standard gates
and flip-flops. Simulation is done both at the
register transfer and the gate level and re-
sults are compared to verify the translation
process. This finishes the synthesis task. The
netlist is given to a physical design subsys-
tem which has placement, routing, and
graphic layout manipulation tools along
with a standard library. The layout produced
is checked for design rules and the circuit is
extracted. The extracted circuit is again
simulated and the results compared with the
results of the functional simulation at the
register transfer level. A detailed schematic
diagram of the UAHPL system is shown in
Fig. 1.

Overview

The conventional design approach (which
uses finite state machine model of synchro-
nous digital systems) is inadequate for de-
signing large digital systems. These systems
typically have a number of registers, many
bits wide, for storing data operands. Includ-
ing these in the model would make the
number of states large and render the con-
ventional techniques computationally im-
possible. Extended state tables provide an
extension to the FSM model. The system is
partitioned into two sequential circuits, one
for the data path and the other for the con-
troller. The data path consists of registers
and interconnected combinational logic.
This part sends the status of computation as
input to the controller for branching infor-
mation. Other signal information is intro-
duced at the controller’s external inputs, and
the controller produces control signals that
are passed along the data path to control
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2. Block diagram of the Equality_Detector circuit.
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register transfers. This extended-FSM
model operates at the register transfer level,
in contrast to the classical FSM model,
which deals with each flip-flop and all pos-
sible states.

The extended state table specifies the two
partitions. It specifies the controller using
the FSM model, and the register transfers in
the data path are specified at each state.
UAHPL is basically an extension to the ex-
tended state machine model. The basic ideas
will be developed by means of an illustrative
example.

Consider the example of a serial compa-
rator. Testing for equality of two n-bit vec-
tors serially is possible by testing for
equality of the LSBs and shifting the vector
right. At most, n shifts are required until a
decision can be made. A possible algo-
rithmic description of the digital system ex-
plained above is:

Step 1: Load A and B.

Step 2: If both A and B are zero

then FLAG = TRUE, goto Step 5.

Step 3: If LSB(A) # LSB(B)

then FLLAG = FALSE, goto step 5.

Step 4: Shift right A and B, goto Step 2.

Step 5: OUTPUT = FLAG.

The above algorithm can be mapped to
hardware using the extended state table
model. In contrast to the conventional de-
sign procedure, where one has to come up
with a state diagram from the functional
description, the design process here is lim-
ited to algorithm development. The process
of mapping an algorithm to an extended state
table involves the identification of the hard-
ware components required to implement the
data path. Assumptions are required about
the word length of operands A and B. To
store these operands, two registers, say of
4-bits each, are required. Further, a flip-flop
is needed to store the result of the computa-
tion. Since the time of completion of com-
parison is data dependent, two outputs are
used, namely FINISH and EQUAL. Line
FINISH is made high to indicate the com-
pletion of comparison, and the value on line
EQUAL (when FINISH is raised) will spec-
ify if the two vectors are equal or not. The
extended state table model for the equality
detector is shown in Fig. 2.

With the above model, the extended state
table for the equality detector can be speci-
fied as in Table 1. In the extended state
model, the first column specifies the state of
the controller, the second multicolumn
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specifies the next state for all the possible
combinations and the third column specifies
the register transfers that are to occur for that
particular state. The controller uses a Moore
type FSM model. An output associated with
each state controls the transfers in the data
path.

This operation is represented in UAHPL
succinctly as shown in Fig 3. Each statement
in the UAHPL code corresponds to a row of
the extended state table and specifies the
state. One statement in UAHPL consists of
two parts, one identified by:

=(condition)/(next_state#)

This means ‘if condition is true, then
branch to next_state number,” and gives the
next state information. The second part
specifies the transfers associated with that
state. These are denoted by the following
syntax:

destination < src

Note that the next state information does
not contain all possible input combination
and their next states; rather, only the condi-
tion that is significant is listed. It is possible
to list all conditions, however. As is usual in
most practical circuits, there are situations
where not all inputs are significant in a par-
ticular state (incompletely specified ma-
chines), and UAHPL provides the flexibility
of specifying only that condition that is re-
quired for a decision. Furthermore, although
this example gives the next state information
in all the states, it is not necessary to do so.
The execution should be sequential, unless

March 1995

Table 1. Extended state table of serial Equality_Detector
State Inputs (Start, Cond_1, Cond_2 Transfer
000 | 001 011 010 110 | 111 | 101 | 100

Ci C+ C1 Ci Ci C2 C2 C2 Ca A=P,B=Q

Cz Cs Cs Cs Cs Cs Cs Cs Cs Flag=1

Cs Ca Cs Cs Ca Cq Cs Cs Cs Flag=0

Ca Cz Co Co Ca Co C2 | C2 | C2 ShiftRight(A); ShiftRight(B)

L Cs Cs Cs 705 w{ Cs Cs Cs Cs ‘ F)s Equal = Flag; Finish =1

a branching information is given. The con-
troller goes to next state sequentially in the
next clock pulse if no next states are speci-
fied. This information is built into the com-
piler [8].

The UAHPL language provides a pro-
gramming language based method for speci-
fying the design. The notations used are
based on the language APL. However, un-
like the current standard in HDLs, that is,
VHDL, UAHPL has been designed to en-
able synthesis. We will present the basic
ideas about the synthesis procedure by illus-
trating how hardware can be derived for the
example of an equality detector.

UAHPL based synthesis assumes that
the system uses a single clock and that all the

memory elements consist of negative-edge-
triggered D flip-flops. These assumptions
have effect on modeling as well as synthesis.
The controller extraction from the UAHPL
sequence is achieved using a Moore type
FSM model. Each statement of the UAHPL
corresponds to a state.

A straightforward method of construct-
ing the controller is to use one-hot encoding
(one flip-flop per state). Hence, each flip-
flop represents a control state. The output
from these flip-flops can be used to control
the transfers in the data path. The control
part can be extracted from the UAHPL de-
scription by converting the branchinginfor-
mation (=(condition/(next_state #)) in each
statement to inputs of the D-type flip-tlops.

MEMORY: FLAG:A|4];B[4].
OUTPUTS; EQUAL; FINISH.

BODY SEQUENCE; CKI.

1 A<=P; B+Q; => "START/(S).
2 FLAG<=1$1;
3 FLAG<=1$0;

ENDSEQUENCE
CONTROLRESET (RESETY1.
END.

MODULE: EQUALITY_DETECTOR.

EXINPUTS; START; RESET; CK1; P[4];Q[4].

=> ("(+HA)& " (+/B)(5).
=> (B[3]@A[3)/(5).

4 B<=1%$0,B[0:2]; => A<=1$0,A[0:2]; =>(2).
5 EQUAL=FLAG: FINISH=1$1;=>(5).

3. Complete UAHPL model of a serial Equality-Detector.
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Each D flip-flop is fed by a number of inputs
OR’ed together. Each input represents a
state AND’ed with the condition that would
cause the transition to this state (flip-flop).
This method would not lead to a minimum
realization. However, it is simple and can be
realized from the UAHPL program using
simple rules. The complete controller reali-
zation for the equality detector is shown in
Figure 4.

Realization of the data path from the
UAHPL specification uses the control sig-
nals for each control state. All the registers
and flip-flops are not clocked by a single
clock. The con trolled clock approach is
used. That is, the data path is fed by a single
external clock, the same as the one feeding

the controller. However, the registers are
enabled by clocks gated with the output
signals from control flip-flops called CSLs
(control signal levels).

The data path realization is achieved by
con trolling the clock and inputs of the reg-
isters. A register can receive its input from
many sources; therefore, each of these are
AND’ed with the appropriate control signal
tor which they should occur, and then OR’ed
and fed as input. The register is clocked only
when a transfer to the register is required.
This is done by OR’ing all the control states
for which a transfer should occur, and using
it to gate the clock. The complete data path
for the equality detector is shown in Fig. 5.

X= (+/A) & (+/B)
Y= A[3] @ B[3]

G Gy
Start

= = = > >
S R R R R
Reset [ \ [ I |
Clock
™
X L AD——
Y

4. Controller of the serial Equality_Detector circuit.

Again, this technique would not neces-
sarily lead to optimal/minimal hardware.
However, it can be derived from the UAHPL
specification by means of simple rules,
which are:

(1) Find the hardware used (this is usu-
ally declared), look for each register the
control states in which it is modified, OR
those states and generate the gated clock for
the register. (2) Look for the sources to the
register, AND each source with the appro-
priate control state signal, then OR all the
sources, and feed the output of the OR gate
to the register input. In this language, data
assignment to the registers is achieved syn-
chronously by an implicit clock.

In UAHPL, digital designs are described
using interactive concurrent modules. Itera-
tive combinational networks such as adders,
decoders, and so on can be described as
Combinational Logic Units (CLUs). The
language does not support timing mecha-
nisms. Assigning values to buses have im-
mediate effect, while values to registers
become effective at the trailing edge of the
clock.

In this section, we introduced UAHPL. at
a rudimentary level. There are a number of
features like conditional transfers, handling
of memory, combinational circuits, and so
on, some of which have been investigated
[8.91.

Example: Programmable CRC Generator
Another example of an UAHPL model of a
programmable CRC generator is given in
Fig. 6. Referring to the UAHPL model, the
initialization is done in the

DATA PART

Po
Cy B[0:2) »
o P[1:3]

Cq

C1 Cq

X

e

To the Controller

Ist state. In the 2nd state, a
64-bit message is supplied
sequentially on line MESIN
and a 16-bit CRC pattern is

FINiSH | simultaneously generated
and stored in a register,
» EQuAL| CREG. Whenall the message

bits have been processed, the
CRC pattern can be serially
appended to the message data
stream for transmission.

The CRC pattern is seri-
ally appended to the message
in the 3rd state. The generator
then goes to the initial state to
perform the same task de-
scribed for another message,

5. Data path of the serial Equality_Detector circuit.
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if any. The 16-bit CRC pat-
tern is available on the 66th
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clock pulse. The transmission of the 16th bit
takes place on the 81st clock pulse. Thus, the
number of clock cycles required to generate
and transmit any CRC in this implementa-
tion, is the sum of the size of the message
and the degree of the generator polynomial.

As seen in Figure 6, every UAHPL de-
scription consists of basically three parts: a
declaration, a procedural section describing
the state machine, and a non-procedural sec-
tion. The numbered steps between the key-
words SEQUENCE and ENDSEQUENCE
form the procedural section defining the
states of the sequential machine. In this sec-
tion, a statement is active only when the
machine is in the corresponding step (state).
The non-procedural section follows the key-
word ENDSEQUENCE. Statements in this
part are always active regardless of the state
of the control sequencer.

UAHPL is based on the fact that any
digital system can be partitioned into a data
part and a control part. The data part consists
of registers, buses, CLUs, and some basic
gates. The control part consists of logic,
which provides signals to control the opera-
tions in the data part. Similar to other HDLs,
UAHPL has its own set of conventions for
transfers, connections, register indexing,
and so on.

Conventionally, in UAHPL, all transfers
into registers take place at the trailing edge
of the clock pulse. Also, transitions between
states of the finite state machine take place
at the trailing edge. However, transfers to
buses or input/output lines, called connec-
tions, are active for the entire duration of the
clock pulse.

To aid in the construction of an efficient
model, exercise hardware tradeoff, and to
verify the logic of design, the environment
is supported by a functional UAHPL simu-
lator.

UAHPL Compiler and Functional
Simulator

As shown in the outline of the system (Fig.
1), the UAHPL program serves as the input
to the compiler. This basically performs the
task of breaking down the input into tokens
(lexical analysis) syntax analysis on the in-
put (parsing), and storing the input in an
intermediate form made of tables (semantics
actions).

Full details can be found in [8], as can the
full syntax of the UAHPL language. The
task of syntax analysis is performed using a
bottom up, table driven SLR parser. It uses
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MODULE: CRCGENERATOR.

EXBUSES: C;Z.

BUSES: X{6};Y;ZOUT;CRCRDY.
EXINPUTS: CLK;RESET;START.
EXINPUTS: MESIN;SELECT.

BODY SEQUENCE: CLK.

1 COUNT<=6$0;
CRCREG<=165%0;
=>"(START)/(1).

2 ZOUT=MESIN;
Y=MESIN@CRCREG{15};
COUNT <=X;

=>"(&COUNT) /2.
3 COUNT<=X;CRCRDY=\1\;

ZOUT=CRCREG(15};

ENDSEQUENCE
CONTROLRESET (RESET)/(1);
X=INC(COUNT);
Z=ZOUT;
C=CRCRDY.
END
CLU: INCR(X) <. I >.

INPUTS: X{I}.
OUTPUTS: Y{I}.
BODY

CONSTRUCT
Fl

ROF.
END. “INCR”

CLUNITS: INC{6} <:INCR<.6.>.

FOR J=(1-1) TO 0 STEP -1

MEMORY: CRCREG{ 16};COUNT({6}.

CRCREG,=(Y,CRCREG{0:3),CRCREG{4}@Y,CRCREG{5:10},
CRCREG{11}@Y,CRCREG{12:14} !
(Y,CRCREG{0},Y @CRCREG{1},CRCREG({2:13},
CRCREG{14}@Y)*(SELECT), SELECT);

CRCREG<=\0\ ,CRCREG{0:14};

=>("(&/COUNT{2:5}),COUNT{1})/(3,1).

“I-BIT INCREMENTER CONSTRUCTED WITH EXCLUSIVE OR GATES”
“AND GATES AND AN INVERTER”

IF J=I-1 THEN Y{J}="X{J}
ELSE Y{J}=X{J} @(&/X{J+1:I-1})

6. UAHPL model of a 64-bit programmable CRC generator.

two stacks for parsing. The parser calls the
lexical analyzer to get the tokens from the
input UAHPL program. When the syntax
analyzer encounters the left side of text, it
calls the semantic analyzer. If entries can be

applied then, the program does so in the
tables, which is an intermediate step in rep-
resenting the language. In all, 16 tables are
produced. One of the tables, the symbol
table, is stored as a four column array, while
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Begin

Fori=1t0k
1. Connect OR; to D

Qi to input of ORj+1.

connnect Qj to OR;.

Connect Q; to Ci.
Endfor

End.

Allocate k flip-flops with input of it flip-flop being Dj and output Qi
Allocate k OR gates with output of in OR gate being OR;

2. If UAHPL step i has no brance statement Then connect
3. In case of unconditional branch from step i to j,
4. For every conditional branch in step i to step / Do
Synthesize comnbinational logic for the condition (Say f)

Connect ((f).AND.(Q;) to input ORi
Connect (*(f).AND.Q;) to next setp in sequence.

Replace all single input OR gates with a direct connection.

7. Systematic construction of control part.

scanin
-— 1

‘___

scan_clk

reset —l }——

ck2

agb

8. Transfer level circuit diagram of the basic D flip-flop (dsr2s).

the others are kept in common storage. The
tables are dynamic in nature and the required
memory is allocated dynamically. Sharing
of data is implemented by means of a direc-
tor array for each table.

If the design is found to be error free,
syntactically, and the entire system has been
compiled, the stagel dumps the contents of
the table. If there are errors in the design, it
flags the errors and produces a listing to help
in debugging.

Once the UAHPL description has been
translated into intermediate form, it is pos-
sible to verify the behavior of the designed
system. A functional simulator at the RTL
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level is fast and provides feedback about the
design that can be conveniently incorpo-
rated. This is in contrast to the higher level
systems, where the feedback from design is
difficult to incorporate.

Full details of simulator implementation
can be found in [10]. The simulator takes its
input through a command file. The input
directives to the simulator include informa-
tion on initial state, initialization of mem-
ory/registers, set watch on input/output
lines, and so on. There are two components
to the simulator. The first component per-
forms lexical, syntax and semantic analysis
of the input and produces an intermediate

representation of the command file. The ac-
tual simulator uses the output of stagel,
which is an intermediate form of the
UAHPL program and the compiled interme-
diate form of the simulation directives. It
produces a log of the simulation output.

Logic Synthesis and Simulation
After adesign is functionally correct, we can
proceed to do logic synthesis. The interme-
diate representation produced from stagel’s
compiler is used for this purpose. As ex-
plained in the Overview, the task of synthe-
sis involves the identification of the data and
control parts of the system. The description
of the language implicitly assumes a number
of features of the underlying hardware im-
plementation. These include a synchronous,
negative-edge-triggered system. The exact
algorithms used in the synthesis have been
published earlier [8], and the previous sec-
tion provided an intuitive insight in the proc-
ess. Figure 7 provides the algorithm for
extracting the control part of the system.
The stage2 compiler produces a logic
level network interconnection list that is
technology-independent. A doubly linked
list structure is used to store the network.
Each element (gate/flip-flop) is repre-
sented as a node in the network. The data
structure used to represent a node includes
information on its type, inputs, outputs, and
pointers to the input and output nodes. This
stage generates two lists, a gate list contain-
ing information about each node of the net-
work; and an IO list, which contains the
information on the inputs and outputs con-
nected to the gates. Each line in the gate list
has seven entries. These are the gate number,
gate type, ilink (pointer to the IO-list for the
list of inputs to the element), olink (pointer
to the IO/list for the outputs connected to the
element), symlink (symbolic list), siginp
(sum of node numbers input to it), and
siglink (pointer to another element with the
same or a multiple of 10000 siginp number).
The first two parameters are used in op-
timization. The 10-list has rows with a
pointer number for each row. The first
number on a row is its pointer address, the
next two numbers denote the element num-
bers that are either input/output (depending
on whether the pointer is used under ilink or
olink, and the fourth number is a pointer
address for continuation. If the list has no
continuation, the last entry is a zero.
Thus, once the logic of the UAHPL
model is verified and the functional correct-
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ness guaranteed, the model is converted to
hardware. This is done using the UAHPL
hardware synthesizer. The output of the
compiler is a net/list that contains the logic
gates, flip-flops, and their interconnections.
The netlist syntax can be found in [8, 9].

After logic synthesis, simulation can be
done to verify the logic synthesis process.
This requires a logic level simulator. RNL
[12] is a simulator distributed with VLSI
design tools [13], it was acquired along with
the other tools and found to be sufficient. In
order to integrate the RNL simulator, two
programs were required:

1. A technology mapping program (the
UAHPL netlist and the RNL cell library are
different; and

2. A program that translates the UAHPL
netlist into a format acceptable by RNL.

The task of technology mapping was re-
quired because the UAHPL logic synthesis
tool is technology independent. It may, for
instance, use an 8-input AND gate, which a
technology may not support. RNL contains
a library of basic logic gates. These two
goals were achieved using locally developed
programs. The first objective is met by the
program postprocessor, and the second by
the netlist converter.

Currently, The QASIS standard cell li-
brary is used in our implementation. Corre-
sponding to each layout cell of the cell
library is a logical/switch level model that
can be simulated using the RNL logic level
simulator.

The pre-processor program maps the
UAHPL compiler generated netlist into the
cells avail able in the cell library. The post-
processor then translates these to netlist for-
mat accept able to RNL. Once the netlist is
verified at the switch level, it is mapped to a
layout.

Cell Libraries and Technology Mapping
In the standard cell approach, the cell library
is the core of the physical design process. In
our work, we used the “vanilla place and
route” (VPNR) subsystem in the OASIS
design environment [14]. The OASIS sys-
tem comes with a standard cell library. The
VPNR system uses cell based approach and
it works with the OASIS cell library. The
VPNR system is flexible in the sense that it
is possible to define another standard cell
library as long as some restrictions are met.
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macro dsr2 (m_d_m_scanin m_reset m_ckl m_scan_clk m_ck2 m_gbm_q)
(local n)
(cond
((== stdc 1) (printf “dsr2s INS%S (%S,%S,%8S,%S,%S,%8S,%S,%S):\n”
n m_d m_scanin m_reset m__ckl m_scan_clk m_ck2 m_gb m_q))

((==sctest 1) (printf “dsr2s INS%S (%S,%8,%S,%S,%S,%S,%S,%S):\n""

n m_d m_scanin m_reset m__ck1 m_scan_clk m_ck2 m_gb
m_g))
(t
(etrans m_ckl n.13m_d 3 2) ; m9
(etrans m_ck2 n.11 n.12 3 2); m2

(ptrans m_ck! n.16 n.13 3 2) ; m15
(ptrans m_ck2 n.11 m_gb 3 2) ; m7

e sos . vee ven oo

(capacitance m_d 0.002); d
(capacitance m_scanin 0.003); scanin

)

9. Partial transistor level RNL circuit of dsr2s cell.

B

; deff.net

»

(macro deff

(d clk1 enable q cIk2 scantest scanin Reset)

(local ffinput ffinput_bar Id_bar q_bar)

(il enable Id_bar)

(a0i22 d enable q 1d_bar ffinput_bar)

(il ffinput_bar ffinput)

(dsr2 ffinput scanin Reset clk1 scantest clk2 q_bar q)
)

; End of macro deff

10. RNL macro for d flip-flop with enable (e\deff).

The VPNR system takes a logic level
netlist of cells in vpnr format (RNL format
files can be translated into vpnr format). The
netlist is made from the constituents of a
logic-level cell library. This logic-cell Li-
brary reflects the lower level layout cell
library. For each cell in the layout library,
there exists a corresponding cell in the logic-
cell library. Further, the netlist may consist
of macro cells written in terms of the logic-
cells. The VPNR program takes the input

netlist and unfolds it in terms of the logic-
cells to create a flat netlist made of logic-
cells. Corresponding to these cells, fully
characterized cells exist in the layout cell
library. The placement program then pro-
ceeds to place these layout cells on the floor.

One of the constituents of the OASIS cell
library is the D flip-flop with reset inputs,
The logic-cell library consists of a logic-cell
corresponding to the D flip-flop. This is
obtained by extracting the layout. The cir-
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cuit diagram for the flip-flop is shown in Fig.
8 and the transistor level logic-cell (RNL
format) for it is shown in Fig. 9.

The library uses cells with a 2-phase
clock, and all the cells are scannable (for
testability). The UAHPL logic synthesizer
produces logic netlist using the UAHPL
primitive gates and flip-flops. As mentioned
previously, the UAHPL generated netlist as-
sumes an underlying hard ware that uses
negative edge triggered D flip-flops for im-
plementation. All of these flip-flops should
also be resettable via a single external reset
signal. Further, the UAHPL design assumes
a single phase clock.

As part of the simulation process, we had
translated the UAHPL netlist into RNL by
defining macros for these gate types in terms
of the RNL primitives. These primitives in-
cluded all the standard gates. However, this
netlist cannot be directly fed to a physical
design system. The netlist input to VPNR
system should contain only those leaf cells
that have their layouts in the layout cell
library.

This requires a netlist mapper. An input
to this mapper is the UAHPL logic-cell li-
brary. The library contains the models of all
the gates/flip-flops that are required by the
UAHPL netlist in terms of OASIS logic-cell
library natives. For example, the UAHPL
system uses three types of D flip-flops: a D
flip-flop with enable (data part), a D flip-
flop with set (control flip-flop for initial
state), and a D flip-flop with reset (for all
other control flip-flops). The OASIS cell
library contains only one resettable D flip-
flop. The UAHPL logic-cell library contains
macros for all the three types of flip-flops in
terms of the OASIS D flip-flop primitive
cell, dsr2s. The OASIS native D flip-flop is
shown in Fig. 9, and the UAHPL macro of
the D flip-flop with enable is shown in Fig.
10.

Physical Design

Standard-cell placement

Once the netlist is ready, it can be fed to the
VPNR’s placement program. This programs
performs a pre-processing of the netlist be-
fore placement. It removes the clock and
global signals from the netlist. Then it pro-
ceeds to layout the cells in rows (the number
of rows and aspect ratios are user control-
lable). For placement, it uses the quadrisec-
tion min-cut placement algorithm [15]. This
algorithm partitions the netlist into four
quadrants recursively until each quadrant
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contains exactly one cell. The placement is
accompanied and directed by approximate
global routing.

Routing

After the placement of layout cells in
rows and preliminary routing, the full rout-
ing phase is done in VPNR. First, the global
routing of signal nets is done, then routing
of global signals (e.g., clock etc.), and then
channel routing. For global routing, VPNR
considers each net sequentially. It constructs
a minimum spanning tree for each net, finds
exact locations for nets that need to cross
rows, inserts feed-through cells in the row
(if required), and assigns sub-nets in chan-
nels. The global signals are assumed to fol-
low a fixed routing scheme. These extend
horizontally in the channels on either side of
a vertical rail. Channel routing is done to
generate the routed circuit. VPNR has two
choices for the channel router, a greedy
router [16] and a left-edge based router with
channel compaction [17}.

Layout Assembly

Once the channel routing is completed, the
task of generating the complete layout is
done using the Magic layout system. The
description of the placed circuit is converted
from the vpnr format into Magic’s format.
The placed cells are interconnected using the
channels and interconnection wire, which
are written out in Magic format by the rout-
ing program. Magic is used to assemble the
layout and to connect the vertical power
rails.

After the layout is ready, the design is
placed in a padframe, and the leads are
bonded. Many foundries offer their own pad
frames or utilities to generate pad frames.
For the general case, one can provide the
pads and choose from the standard packag-
ing dies of that particular foundry.

Layout Extraction and Verification
Although the translation of transistor netlist
to layout is error free, the accuracy of the
layout cannot be guaranteed, even if the
netlistis functionally correct. Wiring delays,
for example, may introduce clock skews,
thus resulting in a broken design. Simulation
of the layout can be done to verify the be-
havior of the system. In order to do that, the
circuit under lying the layout must be ex-
tracted.

The design automation system uses
Magic’s circuit extractor. The extractor is

11. Layout of programmable CRC chip.

S
A

12. Simulation of the extracted programma-
ble CRC circuit.
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13. Logic analyzer output ofr the fabricated
CRC chip.

both incremental (only part of the layout is
re-extracted after any change) and hierarchi-
cal. The extractor produces a separate file
(ext format) for each Magic file (mag for-
mat) in a hierarchical design. Currently,
very few tools (SPICE, RNL) can support
the ext format. Format conversion utilities
such as ext2spice and ext2sim adapt the
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extracted circuits to SPICE and RNL, re-
spectively. In addition, the ext‘s extracted
circuit can be used with Magic’s interactive
simulator, IRSIM. Details of the operation
are given in [11].

If there is to be correlation between ex-
tracted parameters and the fabrication proc-
ess, the process parameters have to be
obtained from the foundry, where the design
is fabricated. These include their process
parameters for simulation of the circuit us-
ing different type of simulators. In our case,
IRSIM and SPICE parameter formats were
used. The system can use two simulators,
RNL and IRSIM. The RNL logic level simu-
lator can also be used to simulate the ex-
tracted circuit. RNL takes the sim files,
which may be either extracted from the lay-
out or translated from the logical level netlist
of the circuit. RNL’s advantage is that the
same simulation stimulus input file can be
used at the logic and extracted layouts, and
the results compared.

IRSIM is an event driven simulator with
two supported modes. In the switch mode,
each transistor is modeled as a voltage con-
trolled switch. In the linear mode, each tran-
sistor is modeled as a resistor in series with
a voltage controlled switch. It uses a differ-
ent model for computing node values and
transition times than RNL. IRSIM accepts a
parameters file defining the electrical pa-
rameters of the simulated devices. It defines
the capacitance of the various layers, tran-
sistor resistances, threshold voltages, etc.
This data is obtained from the foundry fab-
ricating the design. The simulation thus ac-
curately reflects the parameters of the
devices and the functionality of the circuit
can be verified before fabrication.

IRSIM offers a number of valuable fea-
tures. Among them is the facility to use it
interactively in the Magic layout editor.
Thus, instead of specifying node names, one
can choose a node in the layout and find its
logical value. It can also be run non-interac-
tively. In addition, it is supported by a logi-
cal analyzer tool for graphically
representing the simulation results. It is in-
tegrated well with the Magic layout system.

A typical finished layout, in this case the
programmable CRC chip previously dis-
cussed, is shown in Figure 11. The simula-
tion result is shown in Fig. 12. Simulation
was performed using process parameters
generated at Orbit Semiconductor Inc.,
where this circuit was later fabricated.
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Fabrication and Testing

Once the design has been verified, it can be
fabricated. At the moment, the design auto-
mation system has no generalized method of
test ing the ICs. Depending on the function-
ality, atest circuitis breadboarded and tested
using microcontroller based pattern gener-
ator and logic analyzer. For the programma-
ble CRC chip, the output of the logic
analyzer is shown in Fig. 13.

Summary and Conclusion

In this article, we discussed the progress
made at KFUPM in putting together an
UAHPL based design automation system
using software tools developed locally and
in U.S. universities. The UAHPL language
is used as the front-end specification me-
dium because of its close relation to hard-
ware implementation issues. The system is
modular and technology independent so that
future extensions and specific implementa-
tion issues can be added and modified.

The work carried out so far has targeted
semicustom design and standard cell meth-
odologies. The front-end of the system, up
to the netlist, is independent of technology
and architecture. The output of this stage can
be conveniently mapped to programmable
devices (PLDs) and field programmable
gate arrays (FPGAs). Current research on
the extensibility includes the task of synthe-
sis from algorithmic specification. The ap-
proaches under consideration include the
use of high level languages, e.g., Pascal and
C subsets for input specification. The use of
a VHDL subset is also under investigation.
The results from these studies can be easily
integrated into this design automation sys-
tem to convert it from an RTL level to an
algorithmic level system. Other work in-
cludes the investigation of a formal synthe-
sis option that will do away with the
comparative simulation approach to verifi-
cation.

A number of existing RT-level systems
such as OASIS incorporate the concept of
design for testability (DFT) and test vector
generation. With the current complexity of
systems, how ever, it is nearly impossible to
design test vectors manually. Incorporating
testability into a design is done in OASIS,
and ASIC Synthesizer using automatic in-
sertion of scan flip-flops. The choice of OA-
SIS tools led to development of these
features in the physical design. However,
the logic synthesized by our UAHPL-based
system was sometimes redundant. As a re-

sult, some designs were not fully testable.
The area of synthesis for testability, espe-
cially at the RTL level, is receiving signifi-
cant attention today, and work has been done
on re-synthesis for testability [18]. Other
work is focused on exploring techniques for
redundancy removal from the synthesized
UAHPL netlists such that the designs can be
fully test able. A rapid prototyping facility
would be invaluable to support the design
automation system. There are proposals for
adopting FPGAs for rapid in-house proto-
typing, and the use of FPGA based recon-
figurable system for testing the designs [19,
201].
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