
 
 

Evaluating BLAST Runtime Using NAS-Based High Performance Clusters 

 
Sadiq M. Sait, M. Al-Mulhem 

College of Computer Science and Engineering 
King Fahd University of Petroleum and Minerals 

 {sadiq, mulhem}@kfupm.edu.sa  

 
Raed Al-Shaikh 

EXPEC Computer Center 
Saudi Aramco 

raed.shaikh@aramco.com 
 

 
Abstract - The Basic Local Alignment Search (BLAST) is one 
of the most widely used bioinformatics programs for 
searching all available sequence databases for similarities 
between a protein or DNA query and predefined sequences, 
using sequence alignment technique. Recently, many 
attempts have been made to make the algorithm practical to 
run against the publicly available genome databases on large 
parallel clusters. This paper presents our experience in 
evaluating both the serial and parallel BLAST algorithms 
onto a large Infiniband-based diskless High Performance 
Cluster (HPC) that offers lower hardware cost and 
improved reliability, as opposed to traditional diskfull 
clusters. The paper also presents the evaluation methodology 
along with the experimental results to illustrate the 
scalability of the BLAST algorithm on our HPC system. For 
our measurement and comparison, we considered cluster 
sizes up to 32 compute nodes. Our results show that BLAST 
runtime can still be retained with the use of the diskless 
clusters, while improving the runtime reliability. 
 
 
Keywords: Diskless clusters, HPC Reliability, Infiniband, 
Experimental Performance, Genomes, BLAST. 

 
 

I. INTRODUCTION 
 

Biomedical Informatics is an interdisciplinary science 
which combines knowledge of biology, computer science 
and information engineering to manage health and 
biomedical information. Recently, it is playing leading role 
in research successes such as the mapping of human genes 
(also known as the human genome project) [1] and the 
comparison of primary biological sequence information of 
different proteins or DNA sequences, primarily performed 
by the Basic Local Alignment Search Tool algorithm 
(BLAST).  

BLAST [19], which is our main tool in this research, is 
a suite of programs designed to search all available 
sequence databases for similarities between a protein or 
DNA query and known sequences, using sequence 
alignment technique. Sequence alignment provides an 
accurate mapping between the elements in the two strings. 
Given a pair of strings, there are many possible 
alignments, and each one can be assigned a quality score; 

by giving positive scores to exact letter matches and 
negative scores to substitutions (i.e., where one letter in a 
sequence is mapped to a different letter in the second 
sequence) and gaps (i.e., where mapped letters are the 
same, but they occur in different positions in the 
sequences). This scoring system for matches and 
substitutions is normally done in the form of a “scoring 
matrix” in which the entries reveal the biological impact of 
the corresponding matches or substitutions between two 
inputs [2]. The global similarity score of a pair of 
sequences is simply the score of the best (i.e., highest-
scoring) alignment of the two sequences. It is important to 
mention that even if the global similarity score is low, 
there may still be portions of the sequences that match 
extremely well, and such local alignments are often of 
higher biological interest than the best global alignment. 

Clearly, projects such as BLAST and other Biomedical 
Informatics projects in general, require data analysts and 
computing expertise as well as medical research talents to 
analyze and manage billions of data elements. On top, it 
has been estimated that the collective amount of genetic 
information doubles every twelve to eighteen months. This 
increased volume of information boosts the amount of 
computation required when comparing an unknown 
sequence to the databases of known sequences.  

Though the growing interest in optimizing the parallel 
and distributed computing solutions using scaled-out 
hardware designs is matching this need, the increase in the 
number of cores – and hardware components in general - 
is drastically increasing the probability of hardware 
failures in such systems. On average, the normal failure 
rate of a 512 nodes cluster with dual sockets in each node 
is around 1-2 nodes per week [23]. Although sounds 
insignificant, every single failure on such a cluster would 
cause the whole running application to abort, causing tens 
of hours of computations to be wasted. As a result, one the 
attempts to increase the reliability of such platforms is 
researching the diskless HPC systems. 

Diskless HPC clusters consist of compute nodes with 
no local disks. Instead, the compute nodes get their OS 
image during boot-up by using a centrally located device 
(or disk node) over a local LAN. In some designs, an 
internal network (e.g. 1 Gbps Ethernet) is used to provide 
not only inter-processor communications (IPC) among 
compute nodes but also a medium for booting and file 

mailto:salah@kfupm.edu.sa�


transmission. In other advanced designs, as exhibited in 
Section III, the IPC communication is carried out on a 
separate extremely high-speed interconnect technology 
such as Infiniband or Myrinet. Each diskless compute 
node boots through the NIC’s boot ROM with a small 
bootstrap, and then use either protocols such as BOOTP, 
DHCP, or NIC’s Preboot Execution Environment (PXE) 
to get the OS image from a remote machine (in our case 
the disk node).  Typically, a broadcast BOOTP request is 
first sent to a DHCP server to obtain an IP address. Then, 
the compute node sends a request to the TFTP server to 
get the boot image, point to the OS image, and start the 
booting process. During booting, all the necessary system 
files get transmitted through the network. The compute 
node completes the bootup when the remote file system is 
mounted as root file system (NFS_ROOT). 

There is a number of obvious advantages to diskless 
clusters. First, the cost per cluster node becomes lower. 
Nowadays, the average cost of a server-level hard drive is 
about $200 [3]. This translates to $102,400 for a 512 nodes 
cluster. Second, diskless clusters have smaller footprints, 
i.e., lower power and cooling requirements. Third, cluster 
configuration and setup are consistent. In a diskfull cluster, 
system administrators spend considerable amount of time 
in developing and running script to ensure identical 
installations of OS images and files for all individual 
cluster nodes.  In diskless cluster, since all nodes bootup 
over a network from a centralized disk server, identical OS 
images and installation files are ensured, thereby achieving 
system and file consistency across all compute nodes.  

The real advantage to diskless clusters, however, is the 
reduced maintenance, or downtimes. With diskless 
systems, all mechanical parts – apart from the internal fans 
– are eliminated. For example, the mean time between 
failures (MTBF) of an internal disk is reported to be 
300,000 hours, or 34 years of continuous operation [23]. 
Thus, if there is a cluster of 100 nodes, 3 to 4 disks will be 
replaced every year. If there is a cluster with 12,000 nodes, 
then on average, a disk fails every 25 hours, or around 
every day. 

On the other hand, there are clearly obvious drawbacks 
associated with diskless HPC. The most obvious drawback 
is the added network traffic. Since the compute nodes load 
their OS image by using a centrally located device over a 
local LAN, a diskless HPC cluster configuration generates 
more network traffic than a diskfull HPC cluster by 
reading the image over LAN. Moreover, if the network 
connection or the centralized OS image is not available, 
none of the compute nodes will be accessible. Fortunately, 
solutions exist for these drawbacks [3], such as creating a 
RAM disk on each compute node by allocating part of the 
compute node's main memory as a partition for the file 
system. The RAM disk will be used for storing the most 
frequently accessed files. Therefore, the compute node can 
access some files from local memory instead of through 
the network. 

Our primary objective in this paper is to evaluate both 
the serial and parallel BLAST algorithms on a diskless 
Infiniband-based High Performance Cluster. The 

motivation behind this work is to eliminate a major source 
of failure in the HPC environment and provide a reliable 
platform for BLAST’s long runtimes, while retaining 
performance. To the best of our knowledge, this is the first 
paper that discusses BLAST performance when using 
diskless HPC based on the latest Intel’s Westmere 
technology and Infiniband QDR interconnect. 

The rest of the paper is organized as follows.  In 
Section II, we present other related work in enhancing 
BLAST performance, generally either by running multiple 
sequential searches in parallel or by parallelizing the serial 
search algorithm. In Section III, we present our diskless 
cluster environment and detailed configurations. The 
performance and experimental results are discussed and 
analyzed in Section IV.  Section V concludes the study 
and identifies future work.   
 

II. RELATED WORK 
 

Before discussing the related work on parallelizing 
BLAST, it is imperative to present the two basic methods 
that BLAST is based on, as indicated by Stephen Altschul 
et al. [25] in their work. These methods are:  
 
(1) The maximal segment pair measure  
 

Sequence similarity determination can be identified as 
either global or local. Global similarity technique focuses 
on optimizing the overall alignment of two sequences, 
which may include large stretches of low similarity. The 
local similarity algorithm, on the other hand, seeks only 
relatively conserved subsequences, and a particular 
comparison may result in several distinct subsequence 
alignments, whereas unconserved regions do not 
contribute to the measure of similarity. Generally, local 
similarity measures are preferred for database searches. 
Many similarity measures begin with a matrix of similarity 
scores for all possible pairs of residues. Identities and 
conservative replacements have positive scores, while 
unlikely replacements have negative scores. For DNA 
sequence comparisons, identities are scored with +5, and 
mismatches -4; other scores are of course possible. A 
sequence segment is a contiguous stretch of residues of 
any length, and the similarity score for two aligned 
segments of the same length is the sum of the similarity 
values for each pair of aligned residues. Given these rules, 
we define a maximal segment pair (MSP) to be the highest 
scoring pair of identical length segments chosen from 2 
sequences. The boundaries of an MSP are chosen to 
maximize its score, so an MSP may be of any length. The 
MSP score, which BLAST heuristically attempts to 
calculate, provides a measure of local similarity for any 
pair of sequences.  
 
 
 

 



(2) Rapid approximation of MSP scores  
 

When searching a DNA (or protein) database 
containing multi-thousands sequences, usually only a few, 
if any, will result in a match to the query sequence. For 
this reason, the examiner is interested in identifying only 
those sequence entries with MSP scores over some 
threshold score S. These sequences include those sharing 
highly significant similarity with the query as well as some 
sequences with borderline scores. This latter set of 
sequences may include high scoring random matches as 
well as sequences distantly related to the query. 
Surprisingly, the biological significance of the high 
scoring sequences may be inferred almost exclusively on 
the basis of the similarity score, while the biological 
context of the borderline sequences may be helpful in 
distinguishing biologically interesting relationships [25]. 

Based on these two methods, there have been several 
attempts to model and enhance the performance of BLAST 
algorithm, generally either by running multiple sequential 
searches in parallel or by modifying the serial search 
algorithm to become a parallel algorithm [1,2]. Although 
executing multiple sequential searches in parallel increases 
throughput by an amount that is proportional to the 
number of simultaneous sequential searches, the latency of 
each search will continue to increase at the rate that 
sequence databases are growing. On the other hand, 
transforming a serial algorithm into a parallel code 
requires knowledge in parallel programming, an area that 
has traditionally been confined to high-performance 
computing.  

The serial BLAST was extensively evaluated using C, 
C++, C#, Java, Perl and Python programming languages 
[1], under both Windows and Linux operating systems. 
They also compared the memory usage and speed of 
execution for three standard bioinformatics methods, and 
one of which is BLAST algorithm. As expected, the 
implementations in C and C++ were the fastest and used 
the least memory. However, programs in these languages 
generally contained more lines of code. Java and C# 
appeared to be a compromise between the flexibility of 
Perl and Python and the fast performance of C and C++. 
The relative performance of the tested languages did not 
change from Windows to Linux and no clear evidence of a 
faster operating system was found. The authors however, 
did not explore the performance when parallelizing the 
code using the mentioned programming languages. 

Two tightly coupled optimizations to mpiBLAST, the 
parallel version of BLAST algorithm, were proposed by 
Lin et. al [2]. These are: 1) fine-grained and dynamically 
load-balanced task scheduling and 2) scalable, 
asynchronous output processing. With fine-grained and 
dynamically load-balanced task scheduling, they allow 
flexible placement of master and worker processes to 
balance their computation loads. In addition, different 
worker processes can dynamically re-group and thus avoid 
long idle periods caused by the large difference in the 
computational times for different tasks. With 
asynchronous output processing, they obtained the 

performance benefit of parallel I/O without the 
synchronization overhead imposed by traditional 
collective I/O techniques. They presented extensive 
evaluation of these designs on large scale IBM BG/P 
systems. Their experimental results demonstrated that 
these two enhancements allow the application to scale 
almost linearly (93% efficiency) to 32,768 cores of BG/P. 
They also showed that those optimizations allow tackling 
real computational biology problems, i.e., sequence 
searching a microbial genome database against itself to 
support the discovery of missing genes in genomes.  

The approach of Dynamic BLAST, an application to 
exploit the benefits offered by a distributed and 
heterogeneous system such as the Grid was also exploited 
[26]. The authors focused on using existing parallel 
versions of BLAST and extending those, particularly 
query segmentation. Rather than limiting execution of the 
search to any one resource, regardless of how large it is, 
they distributed the workload across different and 
independent resources found in the Grid, resulting in a 
larger pool of worker nodes and, thus, faster turnaround 
time. One of the key components of Dynamic BLAST is a 
file parsing module which examines user submitted query 
file containing any number of BLAST queries, and parses 
it to create a number of files or fragments of 
approximately equal size. 

Further, a new parallelization approach to execute 
BLAST in distributed and parallel environments, 
considering load balancing was also proposed [22]. They 
used a replicated allocation of the (sequences) database, 
where each copy is physically fragmented. Their work is 
somewhat distinct, in a way that they focused on the 
database-level (i.e. database distribution design, I/O 
parallelism and query execution) to improve BLAST 
evaluation in clusters or Grids. 

A high-throughput BLAST system based on Web 
services was also developed in 2003 [27]. Their solution 
provides an alternative BLAST service and allows users to 
perform multiple BLAST queries at one run in a 
distributed, parallel environment through the Internet. 
Soap-HT-BLAST is implemented using Perl and its 
module SOAP::Lite for Web services. The hardware 
architecture of Soap-HT-BLAST includes one head node 
(machine) and three compute nodes. Each compute node 
has four Ultrasparc III 900MHz CPUs and 8GB memory. 
The CPU load of a compute node is the summation of four 
CPUs’ loads and the full load of each CPU is 25%. 
 

III. THE CLUSTER DESIGN 
 

To perform our BLAST benchmarks, a DELL cluster 
of PowerEdge M610 Blade Servers was used. It is the 
same cluster we utilized earlier to perform our diskless vs. 
diskfull HPC evaluation using the High Performance 
LINPACK (HPL) tool [12]. The cluster consisted of 32 
nodes with dual sockets and Intel QuadCore X5570 
(Nehalem) 2.93GHz processors. The operating system 
running on the nodes was RedHat Enterprise Linux Server 
5.3 with the 2.6.18-128.el5 kernel. Each node was 



equipped with an Infiniband Host Channel Adapter (HCA) 
supporting 4x Double Data Rate (DDR) connections with 
the speed of 16Gbps, and 1Gbps Ethernet connection. The 
Infiniband connection was used for the actual inter-process 
communication while the Ethernet connection was mainly 
used for the OS image boot-up and remote access. Each 
node also had 12 GB (6 x 2GB) DDR3 1333MHz of 
memory, therefore, the total amount of memory the system 
had was around 384GB. 

A disk node in the cluster was sharing a Linux ext3 file 
system as a network file system (NFS) among the 32 
nodes of the cluster. This file system contained the Intel 
MPI libraries as well as the BLAST binaries and genomes 
databases. This helped in providing shared access to all of 
the 32 nodes of the cluster instead of having to propagate 
multiple copies of these items to all of the nodes. The disk 
node was also hosting the NFS_ROOT file system 
containing the operating system that will be shared among 
the diskless clients via network. All nodes had SSH trust 
keys between them so no password was needed for access. 
In addition to the 32 nodes, one management node was 
used to monitor and maintain the cluster and two subnet 
managers for the Infiniband interconnect network were 
available in an active/passive setup to manage the 
Infiniband network. 

In case of diskless configuration, we had to increase 
the number of concurrent NFS threads running on the disk 
node hosting NFS_ROOT to handle the diskless clients’ 
NFS requests, by adjusting the default value of 
"$RPCNFSDCOUNT" variable in the NFS process file. 
This value depends greatly on the IO load pattern, the 
network speed, the concurrency in the access and similar 
things. Red Hat recommends that systems administrators 
do a dynamic sizing of the number of nfsd threads. During 
our tests, 64 concurrent threads was found to be the 
optimal number. Nevertheless, the NFS I/O load on the 
disk node went up to 55 (uptime command figure), or:  
[(55 / 8 cores) – 1 * 100 = 587%] over-utilization when the 
diskless cluster first booted. 
 

Ethernet Switch

Disk node
(OS Image node)32x Compute nodes

Inf
ini

ba
nd

 N
etw

or
k

1Gbps

16Gbps

 
Figure 1. Experimental setup and communication 

 
From each compute node we had a 4x-DDR Infiniband 

connection going to a central 32-port Qlogic Infiniband 
switch. Figure 1 shows the Infiniband interconnection 
design as described. It is important to mention that this 
design is considered non-blocking as each node guarantees 

to have the full 4x DDR 16Gbps interconnect speed. This 
fast interconnect would drive the cluster to a higher 
utilization, which in theory, may affect the diskless 
concept.   

When we first booted our diskless cluster, the internal 
network first high sending burst took place at when the 
kernel image was being sent to the booting nodes to be 
loaded into their memory, while the second sending burst 
took place a few seconds later, which was caused by 
loading the actual OS files. These two bursts maxed to 
approximately 118MB/s, which is the maximum 
throughput of a 1Gbps connection. These bursts indicate a 
clear network contention on the disk node while the 
diskless nodes were booting up. In between the two bursts, 
the network activity goes down as the kernel image (initrd) 
scans for hardware in these diskless nodes, in which it 
does not need much of network activity. On the other hand 
and after completing the bootup process, the network 
activity decreased for both network send and receive down 
to 500KB/s, as the diskless nodes had the OS image 
loaded into memory, and minimal access to disk node 
would be required. Such minimal access is primarily 
caused by Linux activities related to /proc and other virtual 
file systems for collecting and reporting system statistics.   
 

IV. EXPERIMENTAL RESULTS 
 

In this section, we present our experimental results 
when benchmarking BLAST using both diskless and 
diskfull nodes.  

In order to evaluate the performance, the benchmarks 
were run on the first diskless node for the serial BLAST 
tests, and ranging from one node and up to 32 nodes for 
the MPI experiments. We used both the NCBI BLAST 
[24] and mpiBLAST packages [26] for the tests. Both 
implementations are freely available, whereas mpiBLAST 
is the parallel implementation of the tool. The main benefit 
to using mpiBLAST versus the serial BLAST is 
performance. mpiBLAST can increase performance by 
several orders of magnitude [26] while still retaining 
identical results as output from the serial BLAST. 
Particularly, through the use of database fragmentation, 
mpiBLAST performs a BLAST search in parallel. 
Database fragmentation partitions a database into multiple 
fragments and by distributing the fragments across many 
computational-resources (e.g. cluster-nodes), where each 
fragment can be searched simultaneously. Furthermore, by 
segmenting the query into multiple, independent searches, 
multiple BLAST searches can be simultaneously 
performed.  

In our experiments, we used two different databases 
against our two 560 and 1,410 nucleotides input sequences 
to examine the scalability of our BLAST runs, namely: the 
Drosoph database for having the Drosophila sequences 
with a size of 120MB, and the human genomes database 
with around 9.8GB of sequence records. Table 1 shows the 
performance benchmark of the serial BLAST using both 
the diskless and diskfull configurations.  

 



Table 1. Serial BLAST comparison using the two cluster configurations 
 

Cluster 
Type 

Database Elapsed Time 
(560 nucleotides 
sequence input) 

Elapsed Time 
(1,410 nucleotides 
sequence input) 

Diskfull Drosoph 6.5 seconds 10.5 seconds 
Diskless Drosoph 6.3 seconds 10.1 seconds 

Diskfull Human 
genomes 221 seconds 289 seconds 

Diskless Human 
genomes 212 seconds 280 seconds 

 
In this serial BLAST benchmark, the diskless runs 

slightly superseded the diskfull configuration in all 
iterations. Specifically, the diskless cluster performed 
around 3% better than the diskfull version. The rationale 
behind this slight increase is the elimination of disk 
accesses when referencing the OS was needed.   

Table 2 shows the performance of the mpiBLAST 
code using the Drosoph database. In this test, the 
mpiBLAST was compiled using MVAPICH while 
retaining all the default options. In addition, the database 
was fragmented prior in each run to a number of partitions 
that is equal to the number of the cluster nodes, in order to 
achieve the optimal performance.  
 

Tables 2. mpiBLAST performance benchmark using the Drosoph 
database 

 

N
od

es
 Diskless 

(560 
nucleotides) 

Diskfull 
(560 

nucleotides) 

Diskless 
(1,140 

nucleotides) 

Diskfull 
(1,140 

nucleotides) 
time time time time 

1 7.2 sec 7.6 sec 11.7 sec 12.4 sec 
2 3.9 sec 4.0 sec 9.0 sec 9.5 sec 
4 2.5 sec 2.6 sec 7.9 sec 8.1 sec 
8 0.7 sec 0.73 sec 3.0 sec 3.1 sec 

16 0.3 sec 0.31 sec 1.5 sec 1.5 sec 
32 0.2 sec 0.2 sec 0.2 sec 0.2 sec 

 
It is noticeable that the diskless-runs on a single node 

took around 7.2 seconds when using the 560-nucleotides 
sequence, whereas it took only 6.3 seconds when using the 
serial BLAST (in fact this observation applies to all single 
MPI-node runs vs. serial BLAST runs). This effect is due 
to the fact that the MPI-based BLAST code has more 
routines and functions to call, making the code more 
complex, and thus more time to run. Another observation 
is the degradation in performance increase rate when 
reaching 6 nodes. This degradation is related to the 
additional communication overhead with respect to the 
computation time. This communication is lessened in the 
Human genome database runs as the computation time 
gets larger with respect to the communication overhead. 
Similar to the serial BLAST tests, the diskless cluster 
outperformed the diskfull setup in both database runs.  
 
 

Table 3: mpiBLAST performance benchmark using the Human genome 
database 

 

 
N

od
es

 

Diskless 
(560 

nucleotide 
seq.) 

Diskfull 
(560 

nucleotide 
seq.) 

Diskless 
(1,140 

nucleotide 
seq.) 

Diskfull 
(1,140 

nucleotide 
seq.) 

time time time time 
1 230 sec 239 sec 296 sec 303 sec 
2 121.7 sec 127 sec 164 sec 168 sec 
4 85 sec 88 sec 105 sec 108.1 sec 
8 22 sec 25 sec 35 sec 37.2 sec 

16 15 sec 16.1 sec 23.2 sec 24 sec 
32 4.0 sec 4.3 sec 5.0 sec 5.3 sec 

 
Table 3 presents the performance using the 9.8GB 

Human genome database. Again, both the 560 and 1,140 
nucleotides sequences were used in the runs. Overall, the 
performance of the diskless setup supersedes the diskfull 
cluster by around 2-4%. This percentage was lessened 
when exceeding 12 nodes as the MPI communication 
overhead became the main contributor to the running time. 
It is also noticeable that that performance scalability is 
somewhat linear when using up to 12-15 nodes. 

During the mpiBLAST run, we also measured the 
effect of the diskless cluster environment in terms of 
temperature of both CPUs, the motherboard’s temperature, 
and the power consumption for all 32 nodes. DELL’s 
version of Intelligent Platform Management Interface 
(IPMI) tool [15] was used to collect such readings while 
the benchmarks were running on the nodes and fully 
utilizing the CPU and memory.  

 
Table 4. Temperature and power consumption for diskfull vs. diskless 

HPC 
 

#Nodes/State 
Avg. Node Temp. 

( Co )  
Avg. Node Power 

(Watts) 
126 Nodes/diskfull 21 282 
126Nodes/diskless 21 279 

 
In terms of temperature and heat dissipation, the 

diskfull and diskless readings were about the same at 
C21o  while performing the HPL test. In terms of power 

consumption, however, the diskless nodes operated with 
an average of 279 Watts per node, compared to 282 Watts 
per node for the diskfull configuration. That is about 2% 
saving in power. This difference in power saving matches 
the hardware specifications of the published DELL 
internal disks power consumption [15] where they 
consume around 5 Watts per node. According to the 
United States’ Department of Energy statistics for 2010, 
the average price for electricity in the USA is 14.53 cents 
per kW hour [19]. This would translate to an annual saving 
of U.S. $45,772 for a diskless cluster consisting of 12,000 
nodes compared to a diskfull cluster of the same size. 

Furthermore, selected tests were conducted to examine 
the behavior of diskless system under various conditions, 
one of which is the Gigabit Ethernet network utilization 
and disk I/O activities at the disk node throughout the 



experiment run time. It was noticed that obvious network 
and disk I/O activities occurred only when all the 32 nodes 
were booting up and loading the OS image via the 
network, reaching up to 115MB/s aggregate. However, 
after bootup, minimal activities were observed. Such 
observation is expected as access to OS node is needed 
only during the bootup of the 32 compute node, and later 
the inter-process communication among compute nodes is 
carried out by the Infiniband links. On the other hand, disk 
writes continued as the diskless nodes were writing their 
states on the disk node, such as system and kernel logs 
(e.g. /var). These writes, however, did not exceed 5MB/s 
aggregate. 

We also measured the effect of losing the head node 
crash while the cluster is being utilized. Particularly, the 
NFS service was stopped (i.e. NFS_ROOT) on the disk 
node that was serving the OS image to the compute nodes.  
The NFS crash caused the compute nodes to completely 
stall with no network access. This is expected because 
during BLAST run, there was still access to disk node, but 
minimal in the range of 300-400 KB/s. The system was 
back to normal operation, however, when the NFS service 
was back online. This behavior is expected as the NFS 
protocol is stateless. That is, the NFS server should not 
need to maintain any protocol state information about any 
of its clients in order to function correctly. With stateless 
servers, a client needs only retry requests until the server 
responds; it does not even need to know that the server has 
crashed, or the network temporarily went down.  
 

V. CONCLUSION AND FUTURE WORK 
 

The Basic Local Alignment Search (BLAST) is a 
computation-intensive tool for searching all available 
sequence databases for similarities between a protein or 
DNA query and predefined sequences, using sequence 
alignment technique. Recently, many attempts have been 
made to make the algorithm practical and reliable to run 
against the publicly available genome databases. One of 
these attempts is to research the feasibility and 
performance of diskless HPC systems. In this paper, we 
evaluated the performance of serial and parallel BLAST 
algorithms using a state-of-the-art diskless HPC cluster. 
Our results show that BLAST runtime can still be retained 
with the use of the diskless clusters, while improving the 
runtime reliability.  

As a future study, we plan to expand the size of the 
Infiniband diskless cluster to include 512 compute nodes, 
and then investigate BLAST performance. We also plan to 
evaluate diskless cluster performance when using other 
popular benchmarks such as the Pallas MPI benchmarking 
tool [17] which gives more insight on MPI behavior and 
performance. We are also considering measuring the 
performance of diskless clusters when using 10 Gbps 
Ethernet for IPC communication instead of Infiniband. 

 
 

ACKNOWLEDGMENT 
 

The authors would like to thank King Fahd University 
for Petroleum and Minerals (KFUPM) and the EXPEC 
Computer Center (ECC) at Saudi Aramco for their 
invaluable support and contributions to conduct this 
research. 
 

REFERENCES 
 
[1] Fourment,M. and Gillings,M.R. (2008) A comparison of 

common programming languages used in bioinformatics. 
BioMed Central Ltd Bioinformatics (BMC). 2008; 9: 82. 

[2] Lin,H. et al.(2008) Massively parallel genomic sequence 
search on the Blue Gene/P Architecture. In Proceedings of 
the 2008 ACM/IEEE conference on Supercomputing, 
USA, pp.1-11. 

[3] J. Laros and L. Ward, “Implementing scalable diskless 
clusters using the network file system”, Proceedings of the 
Los Alamos Computer Science Institute (LACSI) 
Symposium 2003, USA, October, 2003. 

[4] B. Guler, M. Hussain; T. Leng, and V. Mashayekhi, “The 
Advantages of Diskless HPC Clusters using NAS”, DELL 
Inc., Nov. 2002. 

[5] C. Yang and Y. Chang, “A Linux PC Cluster with 
Diskless Slave Nodes for Parallel Computing”, High-
Performance Computing Laboratory, Department of 
Computer Science and Information Engineering, Tunghai 
University, Jan, 2003. 

[6] C. Engelmann, H. Ong and S. Scott, “Evaluating the 
Shared Root File System Approach for Diskless High-
Performance Computing Systems”, Proceedings of the 
10th LCI International Conference on High-Performance 
Clustered Computing (LCI-09), Colorado, 2009. 

[7] Terry Jones, Andrew Tauferner, Todd Inglett, et al., “HPC 
Colony: Linux at Large Node Counts Report from 
Experiments Conducted on Sixth BGW Day”, August 10, 
2007 

[8]  J. Laros, C, Segura and N. Dauchy, “A Minimal Linux 
Environment for High Performance Computing Systems”, 
The 10th World Multi-Conference on Systemics, 
Cybernetics and Informatics, Florida, July 2006, pp.130-
138. 

[9] C. Lu., “Scalable Diskless Checkpointing for Large 
Parallel Systems”, MSc. Thesis, University of Illinois at 
Urbana-Champaign, 2002. 

[10]  B. Maher, “Techniques to Build a Diskless Boot Linux 
Cluster of JS21 Blades”, IBM Red Book, 2006. 

[11]  T. Morgan JR., “DRBL: Diskless Remote Boot in 
Linux”, Master’s Capstone Project on High Performance 
Computing, April, 2006. 

[12] HPL - High-Performance Linpack Benchmark. Available 
at: http://www.netlib.org/benchmark/hpl 

[13] S. Frank and R. Haskin, “GPFS: A shared-disk file system 
for large computing clusters”, Proceedings of 1st 
Conference on File and Storage Technologies (FAST), 
USA, Jan., 2002, pp. 231–244. 

[14] P. Reisner and L. Ellenberg, “Replicated storage with 
shared disk semantics”, Proceedings of the 12th 
International Linux System Technology Conference 
(Linux-Kongress), Germany, Oct, 2005, pp.111-119. 

[15] DELL Blades Server for HPC M610. Available at: 
http://www.dell.com/us/en/enterprise/servers/server-
poweredge-m610. 

[16] C. Juszczak, “Improving the Write Performance of an 

http://www.hongong.org/research/Evaluating%20the%20Shared%20Root%20File%20System%20Approach%20for%20Diskless%20High-Performance%20Computing%20Systems�
http://www.hongong.org/research/Evaluating%20the%20Shared%20Root%20File%20System%20Approach%20for%20Diskless%20High-Performance%20Computing%20Systems�
http://www.hongong.org/research/Evaluating%20the%20Shared%20Root%20File%20System%20Approach%20for%20Diskless%20High-Performance%20Computing%20Systems�
http://www.netlib.org/benchmark/hpl�
http://www.dell.com/us/en/enterprise/servers/server-poweredge-m610�
http://www.dell.com/us/en/enterprise/servers/server-poweredge-m610�


NFS Server”, Proceedings of the USENIX Winter 1994 
Technical Conference, USENIX, Association  Berkeley, 
CA, USA, pp. 20-20, 1994. 

[17] Pallas Benchmarking tools. Available at: 
http://people.cs.uchicago.edu/~hai/vcluster/PMB/ 

[18] J. Dongarra, J. Luszczek, and A. Petitet, “The LINPACK 
benchmark: past, present and future”, in the Journal of 
Concurrency and Computation: Practice and Experience, 
2003, pp. 803-820. 

[19] Energy Information Administration, USA Department of 
Energy 
http://www.eia.doe.gov/cneaf/electricity/epm/table5_6_b.
html 

[20] NCBI BLAST, available at: 
http://blast.ncbi.nlm.nih.gov/Blast.cgi 

[21] H. Lin, P. Balaji, R. Poole, C. Sosa, X. Ma, W. Feng, 
“Massively parallel genomic sequence search on the Blue 
Gene/P architecture”, SC '08 Proceedings of the 2008 
ACM/IEEE conference on Supercomputing. 

[22] A. Darling, L. Carey, and W. Feng, “The Design, 
Implementation, and Evaluation of mpiBLAST”, 4th 
International Conference on Linux Clusters: The HPC 
Revolution 2003 in conjunction with ClusterWorld 
Conference & Expo, June 2003. 

[23] K Salah, R. Al-Shaikh, M. Sindi, “Towards Green 
Computing Using Diskless High Performance Clusters”, 
submitted to Journal of Network and Computer 
Applications (JNCA), December, 2010. 

[24] J. Sloan, “High performance Linux clusters with OSCAR, 
Rocks, openMosix, and MPI”, O’Reilly Publication, 2005. 

[25] S. Altschul, W. Gish, W. Miller, E. Myers, D. Lipman, 
“Basic local alignment search tool”, J. Mol. Biol. 
215:403-410, 1990. 

[26] E. Afgan, and P. Bangalore, “Dynamic BLAST – a Grid 
Enabled BLAST”, The International Journal of Computer 
Science and Network Security, Vol. 9, Issue 4, pp. 149-
157, 2009. 

[27] J. Wang, and Q. Mu, “Soap-HT-BLAST: High 
Throughput BLAST based on Web Services”, Journal of 
Bioinformatics 19:1863-1864, 2003. 

http://www.eia.doe.gov/cneaf/electricity/epm/table5_6_b.html�
http://www.eia.doe.gov/cneaf/electricity/epm/table5_6_b.html�
http://blast.ncbi.nlm.nih.gov/Blast.cgi�

