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Abstract—Network folding is a technique for realizing permu-
tations on NV elements using interconnection networks with A
input (and output) terminals, where M/ < N. A major motivation
for network folding is the severely limited number of I/O pins in
microelectronic packages, such as VLSI chips or multichip mod-
ule (MCM) packages. Cost overhead and performance degrada-
tion due to off-chip communication as well as long on-chip wires
may render implementing otherwise good designs infeasible or
inefficient. In this paper, an efficient and systematic methodology
is proposed for designing folded permutation networks that can
route the class of bit-permute-complement (BPC) permutations. In
particular, it is shown that any folded BPC permutation network
can be constructed using only two stages of uniform-size transpose
networks. This results in highly modular structures for BPC
networks. The methodology trades off speed (time), with /O and
chip-area.

Index Terms—VLSI interconnection, permutation routing, net-
work folding, BPC permutations, I/O reduction, area-time trade-
offs, 1/0-time tradeoffs.

I. INTRODUCTION

IGHLY PARALLEL fine-grain computations, can be nat-

urally divided into alternating stages of data processing
(computation) and communication. Processing is carried out
by arithmetic/logic units or processing elements, and com-
munication is realized by one or more stages of permutation
networks. This strategy has been particularly useful in deriving
very fast parallel architectures for multidimensional signal and
image processing, arithmetic circuits, and sorting [3], [6], [8],
9], [13], [16], [20], [21]. However, the implementation of
applications with a large number of inputs can be restricted
by several physical attributes of the implementation medium.
Such attributes include the limited number of I/O terminals
per package (a VLSI chip, a multichip module, or a printed
circuit board). Another limitation is the allowable maximum
wire length. The magnitude of this limitation will continue
to increase as the device feature size continues to decrease.
The main consequence of such limitations is that the partic-
ular design of parallel networks (particularly, interconnection
networks) is shaped by specific packaging parameters (e.g.,
number of I/O pins, available layout area) and other physical
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specifications (e.g., wire length). In many cases, different
parameters mandate significant changes in the original design
or replacing the original network entirely by another design
that better fits the specifications. To avoid the problem of
redesigning parallel architectures whenever certain packaging
parameters change, one must seek a methodologies that allow
the design process to be parameterized so that a parallel
network of a given size can be laid out in packages of various
sized by simple remapping.

Towards achieving the above goals, this paper proposes
efficient techniques for folding a large class of permutation
networks into networks with smaller number of /O terminals
and smaller area (and consequently, smaller maximum
wire-length). We are mainly concerned with the class of
bit-permute-complement (BPC) permutations [15]. A large
number of permutations frequently used in parallel systems
and arithmetic circuits fall in this class. Examples include,
bit-reversal, shuffle-exchange, K-shuffle, butterfly, vector-
reversal, and bit-swap permutations. The paper focuses on a
methodology for routing this class of permutations in VLSI,
under various I/O, area, and time trade-offs. The resulting
VLSI designs can route BPC (bit-permute-complement)
permutation of size N, using a chip with N/Q /O pins,
O(N?%/Q?) area, and O(wQ) time, where w is the word
length of the permuted elements and 1 < Q < /N/w.

The proposed methodology generalizes the index-mapping
techniques proposed in earlier papers by one of the authors
[2]-[4], and results in compact and modular folded VLSI net-
works. The proposed method exploits the relationship between
the input and output indices of a permutation to derive a
family of networks which can route the permutation under
different I/O-time (and area-time) tradeoffs. This is achieved
by decomposing the given permutation into a sequence of
permutations which can be implemented more efficiently by
the chip I/O schedule. Specifically, the proposed methodology
derives a five-stage network for any BPC permutation. The five
stages contain two stages of folded networks (i.e., they contain
memory cells), and three stages of simple two-terminal nets.
The folded networks consists of a number of block transpose
networks, while the remaining three stages are reduced-size
permutation stages derived from the original BPC permutation
by a suitable index-map. The index-mapping scheme over-
comes the limited-I/O problem by allowing the elements to be
input in a multiple number of phases. The permuted elements
are also output over a number of phases. The slow-down
caused by the multiple number of phases is compensated for by
reducing the amount of off-chip communication (I/Q), and by
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an improved utilization of the chip area. We demonstrate our
techniques by presenting folded VLSI networks for several
useful permutations.

A. VLSI Model

This paper assumes a synchronous VLSI model (propaga-
tion delay is independent of wire length), with a semelective-
unilocal input/output schedule (each input is received only
once, at a prespecified input port) [19], [20]. Also, a word-
local model is assumed (the w bits representing one element
are input or output through the same set of I/O ports) with /O
pads placed on the border of the chip.

II. THE CLASS OF BPC PERMUTATIONS

We will develop a general methodology for folding BPC
permutation networks, which generalizes a preliminary scheme
reported in [2]. Since permutations are only concerned with
the indices (addresses) of elements, elements will be repre-
sented by their indices, and all subsequent permutations and
operations will be defined on arrays of indices. In general a
(single-stage) permutation network can be described by the

permutation
( 0 1 - j N-1 )
w(0) w(1) - w() m(N —1)

where the pair j,w(j) in each column is interpreted as a
connection between position (or index) j in the input array
and position (or index) II(j) in the output array. More regular
permutations can be specifies in terms of the operations
performed to transform an index j into an another index 7 (j).
The class of BPC permutations [15], can be defined in terms of
bit-permuting and bit-complementing operations on the binary
representation of the indices. Let ,_1Tn—2 - - - o be a binary
string representing the index (position) of an element in an
arrangement of N = 2" elements.

Basically, a BPC permutation on N = 2" elements (each
represented by an n-bit index) is a bijection II: {0,1}"
{0,1}™, defined as follows:

H(:L‘n._lél?n_g LR .T()) = W(In_l)ﬂ'(lﬂn_z) e 7|'($0).

where either 7 (z;) = z; or n(z;) = T; for some j, and Z; is
the complement of bit x;. Although expressed in a different
form, the above definition of BPC permutations is equivalent
to the one given in [15].

Any BPC permutation II can be expressed as the compo-
sition of two permutations P and C, where permutation P
involves only bit-permute (BP) operations and permutation
C involves only bit-complement (BC) operations. We chose
to first perform the BC permutation (C) to complement all
index bits that need to be complemented, then perform the
BP permutation (P) to place all index bits in their final
positions (according to the original permutation II). Using
standard functional composition notation, this can be expressed
by IT = PoC'. The permutation II can be also realized by CoP,
however, this requires a slight modification of the definition
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of C. The permutations C and P are defined as follows:

C(Tn_1Zn—2" o) =c(Tn_1)c(Tn-1) - c(Ta),

P(xn-1Tn-2" T0) =p(€n-1)p(Ln-1) - - - P(Z0),

where c(z;) = T; if there exists a j such that =(z;) = T;.
Also, p(z;) = z; if w(z;) = z; or w(x;) = T;. For example,
if II is defined as follows:

II(z574732221%0) = T0T1T253T4T5 n
then permutations C' and P are

C(25T4T3T22100) = T5T4T3T2T1T0, 2

P(2554%322%1%0) = ToT1T2T3T4TS. 3)

In the following, the decomposition of a BPC permutation
into BP and BC permutations will be used to facilitate mapping
a given BPC permutation onto a VLSI network with limited
/O pins. The procedure is based on developing separate
mappings for the BP and BC permutations, then using a
combined VLSI network to realize both permutations.

III. NETWORK FOLDING

This section presents an index mapping schemes that results
in simple folded networks for BPC permutation. The main goal
is to map a BPC permutation network of size N = 2" (i.e.,
with N IO terminals) into an equivalent network with N/Q
I/O terminals. This mapping will be called folding, and Q will
be called the (I/0) reduction-factor. A folded BPC network has
N/Q VO terminals. Thus, bits from at most N/Q elements can
be input or output at a time through the folded network. Thus,
the index-mapping procedure views the N-element input or
output vectors as a matrix of Q columns with N/Q elements
per column. Specifically, Let M = N/Q, then an N —element
vector V() € FV can be arranged into an M x Q matrix
Virxg € FMXQ as follows:!

Vo
U1
Viny = : =
LUN—1
[ vN-M UM Vo
UN-M+1 UM +1 v1
VMmxo = . . .
L UN-1 VaM—1 UM-1

In other words, column (0 < i < @Q — 1) of the above
matrix contains elements with indices i(N/Q),i(N/Q) +
1,---,(i + 1)(N/Q) — 1. The mapping (permutation) of
elements from the input vector to the output vector can now
be expressed as a mapping of elements from the input matrix
to the output matrix. For BPC permutations, each index in
the output matrix is obtained by performing the specified bit-
permute-complement operations on the bit representation of

I'The notation F' denotes a suitable set of numbers, e.g., real or imaginary.

F¥ denotes the space of column vectors of size N, and FM* @ denotes the
space of M x @ matrices.
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the corresponding index (i.e., the index at the same position) in
the input matrix. As an example, the input and output matrices
for the bit-reversal permutation expressed by the mapping (3)
above, are shown below for @ = 4 (and N = 64).

r48 32 16 07 r3 1 2 07
49 33 17 1 35 33 34 32
50 34 18 2 19 17 18 16
51 35 19 3 51 49 50 48
52 36 20 4 1 9 10 8
53 37 21 5 43 41 42 40
534 38 22 6 27 25 26 24
55 39 23 7 Bitfmerse 59 57 58 56
56 40 24 8 7 5 6 4
57 41 25 9 39 37 38 36
58 42 26 10 23 21 22 20
59 43 27 11 55 53 54 52
60 44 28 12 15 13 14 12
61 45 29 13 47 45 46 44
62 46 30 14 31 29 30 28

163 47 31 15/ 163 61 62 60 )

~~ —
Input index matrix Permuted index matrix

The permuted index-matrix is obtained by applying the
bit-reversal permutation (P) to each index in the input index-
matrix. In the input matrix, all elements are in their correct
original position. After applying permutation P each element
is moved into a new position according to the permutation.
For example, the element with index 4 (or binary index
000100,) is mapped to location 8 in the permuted matrix
(since P(0001002) = 001000;). It should be emphasized that
the numbers shown in the above matrices denote the index
of each element and not their data value. The intention is
to illustrate the relationship between element positions in the
input and output matrices. The design methodology for two
classes of networks is outlined in the next section. The first
class implements the bit-permute permutations (hence called
BP-permutation networks), and the second class implements
bit-complement permutations (hence called BC-permutation
networks). The Final BPC permutation network will merge
the two networks.

1V. FOLDED BC PERMUTATION NETWORKS

This section develops a simple technique for constructing
BC-permutation networks under the input schedule described
in the previous section. Let z,_1,Z,_3,---,2p be an n-bit
number representing the index of an element. The notation R!
will be used to denote a string of j bits starting at position
¢ and ending at position 7 + j — 1 of some index string [2],
[4]. Using this notation, the string R}, _, Ry~ 7 denotes an n-bit
index, where R} __ denotes the column number of the index
(as it appears in the input (N/Q) x Q matrix), and Rj™?
denotes the row number of the index.

Bit-complement (BC) permutations involve complementing
certain index bits without changing their position. Thus, if
the permutation C' involves bits in Ry ™7, then this will
involve exchanging rows of the input matrix. However, if
C involves also bits in R‘,’L_q, then columns of the matrix
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Fig. 1. Exchanging input rows.

must be exchanged. Note that exchanging (or, in general,
permuting) rows can be easily realized by a permutation
network of size N/Q, as illustrated in Fig. 1. However, since
input columns are available only one at a time, exchanging
columns can not be performed by direct interconnection. The
method outlined below handles this problem by decomposing
a BC permutation in a sequence of permutations which will
first transpose segments of input columns then exchange them.

Formally, a BC permutation o can be expressed as follows:

4
where a, bc denotes an n—bit index such that a = RZ_Q, b=
Rz:gq, and ¢ = R{. In this case, the g-bit string a denotes
the column index and the concatenated string bc denotes the
row index of an element. The strings 4, B, and ¢, are obtained
by complementing certain bits of a,b, and ¢, respectively, as
specified by the permutation a. The above notation places
a comma after the bits (or strings) representing the column
index. Permutation o can be decomposed into a sequence of
four permutations & = a4 o a3 o az 0 a;(a; is applied first)
defined as follows.

(=3 A T A
a,be — a,bé

a,be 2 a, bé %
a, b6 +2% & ba (6)
& ba 22 & ba D
& ba 2% &, be. ®)

Careful inspection of the above mappings shows that permu-
tations o; and a3 involve row indices only, while permutations
a2 and a4 swap a column index (a or @) with a row index
(¢). Permutation oy complements certain bits of the row index
bc as specified by the original permutation «. Thus, a; can
be realized by direct interconnection (i.e., two-terminal nets).
Permutation o swaps the indices ¢ and . Fig. 2 shows the
index map for permutation o> (see [2], [4] for details on index
maps), and an example of applying s to a 16 x 4 matrix of
elements, i.e., N = 64 and Q = 4, is shown in Fig. 3. For this
particular case, each index consists of n = log N = 6 bits?,
and oo(Z52423227120) = T1ToTIL2T5T4.

The index-map indicates that o essentially partitions each
column into segments of length Q, then transposes each Q x Q

ZAll logarithms in this paper are base 2.
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v

bc ba

Fig. 2. Index-map of az (B is a Q@ x Q array).
48 32 16 O 3 2 1 0
49 33 17 1 19 18 17 16
50 34 18 2 35 34 33 32
51 35 19 3 51 50 49 48
52 36 20 4 7 6 5 4
53 37 21 5 23 22 21 20
54 38 22 6 39 38 37 36
55 39 23 7 55 54 53 52
ag
56 40 24 8 1 10 9 8
57 41 25 9 27 26 25 24
58 42 26 10 43 42 41 40
59 43 27 11 59 58 57 56
60 44 28 12 15 14 13 12
61 45 29 13 31 30 29 28
62 46 30 14 47 46 45 44
63 47 31 15 63 62 61 60

Fig. 3. Index-map of ap for N = 64, Q = 4.
12 8 4 0 -3 21 O
13 9 5 1 7 6 5 4
14 10 6 2 11 10 9 8
15 11 7 3 15 14 13 12

Fig. 4. A 4 x 4 block transpose network.

block of elements (formed by @ segments from @ consecutive
columns). Transposing a @ x @ block can be achieved using
a simple transposition network as shown in Fig. 4. This is a
word-model network which is presumably capable of reading
or storing the entire w bits representing an input element
simultaneously. Thus each node in Fig. 4 can store w bits
and all data paths have width w.

Large word-model networks are not suitable for imple-
mentation in VLSI mainly because of their large /O and
area requirements. Fig. 6 shows bit-serial and 2 bit at-a-time
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Row Exdlénoe

@y
v

Column Exchange

(ag

48 32 16 0 + | 6 22 38 54
493317 1 Exé 7 233955
50 34 18 2 4 20 3 52
51 35 18 3 5 213753
52 36 20 4 2 18 34 50
533721 § [ 3 19 35 51
5423822 6 — 0 16 32 48
553923 7 -1 17 33 49
56 4024 B 14 30 46 62
57 4125 9 — 15 31 47 63
58 42 26 10 [ 12 28 44 60
59 43 27 11 — 13 29 45 61
60 44 28 12 10 26 42 58
61 45 20 13 | — 11 27 43 59
62 48 30 14 F— B 24 40 58
63 47 31 15 9 25 41 57
Q x Q Block-Transpose Stages
Fig. 5. A BC-permutation network for permutation C.

(2-BAAT) versions of the network of Fig. 4. performance
improvements attainable by the bit-serial and r-BAAT ap-
proaches are discussed in Section IV. For now, it is sufficient
to note that realizing permutation oy requires using N/Q?
block-transpose networks in parallel. The first stage of trans-
pose networks in Fig. 5 constitute a folding network that
realizes ap for N =64 and @ = 4 (i.e, n = 6 and ¢ = 2).

Permutation a3 complements certain bits of a as specified
by the original permutation «. Since the bits of a are now
available as row indices, realizing a3 can be achieved by direct
interconnection (i.e., two-terminal nets). Finally, Permutation
a4 swaps indices @ and ¢, and thus, can be realized by a
network identical to the one realizing a. Fig. 5 illustrates
the basic structure of a complete BC-permutation network by
presenting a network for routing permutation

C(I5$4.’I}3$2(L’11§0) = T5T4T3T2T1T0

described by the map (2), for N = 64 and @ = 4. In this
instance, @ = T524,b = T3T2,¢ = T1To, and & = TsF4,b =
z3T3,é = T1To. The sequences of permutations (5)—(8) is
specified by the following maps.

T5T4, T3T2T1T0 > T4, T3T2E1T0
T5T4, T3T2T1T0 —> T1T0, T3T2T5T4
T1Z0, T3T2T5T4 —> T1T0, T3T2T5T4
T120, £3T2T5T4 > T5T4, T3T2T1%0

Bandwidth, Area, and Time: The area and time perfor-
mance of the folded BC-permutation network proposed above
is a function of input size (N'), wordlength (w), I/O-reduction
factor (Q), and interconnection bandwidth r, where r is
defined as the number of bits from each input element that
can be read simultaneously (1 < r < w). Fig. 6 shows
two transpose networks with r = 1 (1-BAAT design) and
r = 2 (2-BAAT design). Both networks are designed for
routing elements with word length w = 6. As stated in Fig.
6, circles represent storage cells with a multiplexed input,
where the input to the left of the cell is selected during a
horizontal-shift phase while the input from the bottom is
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Fig. 6. 1-BAAT and 2-BAAT block-transpose networks for @ =4 and
w =6. (Squares represent 1 b storage cells. Circles represent a 1 b storage
cell with a multiplexed input.)

selected in a vertical-shift phase. The proposed networks
perform transposition in two distinct phases. In the horizontal-
shift phase, bits are shifted only horizontally until all bits
have been read into the cells. Then, in the vertical-shift phase,
data bits snake horizontally through square cells and vertically
through circular cells until all bits have been output.

It is easy to show that an 7-BAAT Q x ) transpose network
with word length w, has area O((w + 72)@?) and time delay
O(w@Q /) units. Thus, the permutation network realizing oz or
a4 will have area O((w + 72)N) and time delay O(wQ/7).
For any 1 < r < w, the interconnection networks realizing
«y or ag are similar to the networks shown in Fig. 5 except
that each line in the figure now indicates r wires routed in
parallel. The area of these networks is thus O(r2N2/(Q?), and
their time delay is O(w@/r). Thus, the total delay of a folded
BC-permutation network is O(w@/r), and its total area is
O(r*N?/Q?% + (w + r?)N). For optimal VLSI performance
[3], [6], [13], [20], the range of () must be restricted to
[1,/N/w], which leads to a “worst-case” area lower bound
A = Q1+ rH)wN), and AT? = Q((1 + r*/r>)w?N?) =
Qw?N?).

V. FOLDED BP PERMUTATION NETWORKS

Using previous notation, let the string R _ Rg™? denote
an n-bit index, where Rz_q denotes the column number
of the index and R;™? denotes the row number of the
index. A permutation that routes P can be derived using
a decomposition technique similar to that used in deriving
BC-networks, however, with one additional complication: A
BP permutation may involve an exchange (swap) of bits in
R} _, with bits in Rg™?. This shuffling of bits results in more
complex permutations than just exchanging rows or columns
of the input matrix, as was the case with BC permutations.

A BP permutation 3 can be defined by the following index-
map:

T, Y > U,V )

where z,y denotes an n-bit input index such that z = R,
specifies the column number and y = Ry~ ? specifies the row
number of an input element. Similarly, «,v denotes an n-bit
output index such that v = Ri_q specifies the row number
and v = R; ™7 specifies the row number of an output element.
The permutation 3 can be decomposed into a sequence of five
permutations. However, to simplify description we will first
decompose 3 into seven permutations (37 - - - f2/3;, then show
that some permutations can be combined.

Permutation (3; is a row-permutation (i.e., a permutation
involving row indices only) defined as follows:

x,y&x,cde

(10
where ¢ = R | ..,d = R7729"™, and e = R{. Basically,
(1 is an index map that groups, into string ¢, those m bits
(m < g) that must be moved from the row index (y) to the
column index, as specified by the original permutation 3. To
be able to extract and permute bits from the column index z,

the next permutation (32) swaps the indices z and e as follows:

B2
xz,cde — e, cdx.

an

Note that permutation 3, is identical to permutation a2 (or ag)
described in the previous section. The next three permutations
(B3, B3, and P3) extract and permute some bits from the
index zx, then form the final column index u, as follows:

e, cdr R e, cdab (12)
e, cdab 2, e, bdac (13)
e, bdac farry e, bdu (14)

where b = R7* and ¢ = RZ, ™. Permutation (33 is an index
map that groups, into string b, those m bits that must be moved
from the column index (x) to the row index, as specified by
B. Permutation (3~ groups the strings ¢ and ¢ whose bits
form the final column index after some permutation which
is performed by permutation (3. Since the previous three
permutations are all row-permutations, they can be grouped
into a single equivalent permutation (3 = B3 (3¢ (3. Two
more permutations will complete the implementation of 3, as
follows:

e, bdu R u, bde (15)

u, bde e, u, . (16)

Permutation (3, moves the final column index w to its proper
position, and permutation J5 permutes the bits of strings b, d,
and e to yield the final row index v, as specified by the original
permutation 3. Thus, the permutation 3 can be decomposed
into five permutations 8 = (35 0 84 0 83 0 B3 0 1. Note that the
definitions of permutations (s and (3, are identical to those
of permutations op and a4 (Section IV). Thus, 8, and (3,
can be routed using the same @) x @ transpose networks used
for routing «» and «4. The remaining permutations are row
permutations which can be realized by direct interconnection.
It is not difficult to show that the total delay of a folded
BP-permutation network is O(w@/r), and its total area is
O(r?N?%/Q?+ (w+72)N). For useful operation, the range of
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Permutation

L F
]

Fig. 7. General sturcture of folded BPC networks.

@ must be restricted to [1, VN |, which leads to a total area
of O(wN + r2N2%/Q?).

As a final remark, it should be noted that a BC and a BP
network can be merged into a single network with only two
stages of folded transpose networks (rather than the four stages
resulting from cascading a BC and a BP networks). First note
that from the decompositions of permutations « and 3. both
permutations 3, and « can be routed using the same stage
of @ x Q transpose networks, and permutations 34 and oy
can be routed also using the same stage of () x @ transpose
networks. The remaining row permutations can be composed
pairwise (one from « and one from 3). Specifically, a general
BPC permutation -y can be expressed by the composition of
five permutations 7ys © Y4 © Y3 ©¥2 © Y1, where

v =/ 00y (pre permutation)

w2 =3 = @y (block-transpose permutation)

v3 =f30as (intermediate permutation)

~s =/ = g (block-transpose permutation)

~v5 =f35 (post permutation).

Thus, for any BPC permutation, the proposed index-
mapping methodology yields a five-stage permutation network.
Two of these stages consist of a number of folded block-
transpose networks. The remaining stages are simply a direct
interconnection among the two stages of transpose networks
and the /O terminals. The general structure of folded BPC
permutation networks is shown in Fig. 7. Note that to route any
BPC permutations the two stages of block transpose networks
remain fixed, only the pre, post, and intermediate stages of
interconnection vary according to the specific permutation.
provides the block-transpose networks can be prefabricated
and connected by programmable interconnect stages.

VI. PRECISE AREA CHARACTERIZATION

A more scrupulous look at the VLSI BPC networks derived
above will reveal that their area is sensitive to position of the
most significant bit affected by the given permutation. The
worst-case area occurs when the BPC permutation involves
the most significant bit of the indices. Otherwise, the area can
be significantly smaller. For example, if the BPC permutation
does not involve any of the ¢ most significant bits (which form
the column index), then transpose networks are not needed
at all, and the total network area reduces to O(N?/Q?). In
general, if z,.n —1 > m > 0, is the most significant
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Fig. 8. Index-map of permutation 7, (B is a MQ y MQ ,rray).
8 p N N

bit specified by some BPC permutation of size N, then this
permutation can be realized by an r-BAAT network whose
area Appc(N,m,r) depends on N, m, and r in the following
manner.
O(r*N?/Q* + (w +r*)2™)
forn—1>m>n—gq

0(2(m+1> (ﬂ

forn—g—1>m>0.

Appc(N,m) =

The reduction in VLSI area for the case (n—g < m < n—1)
is mainly due to the use of smaller transpose networks. Recall
that the transpose networks were used to realize index-swap
permutations (a2, 4, B2, and ) which have the following
form

-
a,bc+— c,ba

where, as before, a, bc denotes an n-bit index such that a =
Rl_,b= RZ:?", and ¢ = R}. The above permutation can be
reformulated to take advantage of the case n—g <m < n—1.
The modified permutation (now denoted by 7,,,) performs the

following index mapping.
WE, Yz~ w2, YT

where wr,yz denotes an n-bit index such that w =
Ri-™ @ = RIS and y = RAZ2™, 2 = Ry,
and n — ¢ < m < n — 1. The index map for this permutation
is shown in Fig. 8.

The index map indicates that 7,, can be performed by
partitioning the input data into blocks of size (MQ/N) x
(MQ/N) then transposing each block, where M = 2™.
Consequently, the permutation network which routes 7,,, con-
sists of (1/M)(NN?/Q?) block-transpose networks each of size
(MQ/N) x (MQ/N). For example, consider an 8 x 8 array
of data (i.e., N = 64 and Q = 8) on which the following 74
permutation (i.e., e = 4) is to be performed:

.
I5T4X3,T2T1T0 —5 T5T4T0, T2L1T3.

The permutation 74 has the following index map shown at
the top of the next page.

For this example, MQ/N = 2 since M = 2™ = 16, N =
64 and Q = 8. Thus, the right hand array can be obtained by
transposing each 2 x 2 block of the left hand array. The word-
model permutation network which routes this permutation is
shown in Fig. 9.
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56 48 40 32 24 16 8 O 49 48 33 32 17 16 1 O

57 49 41 33 25 17 9 1 57 56 41 40 25 24 9 8

58 50 42 34 26 18 10 2 51 50 35 34 19 18 3 2

59 51 43 35 27 19 11 3 T 59 58 43 42 27 26 11 10

60 52 44 36 28 20 12 4 53 52 37 36 21 20 5 4

61 53 45 37 29 21 13 5 61 60 45 44 29 28 13 12

62 54 46 38 30 22 14 6 55 54 39 38 23 22 7 6

63 55 47 39 31 23 15 7 63 62 47 46 31 30 15 14

56 48 40 32 24 16 8 0 35 34 33 32 3 2 1 0

57 49 41 33 25 17 9 1 43 42 41 40 11 10 9 8

58 50 42 34 26 18 10 2 51 50 49 48 19 18 17 16

59 51 43 35 27 19 11 3 - 59 58 57 56 27 26 25 24

60 52 44 36 28 20 12 4 39 38 37 36 7 6 5 4

61 53 45 37 29 21 13 5 47 46 45 44 15 14 13 12

62 54 46 38 30 22 14 6 55 54 53 52 23 22 21 20

63 55 47 39 31 23 15 7 63 62 61 60 31 30 29 28

A. Bit and Digit Reversal Permutations
s { This type of permutations is encountered in computing Fast
I L Fourier and other similar transforms. Bit-reversal is a BP-type
:% L permutation defined by the following mapping:
- PTn-1Tn_2 - 2120) = (ToZ1 "+ Tp—2Tn_1)- an
:g_’ To further simplify our presentation, the permutation p can be
_— L. rewritten as

g g "* abe +2 &ba (18)

Network for m=4 Network for m=5
Fig. 9. Folded networks for 7, for m = 4 and m = 5 (N = 64,Q = 8).

A word-model network for routing the permutation
5
T5T4T3, T2T1T0 F— T5L1X0, L2L4T3

is also shown in Fig. 9 for the purpose of illustrating the
increase in area when m is increased. Permutation 75 has the
index map shown at the top of the page.

VII. APPLICATIONS

The application of index mapping techniques in deriving
folded permutation networks will be illustrated below by
developing folded permutation networks for bit-reversal, digit-
reversal, and K-shuffle permutations. These permutations are
particular instances of BP permutations. Even though such
permutations can be implemented by the general composition
of BP permutations J5 0840330203, it will be shown below
some permutations in the above sequence can be omitted for
particular cases.

where a = R}_,,b = R7™%,c = R{, and & denotes the
bit-string obtained by bit-reversing string @; b and & have a
similar connotation. Note that string a is the column index
and bc is the row index of the input elements, while string
¢ is the column index and b is the row index of the final
output elements. Permutation (18) can be decomposed into
the following sequence of permutations.

abe 25 abé 19
abé V22 &ba (20)
eba 22 Eha. ¥3))

Note that permutation p, is equivalent to permutation 3;
(written, p1 = ;) in the general decomposition of BP
permutations (Section V). Also, p; = (2 and p3 = (3. The
complete structure of the reduced-area bit-reversal network is
illustrated by the example of Fig. 10, for N = 64 and Q = 4.

Digit-reversal permutations are required for rearranging the
inputs or outputs for multidimensional transforms with radix
higher than 2, e.g., radix—4 Fast Fourier transform. A radix
—R (R = 27) digit-reversal network has a structure similar
to that of the folded bit-reversal network described above,
especially when ¢ is an integer multiple of 7. In this case,
the decomposition described by (19), (20) is still valid for
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3120 a1 20

48 32 16 0 35 33 34 32 35 33 34 32
gggi }g; 19 17 18 16 19 17 18 16
513519 8 51 49 50 48 S1 49 50 48
—— 7 56 4 19 108

52 36 20 4 20 37 38 36 43 41 42 40
gi%g;g 2321222 27252 4
55 39 23 7 F——— 5553 54 52 59 57 58 56
—— 119 108 7 5 6 4

56 40 24 8 Q8420 39 37 38 36
gg:;gg?o 27 25 26 24 23 212220
59 43 27 11 " 59 57 58 56 55 53 54 52
— 1513 1412 15 13 14 12

60 44 28 12 a7 45 48 M4 47 45 46 44
g;:ggg}i 31 29 30 28 3129 30 28
63 47 31 15 = 63 61 62 60 63 61 62 60

/ 1 \ 16—point
. : Sl
gﬁmﬂersa %r:r‘tspose mcterse bit revarsal

Fig. 10. A bit-reversal network for NV = 64 and Q = 4.

digit-reversal. However, the definition of a,b, and ¢ must
be modified provide radix—R digit reversal. For example, if
¢ = T5T4T3T2X1T0, and 7 = 2, then the radix—4 digit-reversed
version of ¢ is ¢ = Z1ToT3T2T5L4.

B. K-Shuffle Permutations

This is a fundamental class of permutations capable of
realizing matrix transposition as well as index-rotation of
multidimensional arrays. The class of stride permutations
described in [5], [21] are shuffle permutations. K-shuffle
permutations are a generalization of perfect shuffle permu-
tations [18]. In the following, K-shuffle permutations will be
specified in terms of k& = log K,q = log @, and n = log N.
Basically, two forms of folded K-shuffle networks can be
derived depending on whether K < Q) or K > Q.

If K < Q < VN, then the K-shuffle permutation can be
expressed by the following index-map:

ab, cde ~— be, dea 22)
where @ = RE_, b= RI% c=RE___, d= Ry~%7F,

and e = R}. Applying the technique of Section V, the
permutation ¢ can be decomposed into the following sequence
of permutations:

ab, cde ¥ e, cdab 23)
e, cdab v e, adbe (24)
e, adbc V= be, ade (25)
be, ade v be, dea. (26)

Careful scrutiny of the above permutations reveals that
o1 = fg,00 = (3,03 = B4, and o4 = S5, where the
permutations s, 33, 34,35 are as defined in Section V. A
folded permutation network that implements o is shown in
Fig. 11 for N = 64,Q = 4, and K = 2.

When K > @, the K-shuffle permutation can be expressed
by the following index-map.

a,bed —> ¢, dab Q7N
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483216 0 @ . o 2416 8 0
493317 1 e 4x4 4x4 56 48 40 32
50 34 18 2 @ Transpose Transpose 2517 9 1
513519 3 o 47 49 41 33
523620 4 @ 2618 18 2
533721 5 @ 58 50 42 34
543822 6 @ 221911 3
553923 7 & - 59 514335
564024 8 @ 28212 4
574125 9 @ 60 52 44 36
58 4226 10 @ 292113 s
59432711 @ 61 53 45 37
60 44 28 12 @ 302214 6
61452913 @ -8 62 54 46 38
6246 30 14 @ -8 312315 7
63473115 o . —® 63 55 47 39
Fig. 11. A folded K —shuffle network for ¥ =64, Q = 4, K = 2.
483216 0 6 4 20
*—— ———e
493317 1 4x4 141210 8
50 34 18 2 Transpose 2220 18 16
513519 3 30 28 26 24
5236 20 4 38 36 34 32
533721 5 46 44 42 40
543822 6 54 52 50 48
553923 7 ¢ | 62 60 58 56
56402 8 o | 7531
574125 9 151311 9
58 42 26 10 2321 1917
594327 11 31292725
60 44 28 12 39 37 35 33
61 45 29 13 47 45 43 41
62 46 30 14 55 53 51 49
63473115 &—— @ 63 61 59 57

Fig. 12. A folded K—shuffle network for N = 64, Q =4, K = 8.

ma Ve
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ouTA
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GNDI
cKat oKt il % A
0 = == ﬁz%g‘,rnlll/u“é}f”} 777
g e g

Fig. 13. Circuits and layouts of the two basic components: A multiplexer
and a 1 b shift-register cell.

where ¢ = R]_ b= Rz:‘,’c, c= Ri_q_,c, and d = Rg—"_k.
The permutation ¢ can be decomposed into the following

sequence of permutations:

a,bed = a,bdc

a,bde V2 ¢, bda

(28)
(29)
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Fig. 14. Layout of a 4 x 4, 2-BAAT block-transpose network showing the
placement of register cells (for elements of length w = 10 b).

Fig. 15. Layout of a 4 x 4, 2-BAAT block-transpose network showing the
internal layout of register cells.

¢, bda ¥ ¢, dab.

(30)

It easy to notice that ¢; = (1.¢0 = (2, and ¢4 = [s43.
A folded network that implements permutation ¢ is shown in
Fig. 12 for N = 64, = 4, and K = 8.

VIII. CMOS VLSI LAYoUTS

K -shuffle permutations form an important subclass of the
permutations in the BPC class, because they are capable of
transposing matrices or rotating the index-space of multidi-
mensional arrays in one routing step. These networks have
been used in computing multidimensional transforms [1],
{51, [6], [9], sorting [3], [13], and a large number of other
applications. To demonstrate the efficiency of our mapping
techniques, a VLSI layout has been generated and simulated
for the folded 8-shuffle network of Fig. 12. The layouts have
been generated using the MAGIC environment [14] And the
placement of cells was carried out using an enhanced version
of the CFL (coordinate free lap) library routines [7]. Functional
correctness was verified using logic simulators and timing
analysis was carried out using HSPICE. and simulation was
carried used verilog as well as HSPICE. Fig. 13 shows the
custom layouts of the two basic cells used in Fig. 6. A CMOS
VLSI layout for a 4 x 4, 2-BAAT, block-transpose network
for elements of word length w = 10 b is shown at two
levels of detail in Figs. 14 and 15. The layout has dimensions
18541 x 1097X, where A = 0.6 microns for a 1.2-micron
technology. The layout of the entire 64-point folded 8-shuffle

11

1 ot
o t [ - A
113113 —
)
-
e —
Fig. 16. Complete layout of a 64-point 8-shuffle network with Q) = 4.

network is shown in Fig. 16. The dimensions of the entire
layout is 4165 x 2098\ (about 2.5 mm X 1.26 mm), resulting
in a total VLSI area (without /O pads) of 3.15 mm?.The
functional correctness of the layout (without including /O
pads) has been verified at internal clock speeds exceeding 100
MHz. It should be pointed out that the 1.2-micron process
used for the above layout is not state-of-the-art. The area can
be reduced significantly and the clock speed can be increased
by using state-of-the-art technologies.

IX. CONCLUSIONS

Interconnection network folding is a very useful tool for
mapping networks with a large number of inputs and outputs
onto VLSI architectures with limited I/O. This paper presented
a systematic approach for designing folded networks for rout-
ing the BPC class of permutations. The main attribute of this
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approach is that any folded BPC network can be constructed
from smaller block-transpose networks. The derived networks
have uniform and regular structure resulting in very compact
VLSI layouts that can route permutations at very high clock
speeds. Furthermore, the folded-network hardware can be
made reprogrammable by using programmable interconnect to
realize the pre, post, and intermediate permutations of Fig. 7.
This type of interconnect programmability is readily achiev-
able by the antifuse technology used with field programmable
gate arrays [10], and other available technologies.

The basic work of this paper can be extended in a number
of directions. One direction is generalizing the index-mapping
technique to realize other classes of permutations. Another
direction, is to incorporate other design parameters in the
folding technique. The techniques proposed in this paper
basically involve two design parameters, the number of inputs
(N) and the I/O reduction factor (Q), where chip area
and delay are optimized with respect to these parameters.
It is conceivable that other parameters can be incorporated
in the folding process, such as layout aspect-ratio, power
dissipation, maximum wire-length, etc. In this case, however,
the optimization procedure will be considerably more complex.
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