
Tabu Search Based Cells Placement in Nanofabric Architectures

Sadiq M. Sait and Abdalrahman M. Arafeh
Department of Computer Engineering

Center for Communications and IT Research, Research Institute
King Fahd University of Petroleum & Minerals

Dhahran-31261, Saudi Arabia
email: {sadiq, arafeh}@kfupm.edu.sa

Abstract— New advances in nano-electronics have led
to the introduction of CMOL (CMOS/Nano-devices hy-
brid) circuits which consists of an overlay of a nanowires
over a CMOS stack. CMOL circuits can implement a
netlist of NOR gates and Inverters using diode-like nanode-
vices. CMOL has inherently restricted connectivity due to
limited nanowires length. Therefore connectivity of the cir-
cuit’s elements is constrained to be within a certain radius,
else an intermediary buffers are required.

In this paper we present a Tabu search (TS) algorithm to
address cells placement problem in CMOL. The Heuristic
is engineered to provide feasible circuit implementations by
efficient exploration of search space. Empirical results for
ISCAS’89 benchmarks are compared with previous solu-
tions using GA, MA, and LRMA heuristics. Results show
that in almost all cases, TS exhibits more intelligent search
of the solutions subspace, and is able to find better solu-
tions. For all tested benchmarks over 90% reduction in
average CPU processing time when compared with best
published techniques was obtained.

Keywords—CMOL, Tabu Search, Combinatorial Opti-
mization, Search Heuristics, nanofabric, assignment, VLSI.

I. Introduction

Feature size scaling in CMOS technology has led to diffi-
culties in manufacturing due to short channel effects, dop-
ing fluctuations and expensive lithography process. Mean-
while, advances in nanoelectronics are expected to achieve
high density of devices and operate at THz frequencies [1].
Many effective applications have been proposed that use
molecular nanodevices, nanowires, and nano-crossbar fab-
rics [2], [3]. A new trend is emerging for combining the
flexibility and high fabrication yield advantages of CMOS
technology with nanometer-scale molecular devices. A self-
assembly of two-terminal nanodevices, with nanowire cross-
bar fabrics, enables high functional density and sustains
acceptable fabrication costs. Likharev and Strukov [2] in-
troduced a hybrid semiconductor/nanowire/molecular in-
tegrated circuit called CMOL, which uses two levels of per-
pendicular nanowires as crossbar interconnection on top
of inverter-based CMOS stack, and showed possible ap-
plications of CMOL in field programmable gate arrays
(FPGA) [4], neuromophic CrossNets [5], and in memo-
ries [6].

Assigning cells to slots is an important step in the pro-
cess of electronic design automation. The assignment prob-
lem has been proven to be NP-hard. Overtime, the objec-
tive of placement has changed from reducing the overall
wirelength to reduce the area, to improving timing perfor-
mance, and then to reducing the overall power dissipation.
With new advances in technologies come new issues. The
above advancement that drastically improves the circuit
density, CMOL, requires combinational logic to be imple-
mented from a netlist of NOR gates and Inverters by pro-
gramming nano-devices placed between overlapping nano-
wires. Like in the case of most programmable devices, the
length of the nanowires is restricted, and therefore connec-
tivity of the circuit elements is constrained to be within a
certain radius, else additional buffers are required.

Recently, several proposals had been introduced for cell
placement/assignment on FPGA-like CMOL architecture.
Like in other nano-fabric crossbars and FPGA like devices,
nanowires break at fixed intervals confining CMOL cell
connectivity to a fixed number (M) of other cells located
within its proximity square-like connectivity domain. Each
CMOL cell must be connected to one of its proximity cell
members, and failure to do so will require the insertion of
a buffer which results in increase of congestion and delay.
The problem here is to find an assignment that will result
in smallest number of additional buffers.

Likharev et al utilized existing FPGA CAD tools to per-
form placement and routing on 4 × 4 tile-based version of
CMOL [4], [7]. They used reserved routing cells and re-
cursive routing algorithm for inter-tile routing. Hossein
et al [8] proposed a recursive method for removing rout-
ing congestion by keeping and ranking placement solutions
in final iterations of the placement algorithm according to
cost. Subsequently, when routing of best placement config-
uration failed, another placement solution was considered
until routing was satisfied. Instead of working at tiles level,
Hung et al [9] encoded the CMOL cell assignment as a Sat-
isfiability problem at cells level, where placement solution
is found when all Boolean constraints are satisfied. How-
ever, when circuits sizes increased the computation time
became exhibitant.

Previous attempts to use sub-optimal search heuristics
are reported in [10], [11], [12]. Genetic Algorithm (GA) [10]
were used with two dimensional block PMX crossover oper-
ator and mutation, where the fitness function evaluated the
Manhattan distance between connected cells. Nonetheless,

 with Restricted Connectivity

978-1-4673-4953-6/13/$31.00 ©2013 IEEE 487 14th Int'l Symposium on Quality Electronic Design

memory requirements, choices of data structure for chro-
mosomes representation, and computation time are signif-
icant disadvantages of GA. A more elaborate work was re-
ported in [11]; where Memetic computing approach was
used by implementing a hybrid of Genetic Algorithm and
Simulated Annealing (SA) local-based search heuristic. SA
was used in each generation to enhance offsprings which re-
sulted from PMX crossovers and pairwise interchange mu-
tations in GA. Hung et al [12] extended their work on
Memetic approach by integrating self-learning operators
using Lagrangian Multipliers (LRMA). Lagrangian relax-
ation technique (LRT) was applied in population goodness
function by assigning Lagrangian multipliers to penalty val-
ues corresponding to problem constraints and repeatedly
updating them. Results reported using LRMA approach
are promising, however, more computations are needed for
penalty updating mechanism.

The aim of this work is to investigate the cell assign-
ment in CMOL nanofabric crossbar architecture. We’ll
be addressing the complexity associated with the confined
CMOL nanowires crossbar on the logic connectivity and
circuits implementation. The rest of the paper is arranged
as follow: in the next section we provide a background
about CMOL FPGA-like architecture. Section 3 details
the problem formulation, Section 4 outlines Tabu Search,
a heuristic engineered to solve our combinatorial optimiza-
tion problem. Section 5 contains the empirical results, com-
parison and further discussion about the problem behavior.
Finally, we conclude the paper and provide final remarks.

II. CMOL FPGA Architecture

CMOL cell-based, field-programmable gate array
(FPGA)-like architecture is based on integrating conven-
tional four-transistor MOSFET CMOS cell with uniform
reconfigurable nanowire fabric. Each cell consists of CMOS
inverter and two pass transistors. Two-terminal nanode-
vices “latching switches”, that have two metastable inter-
nal states, are self-assembled at each crosspoint in CMOL
fabric and provide diode-like I-V curves for logic circuits
implementation. Likharev et al predicted the density of
nanodevices to be above 1012 to 𝑐𝑚2 for 𝐹𝑛𝑎𝑛𝑜 = 3 𝑛𝑚,
where 𝐹𝑛𝑎𝑛𝑜 is the nanowires half-pitch. That results in
abundant available nanodevices that can serve both inter-
cells connectivity and wiring-logic. CMOS stack is con-
nected to nano-fabric by Metal pins that span to top and
bottom nanowire levels as shown in Figure 1(a). Two
CMOS inverters (i.e., inverter A and inverter C) are con-
nected by pin-nanowire-nanodevice-nanowire-pin connec-
tion. The electrical representation of four inverter-based
CMOS cells and corresponding nanowire and nanodevices
is shown in Figure 1(b). Inverter A has two pins; pin1
connects the input of the CMOS inverter to one of the
nanowires levels making the nanofabric, while pin2 con-
nects the CMOS inverter’s output to the second level of
nanowires. The upper right cell (inverter A) is connected to
the lower left cell (inverter C) by activating the appropriate
nanodevice (nd1) in the crosspoint between the nanowire

connected to output of inverter A and nanowire connected
to input of inverter C. When two or more nanodevice on
the same nanowire are activated as shown in Figure 1(b)
(nd1 and nd2) the output of inverter C will be equivalent
to NOR gate whose inputs are cell A and cell B. Wired-OR
logic is implemented through nanowires and nanodevice.

CMOL nanowire crossbar is rotated by angle
𝛼 = arcsin (𝐹𝑛𝑎𝑛𝑜/𝛽𝐹𝐶𝑀𝑂𝑆) related to the CMOS pins
that are arranged into a square array with side of 2𝛽𝐹𝐶𝑀𝑂𝑆

as shown in Figure 1(c), where 𝐹𝐶𝑀𝑂𝑆 is CMOS half-pitch,
and 𝛽 is a factor larger than 1. This approach allows a
unique access to any nanodevice via the appropriate pin
pair. Each CMOS cell has an area of 𝐴 = (2𝛽𝐹𝐶𝑀𝑂𝑆)2.
Like other nano-fabric crossbars, CMOL’s nanowires break
at repeated intervals of 𝐿 = 2𝛽2𝐹 2

𝐶𝑀𝑂𝑆 confining CMOL
cells connectivity to only 𝑀 = 2𝑟(𝑟 − 1) − 1 other cells
located within its proximity square-like “Connectivity Do-
main” as shown in Figure 2, where 𝑟 is an integer value
that indicates the connectivity domain diameter and rep-
resents the constraint of CMOL placement. Each CMOL
nanodevice is uniquely addressed by two pins from two dif-
ferent CMOL cells. During the configuration process an ad-
dress decoder selects two CMOS columns and two CMOS
rows (i.e., selects a pair of CMOL cells), then inverters are
turned off, and pass transistors are used for setting the
binary state of each molecular device by relaying appro-
priate configuration voltages. When configuration is done
the nanodevices are set into ON (low-resistance) state or
OFF (high-resistance). If the nanowires and nanodevices
shown in Figure 3(b) are activated, the CMOL circuit will
be equivalent to circuit shown in Figure 3(a). The first
NOR gate of the circuit can be implemented by connecting
inputs ‘𝐴’ and ‘𝐵’ with inverter ‘1’ to satisfy both connec-
tivity and logic wiring for the desired gate. The abundance
of available nanodevices and nanowires provides a variety
of different possible configurations for the implementation
of one circuitry. Among those their could be only certain
configurations that satisfy connectivity domain constraint
and do not require additional routing resources.

III. Problem Formulation

The placement or assignment of cells in order to min-
imize a cost function is an NP-hard problem [13]. Even
one dimensional placement, the simplest possible, is hard
to solve. In 2-D array of 𝑛 locations there are as many as

𝑆 = 𝑛(𝑛− 1)(𝑛− 2)...(𝑛−𝑚) (1)

arrangements for placing 𝑚 cells, where 𝑚 could be in
thousands. Overtime, heuristic techniques have been de-
veloped for solving the placement problem and to find a
good solution in polynomial function of 𝑚.

Given a collection of NOR/INV gates, and the collec-
tion of nets (the set of ports to be connected together),
the CMOL placement problem consists of finding suitable
locations for each gate under the constraint of connectivity
domain and given a cost function. Formally the problem
can be restated as: for a set of gates 𝐺 = 𝑔1, 𝑔2, 𝑔3, ..., 𝑔𝑚

(a)Schematic side view of two CMOL cells with two levels of
nanowires. Only one nanodevice is activated to connect the
output of Inverter A with input of Inverter C.

(b)Electrical representation of four CMOL cells and
corresponding nanowires.

(c)Nano-fabric inclined by 𝛼 on top of four CMOS
cells, only one nanodevice is shown.

Fig. 1. Low-level structure of CMOL circuit: the incline an-
gle 𝛼 ≪ 1 and dimensionless parameter 𝛽 satisfy two conditions,
sin𝛼 = 𝐹𝑛𝑎𝑛𝑜/𝛽𝐹𝐶𝑀𝑂𝑆 and cos𝛼 = 𝑟𝐹𝑛𝑎𝑛𝑜/𝛽𝐹𝐶𝑀𝑂𝑆 where 𝑟 is
an integer.

and a set of netlists Γ = 𝛾1, 𝛾2, 𝛾3, ..., 𝛾𝑚 where 𝛾𝑖 =
{𝑓𝑎𝑛 − 𝑖𝑛𝑖 & 𝑓𝑎𝑛 − 𝑜𝑢𝑡𝑖} of 𝑔𝑖 and given a set of slots
or locations 𝐿 = 𝐿1, 𝐿2, 𝐿3, ..., 𝐿𝑛 where 𝑚 ≤ 𝑛, the place-
ment problem is to assign each 𝑔𝑖 ∈ 𝐺 to a unique location
𝐿𝑗 such that the objective is optimized. Positions are de-
fined by the coordinate values (𝑥𝑗 , 𝑦𝑗) and the subset of
G that represent inputs/outputs may be pre-assigned fixed
locations or constrained to certain positions.

Each CMOL cell can implement one inverter or one NOR

gate with multiple fan-in, however, complying to connec-
tivity constraint can be substantially harder if gates of high
fan-in are allowed. Unlike conventional CMOS-based cell
assignment, CMOL cell placement is constrained to “Con-
nectivity Domain” of radius 𝑟. Each CMOL cell is con-
nectable to one of its proximity cell members, any viola-
tion of this constraint would impose further processing (i.e.,
buffer insertion) to satisfy connectivity. However, such pro-
cess would cause more congestion to the already congested
CMOL circuit and could results in substantial increase of
timing delay. Mathematically, the “Connectivity Domain”
can be defined as follow. Given a gate and its netlist (𝑔𝑖, 𝛾𝑖)
placed in location 𝐿𝑖, for any gate 𝑔𝑘 ⊆ 𝐺 and 𝑔𝑘 in the
netlist 𝛾𝑖 the following inequality should be satisfied.

𝑑𝑖𝑠𝑡(𝐿𝑗 , 𝐿𝑘) ≤ 𝑟 (2)

Where 𝐿𝑘 is the location of 𝑔𝑘, 𝑑𝑖𝑠𝑡 is Manhattan dis-
tance, and 𝑟 is CMOL connectivity diameter. The objec-
tive of CMOL cell assignment is to satisfy the constraint in
Inequality 2, and to minimize distance between connected
gates in circuit 𝐺. Failing to comply with CMOL constraint
will result in an implementation that has more delay and
area requirements. The complexity of CMOL placement
arise from the overlap in connectivity domain of adjacent
cells as shown in Figure 2, that results in fewer connectivity
choices.

IV. Tabu Search

Tabu Search is a general iterative metaheuristic for solv-
ing combinatorial optimization problems. TS is a heuristic
that proceeds by making iterative perturbations while pre-
venting cycling to certain number of recently visited points
in search space. The TS procedure starts from an initial
feasible solution 𝑆 (current solution) in the search space
Ω. A neighborhood ℵ(𝑆) is defined for each 𝑆. A sam-
ple of neighbor solutions V∗ ⊂ ℵ(𝑆) is generated called
trial solutions (𝑛 = ∣V∗∣ ≪ ∣ℵ(𝑆)∣), and comprises what
is known as the candidate list. From this generated set of
trial solutions, the best solution, say 𝑆∗ ∈ V∗ is chosen for
consideration as the next solution. A solution 𝑆∗ ∈ ℵ(𝑆)
can be reached from 𝑆 by an operation called a move to
𝑆∗. The move to 𝑆∗ is considered even if 𝑆∗ is worse than
𝑆, that is, 𝐶𝑜𝑠𝑡(𝑆∗) > 𝐶𝑜𝑠𝑡(𝑆). Selecting the best move in
V∗ is based on the supposition that good moves are more
likely to reach the optimal or near-optimal solutions. The
best candidate solution 𝑆∗ ∈ V∗ may or may not improve
the current solution, but is still considered. It is this fea-
ture that enables escaping from local optima. However,
with this strategy, it is possible to reach the local opti-
mum, since moves with 𝐶𝑜𝑠𝑡(𝑆∗) > 𝐶𝑜𝑠𝑡(𝑆) are accepted,
and then in a later iteration return back to local optimum.

In order to prevent returning to previously visited solu-
tions a memory or list T, known as tabu list, is maintained.
This list contains information that to some extent forbids
the search from returning to a previously visited solution.
Whenever a move is accepted, its attributes are introduced
into the tabu list T. Move reversal are prevented for next

Fig. 2. CMOL FPGA topology: for 𝑟 = 3, 𝑀 = 2𝑟(𝑟 − 1) − 1 = 11 cells in the “Connectivity Domain” (Highlighted by dark line) for the
input pin of cells painted in dark-grey. The overlap between connectivity domain of two cells is shown in light grey.

Fig. 3. Example of CMOL circuit: (a) NOR/INV logical circuit; (b) CMOL implmentaion of (a), (c) showing only used cells. Shaded cells
are connected through combination of nanowires, nanodevices and CMOS pins.

𝑘 = ∣T∣ iterations because they might lead back to a pre-
viously visited solution. The tabu list can be visualized as
a window on accepted moves; moves which tend to undo
previous moves within this window are forbidden.

In some cases, it is necessary to overrule the tabu sta-
tus since only move attributes (not complete solutions) are
stored in tabu lists. These tabu moves may also prevent
the consideration of some solutions which were not visited
earlier. This is done with help of the notion of aspiration
criterion. Aspiration criterion is a device used to override
the tabu status of moves whenever appropriate. It tem-
porarily overrides the tabu status if the move is sufficiently
good. Aspiration criterion must make sure that the reverse
of a recently made move leads the search to an unvisited
solution, generally a better one [13].

One of the Tabu search algorithm parameters is the size
of the tabu list. A small tabu list size is preferred for
exploring the solution near a local optimum, and a larger
tabu list size is preferable for breaking free of the vicinity of
local minimum. The list size varying between 5 and 12 have
been used in many applications. Any aspect (feature or
component of a solution) that changes as a result of a move
from 𝑆 to 𝑆𝑡𝑟𝑖𝑎𝑙 can be an attribute of that move, where a
single move can have several attributes. The duration for
which a move containing the particular tabu attribute is
forbidden (the size of tabu list) is called Tabu tenure. An
algorithmic description of a simple implementation of the

tabu search is given in Figure 4.

Ω : Set of feasible solutions (i.e., placements).
𝑆 : Current solution.
𝑆∗ : Best admissible solution.
𝐶𝑜𝑠𝑡 : Objective function (Reduce # of buffers).
ℵ(𝑆) : Neighborhood of 𝑆 ∈ Ω.
V∗ : Sample of neighborhood solutions.
T : Tabu list.
AL : Aspiration Level.

Begin
1. Start with an initial feasible solution (placement) 𝑆 ∈ Ω.
2. Initialize tabu lists and aspiration level.
3. For fixed number of iterations Do
4. Generate neighbor solutions V∗ ⊂ ℵ(𝑆).

(Each solution results from the swap of two cells).
5. Find best 𝑆∗ ∈ V∗.
6. If move 𝑆 to 𝑆∗ is not in T Then
7. Accept move & update best solution.
8. Update tabu list (Store swap reversal).
9. Update aspiration level.

(AL = Cost of best solution seen so far).
10. Increment iteration number.
11. Else
12. If 𝐶𝑜𝑠𝑡(𝑆∗) < AL Then
13. Accept move - update best solution.
14. Update tabu list & aspiration level.
15. Increment iteration number.
16. EndIf
17. EndIf
18. EndFor

End.

Fig. 4. Algorithmic description of short-term Tabu Search (TS).

A. Solution Representation and Initialization

A placement solution is an arrangement of logic cells in
two dimensional layout surface. The representation used
in this work is in the form of a 2-D grid. The layout is
constructed by computing the number of required CMOL
cells to fit each benchmark circuit. The outer cells of the
grid are reserved for I/O pins, where I/O pins moves are
restricted to these reserved locations. In the initialization
phase each logic gate is assigned a positive integer value
that distinguish it from the rest. Then, the encoded logic
gates are randomly assigned in the 2-D layout.

B. Cost Evaluation

The main objective of placement is to find a feasible
assignment of cells in which all connections are satisfied.
Since, in CMOL all cells are connected via pre-assembled
nanowires, the problem we are trying to optimize is to place
connected cells within each others connectivity domain as
to avoid insertions of additional buffers. Therefore, we
should have a measure which can quantify the overall qual-
ity of the solution. A conventional approach is to calculate
the number of nets that violate connectivity domain con-
straint. The overall cost of a solution is the total number
of connectivity domain violating nets (the number of ad-
ditional buffers that are needed to satisfy all connections).
The cost of each gate 𝑔 ∈ 𝐺 is expressed in Equation 3,
where the overall circuit’s cost is the sum of individual
gates cost.

𝐶𝑖 =
∑

𝑗∈𝛾(𝑖)

𝑢𝑖,𝑗 (3a)

𝑢𝑖,𝑗 =

{
1 if 𝑑𝑖𝑠𝑡𝑖,𝑗 > 𝑟
0 otherwise

(3b)

C. Neighborhood Solutions Generation

In each iteration we generate a number of neighbor solu-
tions (i.e., candidate list) by making perturbations as fol-
lows: two cells (two I/O pins or two logic cells) are selected
randomly, then their locations are interchanged. Each so-
lution in the candidate list is evaluated based on the change
in number of buffers before and after the swap. If two or
more neighborhood solutions have equal swap cost, which
also happens to be the best cost in the candidate list, the
solution with lesser Manhattan distance is chosen. We have
experimented with different sizes of candidate list; Figure 5
shows the final cost yielded by TS in four benchmark cir-
cuits when candidate list size is changed, given that all
other parameters are constant. It is clearly seen that for
this problem TS had better results when more neighbor so-
lutions are considered. Candidate list size of 50 is reaching
the optimal solution of zero buffers when 𝑟 = 12, thus this
size has been used throughout our implementation.

D. Tabu List and Aspiration Level

Different tabu attributes were tested, when two cells 𝑖
and 𝑗 are swapped. One attribute was to forbid moves re-

5 10 15 20 25 30 35 40 45 50
0

50

100

150

200

250

300

350

400

Candidate List Size

C
os

t:
In

se
rt

ed
 B

uf
fe

rs

s1238
s1196
s832
s838

Fig. 5. Final cost yielded by TS in four circuits vs. Candidate List
size (𝑟 = 12).

lated to cell 𝑖, that means any move included 𝑖 even swap-
ping 𝑖 with 𝑗 was tabued. Another experiment considered
both 𝑖 and 𝑗, forbidding any perturbations that include ei-
ther of them. The Tabu attribute of a move that is used
in all results reported in this paper is swap reversal. If two
cells involved in interchange the reversal of this move is
forbidden. A short term memory element is used through-
out the implementation where experiments of tabu list size
ranging from 5 to 12 were conducted. It was concluded
that change in tabu list size in this range has little impact
on the quality of the solutions, thus the size of tabu list is
taken as a fixed value equal to 5. The aspiration criterion
is based on the following: if the current solution is the best
seen so far (i.e., better than the global best solution) then
tabu restriction is overridden and the current solution is
accepted as new best solution and tabu list is updated.

V. Experimental Results

Evaluation of search heuristic efficiency and behavior is
conducted using ISCAS’89 benchmarks [14]. Further con-
sideration should be given to ISCAS’89 by replacing se-
quential elements’ inputs and outputs with POs and PIs
respectively [9]. ISCAS’89 benchmarks used in this work
are mapped to NOR-based gates with maximum of five
inputs. Tabu Search has been implemented using Java
programming language and executed on a machine com-
parable to the one used by other simulations published in
literature, it has 1.5 GHz Intel Pentium M processor with
512MB memory. Figure 6 shows the correlation between
the number of inserted buffers and Manhattan distance.
It’s clear that TS is accepting bad moves in order to reach
better solutions in terms of inserted buffers, which are also
better in terms of Manhattan distance.

Table I shows the number of cells (i.e., NOR/INV logic
gates), inputs and outputs of benchmark circuits used;
Area (𝑇 𝑖𝑙𝑒𝑠) is the area used by CMOL FPGA CAD 1.0
tool [4], while Area (𝑅𝑜𝑤 × 𝐶𝑜𝑙𝑢𝑚𝑛) is the area used in
GA [10], MA [11], LRMA [12] and TS. The heuristic stops
when all violations are removed or when reaching a pre-
defined number of iterations. The median value of results
obtained from 20 runs for each circuit is reported where
each run uses different seeds for random numbers.

TABLE I

ISCAS’89 Benchmarks: showing the number of 𝐶𝑒𝑙𝑙𝑠 to be placed including 𝐺𝑎𝑡𝑒𝑠, 𝐼𝑛𝑝𝑢𝑡𝑠 and 𝑂𝑢𝑡𝑝𝑢𝑡𝑠. 𝐴𝑟𝑒𝑎 is the size of

CMOL 2-D grid. 𝐴𝑈% is the fraction of utilized cells in CMOL grid.

Circuits Cells Gates Inputs Outputs Area (𝑇𝑖𝑙𝑒𝑠) Area (𝑅𝑜𝑤 × 𝐶𝑜𝑙𝑢𝑚𝑛) AU% (𝑇𝑖𝑙𝑒𝑠) AU%
s27 19 8 7 4 64 (2 × 2) 25 (5 × 5) 18.75 32.00
s208 136 109 18 9 256(4 × 4) 169(13 × 13) 48.05 64.50
s298 122 85 17 20 256(4 × 4) 144(12 × 12) 48.83 59.03
s344 180 130 24 26 400(5 × 5) 196(14 × 14) 43.50 66.33
s349 184 134 24 26 400(5 × 5) 196(14 × 14) 26.50 68.37
s382 175 124 24 27 400(5 × 5) 196(14 × 14) 43.25 63.27
s386 164 138 13 13 400(5 × 5) 196(14 × 14) 54.75 70.41
s400 188 137 24 27 400(5 × 5) 196(14 × 14) 47.25 69.90
s420 299 248 34 17 400(5 × 5) 361(19 × 19) 75.00 68.70
s444 187 136 24 27 400(5 × 5) 196(14 × 14) 52.50 69.39
s510 304 266 25 13 - 361(19 × 19) - 73.68
s526 273 222 24 27 576(6 × 6) 324(18 × 18) 57.12 68.52
s641 302 206 54 42 576(6 × 6) 676(26 × 26) 50.17 30.47
s713 321 225 54 42 - 676(26 × 26) - 33.28
s820 447 400 23 24 - 529(23 × 23) - 75.61
s832 454 407 23 24 - 529(23 × 23) - 76.94
s838 606 507 66 33 - 676(26 × 26) - 75.00
s1196 675 613 31 31 - 729(27 × 27) - 84.09
s1238 724 662 31 31 - 784(28 × 28) - 84.44

TABLE II

ISCAS’89 Comparison With CMOL CAD, GA, MA and LRMA - (𝑟 = 12).

Circuits
CMOL CAD 1.0 GA [10] MA [11] LRMA [12] Tabu Search
Delay Time Delay Time Buf Delay Time Buf Delay Time Buf Delay Time Buf

s27 9 1 7 0.01 0 7 0.01 0 7 0.01 0 7 0.01 0
s208 18 3 16 1.12 0 16 0.12 0 16 0.10 0 16 0.01 0
s298 13 7 11 0.17 0 11 0.11 0 11 0.09 0 11 0.01 0
s344 20 8 18 0.57 0 1 0.29 0 18 0.16 0 18 0.01 0
s349 20 7 18 0.49 0 18 0.28 0 18 0.18 0 18 0.01 0
s382 13 7 11 1.60 0 11 0.38 0 11 0.32 0 11 0.03 0
s386 16 11 10 1.05 0 10 0.33 0 10 0.34 0 10 0.03 0
s400 15 8 11 2.12 1 11 0.40 0 11 0.34 0 11 0.02 0
s420 20 8 16 8.50 1 16 3.41 0 16 1.57 0 16 0.07 0
s444 17 9 11 1.86 2 11 0.40 0 11 0.34 0 11 0.03 0
s510 - - 18 16.56 2 18 7.56 0 18 3.42 0 18 0.18 0
s526 16 13 11 9.75 5 11 4.36 0 11 1.59 0 11 0.48 0
s641 25 8 23 82.66 15 19 39.40 4 16 22.02 0 16 6.27 0
s713 - - 24 52.84 34 19 30.11 3 19 41.77 2 19 8.69 0
s820 - - 15 77.52 41 12 61.71 10 12 54.09 6 12 11.77 0
s832 - - 16 69.27 54 12 60.17 11 12 63.77 4 12 10.55 0
s838 - - 28 201.37 50 24 85.62 7 24 100.40 4 24 4.48 0
s1196 - - 30 234.88 84 23 208.15 19 24 179.47 9 23 6.87 0
s1238 - - 37 268.92 121 28 267.34 31 26 353.00 9 26 12.87 0

Average - - 17 54.28 22 15 40.53 4 15 43.31 2 15 3.28 0
Delay: Logic Levels.
Time: Computation Time in Seconds.
Buf: Buffers Inserted.

50 100 150 200 250 300
0

50

100

Iteration

C
os

t:
B

uf
fe

rs
 I

ns
er

te
d

50 100 150 200 250 300

6000

7000

8000

9000

10000

M
an

ha
tte

n
D

is
ta

nc
e

Distance
Buffers

Fig. 6. Change of problem cost and Manhattan distance in TS
iterations (𝑟 = 12 - s1238.blif).

A. Literature Comparison

Comparison is performed with CMOL FPGA CAD 1.0,
we set the connectivity radius to 𝑟 = 12. GA, MA and
LRMA use population size equals to 24 and stopping cri-
teria when fitness score is not updated for 50 times. The
crossover rate in MA and LRMA is 𝑅𝐶 = 0.33 and muta-
tion rate 𝑅𝑀 = 0.01. Simulated Annealing used in each
of GA iterations has initial temperature 𝑇 = 0.2 and ter-
minating temperature 0.01. Table II shows the final re-
sults obtained for ISCAS’89 benchmarks when 𝑟 = 12;
(𝐷𝑒𝑙𝑎𝑦) is the circuit’s logical levels reported by SIS tool
after inserting the buffers, computation time (𝑇 𝑖𝑚𝑒) in sec-
onds, (𝐵𝑢𝑓) shows the number of inserted buffers to satisfy
CMOL connectivity domain.

Tabu Search solutions are more effective than those of
CMOL CAD 1.0 in terms of computation time, delay and

area utilization. The last two columns of Table I show that
cell-based CMOL architecture has better area utilization
𝐴𝑈% than that of tile-based architecture. Table II indi-
cates that the tile-based approach is the most time con-
suming and the least effective in timing delay, it also fails
to place big circuits.

Results obtained from implementation of TS for 𝑟 = 12
are better than those obtained in GA, MA and LRMA in
both computation time and Buffers count. TS required
shorter CPU processing time due to its simplified oper-
ations compared to genetic crossover, mutation and La-
grangian multipliers calculation in LRMA. Table II shows
that Tabu Search found the optimal solutions with zero
buffers for all benchmarks, with 92% average computation
time saving. For example, s1238 benchmark needed only
12.87 seconds in TS, comprising only a 3.6% of time needed
by LRMA.

VI. Conclusion

In this paper we have shown how design automation al-
gorithms, such as Tabu Search, can be employed for de-
sign problem of the emerging hybrid CMOS/nanodevices
architectures, where cells connectivity is limited and nan-
odevices are used for logic implementation. We’ve ana-
lyzed the problem behavior and engineered a Tabu search
solution that exploits better understanding of the limita-
tions imposed by CMOL hybrid circuits’ connectivity do-
main. Results obtained are better than those used in liter-
ature such as SA, GA and LRMA, with huge advantage in
computations time saving. Further we are looking for the
implementation of other search heuristics for CMOL cells
placement and reconfiguration around defects problems.

VII. Acknowledgements

The authors acknowledge King Fahd University of
Petroleum & Minerals for all support.

References

[1] Michael Butts and Andre DeHon. Molecular electronics: De-
vices, systems and tools for Gigagate, Gigabit chips. In In

ICCAD-2002, pages 433–440, 2002.

[2] Dmitri B. Strukov and Konstantin K. Likharev. CMOL FPGA:
a reconfigurable architecture for hybrid digital circuits with two-
terminal nanodevices. Nanotechnology, 16(6):888–900, 2005.

[3] Gregory S. Snider and Stanley R. Williams. Nano/CMOS ar-
chitectures using a field-programmable nanowire interconnect.
Nanotechnology, 18(3):035204, 2007.

[4] Dmitri B. Strukov and Konstantin K. Likharev. A reconfigurable
architecture for hybrid CMOS/Nanodevice circuits. In Proceed-
ings of the 2006 ACM/SIGDA 14th international symposium
on Field programmable gate arrays, FPGA ’06, pages 131–140,
New York, NY, USA, 2006. ACM.

[5] Konstantin K. Likharev. Crossnets: Neuromorphic hybrid
CMOS/Nanoelectronic networks. Science of Advanced Mate-
rials, 3:322–332, 2011.

[6] Dmitri B. Strukov and Konstantin K. Likharev. Prospects
for terabit-scale nanoelectronic memories. Nanotechnology,
16(1):137, 2005.

[7] Dmitri B. Strukov and Konstantin K. Likharev. CMOL FPGA
circuits. In In Proc. of Int. Conf. on Computer Design,
CDES2006, pages 213–219, 2006.

[8] Hossein Hamidipour, Parviz Keshavarzi, and Ali Naderi. Rout-
ing congestion removing of CMOL FPGA circuits by a recur-
sive method. In Proceedings of the 9th WSEAS international

conference on Microelectronics, nanoelectronics, optoelectron-
ics, MINO’10, pages 75–79, Stevens Point, Wisconsin, USA,
2010. World Scientific and Engineering Academy and Society
(WSEAS).

[9] William N.N. Hung, Changjian Gao, Xiaoyu Song, and D. Ham-
merstrom. Defect-tolerant CMOL cell assignment via satisfiabil-
ity. Sensors Journal, IEEE, 8(6):823 –830, june 2008.

[10] Yinshui Xia, Zhufei Chu, William N.N. Hung, Lunyao Wang,
and Xiaoyu Song. CMOL cell assignment by genetic algorithm.
In NEWCAS Conference (NEWCAS), 2010 8th IEEE Interna-
tional, pages 25 –28, june 2010.

[11] Zhufei Chu, Yinshui Xia, William N.N. Hung, Lunyao Wang,
and Xiaoyu Song. A memetic approach for nanoscale hybrid
circuit cell mapping. In Digital System Design: Architectures,
Methods and Tools (DSD), 2010 13th Euromicro Conference on,
pages 681 –688, sept. 2010.

[12] Y. Xia, Z. Chu, W. Hung, L. Wang, and X. Song. An inte-
grated optimization approach for nano-hybrid circuit cell map-
ping. Nanotechnology, IEEE Transactions on, PP(99):1, 2011.

[13] Sadiq M. Sait and Habib Youssef. Iterative Computer Algo-
rithms with Applications in Engineering: Solving Combinatorial
Optimization Problems. IEEE Computer Society Press, Califor-
nia, December 1999.

[14] F. Brglez, D. Bryan, and K. Kozminski. Combinational pro-
files of sequential benchmark circuits. In Circuits and Systems,
1989., IEEE International Symposium on, pages 1929 –1934
Vol.3, may 1989.

