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Abstract - In recent years, we have witnessed a growing 
interest in optimizing the parallel and distributed computing 
solutions using scaled-out hardware designs and scalable 
parallel programming paradigms. This interest is driven by the 
fact that the microchip technology is gradually reaching its 
physical limitations in terms of heat dissipation and power 
consumption. Therefore and as an extension to Moore’s law, 
recent trends in high performance and grid computing have 
shown that future increases in performance can only be 
reached through increases in systems scale using a larger 
number of components, supported by scalable parallel 
programming models. In this paper, we evaluate the 
performance of two commonly used parallel compilers, Intel 
and Portland’s PGI, using a state-of-the-art Intel Westmere-
based HPC cluster. The performance evaluation is based on 
two sets of experiments, once evaluating the compilers’ 
performance using an MPI-based code, and another using 
OpenMP. Our results show that, for scientific applications that 
are matrices-dependant, the MPI and OpenMP features of the 
Intel compiler supersede PGI when using the defined HPC 
cluster.   

Index Terms— HPC, Intel, PGI, compilers, Infiniband. 
 

I. INTRODUCTION 
In recent years, we have witnessed a growing interest in 

optimizing the parallel and distributed computing solutions 
using scaled-out hardware designs and scalable parallel 
programming paradigms. This interest is driven by the fact 
that single CPU-chips are reaching their physical limits in 
terms of heat dissipation and power consumption. Therefore 
and as a continuation to Moore’s law, recent trends in high 
performance and grid computing have shown that future 
increases in performance can only be achieved through 
increases in systems scale using a larger number of 
components, which are supported by scalable parallel 
programming models. Accordingly, scaled-out computing is 
clearly becoming the trend. 

In terms of the underlying hardware, multi-cores CPUs 
and ultra-fast interconnects are today’s ingredients for the 
High Performance Computing systems. Intel and AMD are 
still the leaders in the CPU industry, dominating the 
top500.org list of the most powerful supercomputers 
worldwide, and taking over 80% of HPC as of 2010 [9]. 
Nowadays, most of the high performance clusters use multi-
core CPUs in their compute nodes, ranging from 2 to 4 
cores per nodes, while 6-cores sockets will become more 
common on clusters as Intel and AMD released their 

Westmere and Phenom II multi-core CPUs, respectively [7].  
On the HPC interconnects side, there are several network 
interconnects that provide ultra-low latency (less than 1 
microsecond) and high bandwidth (several gigabytes per 
second). Some of these interconnects may even provide 
flexibility by permitting user-level access to the network 
interface cards for performing communication, and also 
supporting access to remote processes’ memory address 
spaces [1]. Examples of these interconnects are Myrinet 
from Myricom, Quadrics and Infiniband [1]. The 
experiments in this paper are done on the Infiniband 
architecture, which is one of the latest industry standards, 
offering low latency and high bandwidth as well as many 
advanced features such as Remote Direct Memory Access 
(RDMA), atomic operations, multicast and QoS [2]. 
Currently, available Infiniband products can achieve latency 
of 200 nanoseconds for small messages and a bandwidth of 
up to 3-4 GB/s [1]. As a result, it is becoming increasingly 
popular as a high-speed interconnect technology option for 
building high performance clusters. 

On the parallel programming level, MPI and OpenMP 
have become the de facto standard to express parallelism in 
a program. OpenMP provides a fork-and-join execution 
model, in which a program begins execution as a single 
process or thread. This thread executes sequentially until a 
parallelization directive for a parallel region is found. At 
this time, the thread creates a team of threads and becomes 
the master thread of the new team. All threads execute the 
statements until the end of the parallel region. Work-sharing 
directives are provided to divide the execution of the 
enclosed code region among the threads. The advantage of 
OpenMP is that an existing code can be easily parallelized 
by placing OpenMP directives around time consuming 
loops which do not contain data dependences, leaving the 
source code unchanged. The disadvantage is that it is a big 
challenge to scale OpenMP codes to tens or hundreds of 
processors. One of the difficulties is a result of limited 
parallelism that can be exploited on a single level of loop 
nest. 

Another program parallelization can be achieved through 
the message passing programming paradigm, which can be 
employed within and across several nodes. The Message 
Passing Interface (MPI) [4] is a widely accepted standard 
for writing message passing programs. MPI provides the 
user with a programming model where processes 
communicate with other processes by calling library 
routines to send and receive messages. The advantage of the 
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MPI programming model is that the user has complete 
control over data distribution and process synchronization, 
permitting the optimization of data locality and workflow. 
The disadvantage is that existing sequential applications 
require a fair amount of restructuring for parallelization 
based on MPI.  

Our objective in this paper is to evaluate the performance 
of two commonly used parallel compilers, Intel and 
Portland’s PGI, using a state-of-the-art HPC cluster. As 
described in the evaluation section, the performance 
evaluation is based on two sets of experiments, once 
evaluating the compilers’ performance using an MPI-based 
code (between cluster nodes), and another using OpenMP-
based code (using a single cluster node with dual hexa-cores 
Westmere sockets). To the best of our knowledge, this is the 
first paper that discusses Intel and PGI compilers’ 
performance based on the latest Intel’s Westmere 
technology and Infiniband QDR interconnect. 

The rest of the paper is organized as follows: In section 2, 
we briefly shed some light on the compilers, the Infiniband 
interconnect technology, the Intel Westmere CPU 
architecture, and the MPI implementations used to 
benchmark our compilers, while in section 3 we describe 
our experimental evaluation and interprets the benchmark 
results. We state our conclusion and future work in the last 
section. 

II. BACKGROUND 
In this section, we briefly describe the characteristics of 

both the Intel and PGI compilers. Also, we will shed light 
on the technologies used to benchmark the two compilers. 
These are: the Quad Data Rate (QDR) Infiniband 
interconnect technology, the Intel Westmere architecture, 
and the MPI implementations. 

A. Intel and PGI Compilers 
Both Intel C and Fortran compilers support compilation 

for IA-32, Intel 64, Itanium 2, processors and certain non-
Intel but compatible processors, such as certain AMD 
processors [7]. The Intel compiler further supports both 
OpenMP 3.0 and automatic parallelization for SMP. With 
the add-on capability Cluster OpenMP, the compiler can 
also automatically generate MPI calls for distributed 
memory multiprocessing from OpenMP directives. 

Similar to the Intel compilers, PGI C/C++ includes native 
parallelizing/optimizing OpenMP C++ and ANSI C 
compilers. In addition, PGI’s server version includes the 
OpenMP and MPI parallel graphical debugger (PGDBG) 
and the OpenMP and MPI parallel graphical performance 
profiler (PGPROF) that can debug and profile up to 16 local 
MPI processes. PGI Server also includes a precompiled 
MPICH message passing library.  

Both Intel and Portland Group Inc. (PGI) continuously 
tune their compilers to optimize for hardware platforms to 
minimize stalls and to produce code that executes in the 
fewest number of cycles. Both compilers share many 

technical features and high-level optimizations, such as: 
interprocedural optimization (IPO), profile-guided 
optimization (PGO), and high-level optimizations (HLO) [7, 
8]. High-level optimizations are optimizations performed on 
a version of the program that more closely represents the 
source code, such as loop interchange, loop unrolling, loop 
distribution and data-prefetch. These optimizations are 
usually very expensive and may take considerable 
compilation time. 

Interprocedural optimization applies typical compiler 
optimization that may affect multiple procedures, multiple 
files, or the entire program. IPO aims to reduce or eliminate 
duplicate calculations, inefficient use of memory, and to 
simplify iterations such as loops. In addition, IPO reorders 
the procedures for better memory utilization and locality. 
IPO also incorporates typical compiler optimizations on the 
entire program, for example, removing codes that are never 
executed in a program.  

Profile-guided optimization, on the other hand, refers to a 
mode of optimization where the compiler performs a sample 
run of the program across a representative input set. The 
data would then indicate which sections of the program are 
executed more frequently, and which areas are accessed less 
frequently. All optimizations benefit from profile-guided 
feedback because they are less reliant on heuristics when 
making compilation decisions.  

B. Infiniband Architecture 
Infiniband is a technology that provides a high bandwidth 

I/O communication over a high speed serial data bus. It uses 
a switched fabric topology, as opposed to a hierarchical 
switched network like Ethernet [2]. It is designed to directly 
route data from one point to another point through a switch, 
where all transmissions begin or end at a channel adapter 
(HCA). Each Infiniband processor contains a host channel 
adapter (HCA) and each peripheral has a target channel 
adapter (TCA).[3] The Infiniband serial connection 
signaling rate is 2.5 Gbit/s in single data rate (SDR) 
technology, 5.0 Gbit/s in double data rate (DDR) technology 
or 10 Gbit/s in quad data rate (QDR), in each direction per 
connection. Moreover, the links can be aggregated in units 
of 4 or 12, designated as 4X and 12X. However, Infiniband 
uses 8B/10B encoding, which implies four fifths of the 
traffic is useful, therefore DDR 4X link curries 20 Gbit/s 
raw, or 16 Gbit/s of useful data. Table-1 summarizes the 
different Infiniband technologies with their associated 
theoretical performance numbers.  

Table 1: Performance numbers of different Infiniband technologies 

IB 
technology 

SD IB Data 
Rate 

DD IB Date 
Rate 

QDR IB 
Data Rate 

1x 2Gbps 4Gbps 8Gbps 
4x 8Gbps 16Gbps 32Gbps 
12x 24Gbps 48Gbps 96Gpbs 

 

http://www.pgroup.com/products/pgprof.htm�


 
 

Infiniband uses a hardware-offload protocol stack [3]. 
Extra memory copies that are sent from the application to an 
adapter can be avoided by the zero copy mechanism that 
optimizes the message transfer time. Moreover, Infiniband 
allows moving data from local memory to remote memory 
using RDMA (Remote Direct Memory Access), which 
allows the zero copy mechanism without involving the 
receiver host processor [2]. The number of user-kernel 
context switching and memory copies can be reduced by the 
direct access to the Infiniband HCA. Obviously, enabling 
communication between devices and hosts, without the 
traditional system resource overhead associated with 
network protocols, off-loads data movement from the server 
CPUs to the Infiniband HCA. Through virtual lanes (VLs), 
Infiniband offers traffic management, creating multiple 
virtual links within a single physical link that allows a pair 
of linked devices to isolate communication interference 
from other connected devices. 

C. Intel Westmere Specifications 
Westmere is the code name for the latest in the series of 

multi-core processors by Intel. This is Intel’s true hexa-core 
processor with L2 cache sharing and utilizing the 
revolutionary Quick Path Interconnect (QPI) architecture [7] 
that provides two separate lanes for the communication 
between the CPU and the chipset. The QPI technology 
allows the CPU to transmit and receive I/O data in parallel, 
as opposed to the traditional architecture using a single 
external bus where the external bus is used for both input 
and output operations reads and writes cannot be done at the 
same time. The latest version of the QPI works with a clock 
rate of 3.2 GHz, transferring two data per clock cycle 
(Double Data Rate), making the bus to work as if it was 
using a 6.4 GHz clock rate.  

Further, Intel Westmere generation is equipped with 
Turbo Boost Technology [7] that automatically allows 
processor cores to run faster than the base operating 
frequency if it's operating below power, current, and 
temperature specification limits. This frequency change is 
dependent on the number of active cores, estimated current 
consumption, estimated power consumption and processor 
temperature. When the processor is operating below these 
limits and the user's workload demands additional 
performance, the processor frequency will dynamically 
increase by 133 MHz on short and regular intervals until the 
upper limit is met or the maximum possible upside for the 
number of active cores is reached. 

D. MVAPICH MPI Implementation 
The Message Passing Interface (MPI) is the dominant 

programming model for parallel scientific applications. 
Given the role of the MPI library as the communication 
substrate for application communication, the library must 
ensure to provide scalability both in performance and in 
resource usage. In our experiments, we used MVAPICH, 
one of the most commonly used MPI implementations in the 

HPC industry. MVAPICH [12] implementation is mainly 
known for its support for Infiniband interconnect 
technologies as well as having high performance scalability 
support for clusters running thousands of cores. As for the 
Intel MPI, MVAPICH also supports various runtime 
environments such as SLURM and PBS. 

III. PERFORMANCE EVALUATION AND RESULTS 
To perform benchmark evaluation, a DELL cluster of 

PowerEdge M610 Blade Servers was used. The cluster 
consisted of 32 nodes with dual sockets and Intel hexa-Core 
x5670 (Westmere) 2.93GHz processors. The operating 
system running on the nodes was RedHat Enterprise Linux 
Server 5.3 with the 2.6.18-128.el5 kernel. Each node was 
equipped with an Infiniband Host Channel Adapter (HCA) 
supporting 4x Quad Data Rate (QDR) connections with the 
speed of 32Gbps. Each node also had 24 GB (6 x 4GB) 
DDR3 1333Mhz of memory, thus the total amount of 
memory the system had was around 786 GB. 

The physical layout of the cluster consisted of two 
chassis, and each chassis hosts up to 16 blade nodes. From 
each node we had a 4x-QDR Infiniband connection going to 
a central 32-port Qlogic Infiniband switch. Figure 1 shows 
the Infiniband interconnection design as described. It is 
important to mention that this design is considered non-
blocking as each node guarantees to have the full 4x QDR 
32Gbps interconnect speed. This fast interconnect would 
drive the cluster to a higher utilization, which in theory, may 
affect the diskless concept.   

Our Infiniband interconnect topology uses three switches: 
A top-level switch and other two leaf switches. Under this 
configuration, IPC communication among nodes of 12 sub-
clusters is localized to one leaf switch, but for the cluster of 
16 nodes, the top-level switch is involved to support more 
nodes.   

 

Infiniband 
Top-level switch

2 Blade
 enclosures 
(32 compute 

nodes)

16 IB interconnect 
fabric from each 

enclosure

 
Figure 1: The DDR Infiniband interconnect for a 32 nodes cluster 

In order to evaluate the performance of the two compilers, 
the benchmarks were run on the cluster nodes starting with 
one thread and scaling up to 12 threads for the OpenMP 
tests, and ranging from one node and up to 12 nodes for the 
MPI experiments.  

In our experiments, we used two versions of matrix 
multiplication algorithms [13, 14] to benchmark the two 
compilers. Beside it is computationally intensive with 

)( 3nO iterations, we chose the matrix multiplication since 



 
 

it is a fundamental operation in many numerical linear 
algebra applications. Its efficient implementation on parallel 

computers is an issue of prime importance when providing 
such systems with scientific software libraries.  

 
 

1. #include <omp.h> 
2. #include <stdio.h> 
3. #include <stdlib.h> 
4. #define NRA 4000                 /* # rows in matrix A */ 
5. #define NCA 4000                 /* # columns in matrix A */ 
6. #define NCB 4000                  /* # columns in matrix B */ 
7. int main (int argc, char *argv[])  
8. { 
9. int tid, nthreads, i, j, k, chunk; 
10. double a[NRA][NCA],           /* matrix A to be multiplied */ 

    b[NCA][NCB],           /* matrix B to be multiplied */ 
        c[NRA][NCB];           /* result matrix C */ 

11. chunk = 10;                    /* set loop iteration chunk size */ 
12. /*** Spawn a parallel region explicitly scoping all variables ***/ 
13. #pragma omp parallel shared(a,b,c,nthreads,chunk) private(tid,i,j,k) 
14. { 
15. tid = omp_get_thread_num(); 
16. if (tid == 0) 
17. { 
18. nthreads = omp_get_num_threads(); 
19. printf("Starting matrix multiple example with %d threads\n",nthreads); 
20. printf("Initializing matrices...\n"); 
21. } 
22. /*** Initialize matrices ***/ 
23. #pragma omp for schedule (static, chunk)  
24. for (i=0; i<NRA; i++) 
25. for (j=0; j<NCA; j++) 
26. a[i][j]= i+j; 
27. #pragma omp for schedule (static, chunk) 
28. for (i=0; i<NCA; i++) 
29. for (j=0; j<NCB; j++) 
30. b[i][j]= i*j; 
31. #pragma omp for schedule (static, chunk) 
32. for (i=0; i<NRA; i++) 
33. for (j=0; j<NCB; j++) 
34. c[i][j]= 0; 
35. /*** Do matrix multiply sharing iterations on outer loop ***/ 
36. /*** Display who does which iterations ***/ 
37. printf("Thread %d starting matrix multiply...\n",tid); 
38. #pragma omp for schedule (static, chunk) 
39. for (i=0; i<NRA; i++)     
40. { 
41. printf("Thread=%d did row=%d\n",tid,i); 
42. for(j=0; j<NCB; j++)        
43. for (k=0; k<NCA; k++) 

c[i][j] += a[i][k] * b[k][j]; 
44. } 
45. }   /*** End of parallel region ***/ 
46. /*** Print results ***/ 
47. printf("Result Matrix:\n"); 
48. for (i=0; i<NRA; i++) 
49. { 
50. for (j=0; j<NCB; j++)  
51. printf("%6.2f   ", c[i][j]); 
52. printf("\n");  
53. } 
54. printf ("Done.\n"); } 

 
Figure 2: Matrix multiplication in C with OpenMP directives 

Figure 2 shows the OpenMP C code for matrix 
multiplication. The routine omp_get_num_threads in line 
15 is responsible for returning the number of threads that are 
currently in the team executing the parallel region from 

which it is called, while the omp for (static, chunk) 
schedule directive divides the iterations in the loop into 
pieces of size “chunk” and then statically assigns them to 
threads.  



 
 

 
Figure 3: Intel vs. PGI using OpenMP directives in matrix multiplication 

 
The OpenMP code was compiled using –openmp and –mp 

options for Intel and PGI compilers, respectively, while all 
other advance options were ignored to achieve a fair 
comparison. Figure 3 shows the performance benchmark of 
both Intel and PGI for multiplying 4000x4000 and 
5000x5000 size matrices. Initially, all runs were 
significantly improved when adding more cores, while their 
improvement slowed down when reaching 6 cores. It was 
also observed that when the size of the matrices were 
increased from 4000 to 5000, the Intel-compiled code run 
time was increased by 79% in average, while PGI-compiled 
code was increased by 85%. In this OpenMP set of tests, the 
Intel compiler superseded PGI in all iterations.  
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Figure 4: Intel vs. PGI using MPI in matrix multiplication 

 
Figure 4 shows performance of the Intel and PGI 

compiled code using MPI routines. In this test, the C code 
(too long to be included in the paper, but can be found in 
[15]) was compiled using MVAPICH with Intel and PGI 
parallel mpicc compilers. Similarly, all advance options 
were ignored. It is noticeable that the Intel compiled MPI-
run on a single node/core took around 165 seconds, whereas 
it took only 150 seconds when running OpenMP on a single 
core. This is due to the fact that the MPI-based matrix 
multiplication C code has more routines and functions to 
call, making the code more complex, and thus more time to 
run. Another observation is the slight increase in the run 
time when multiplying the 4000x4000 size matrices on 11 

and 12 cores. This increase is related to the additional 
communication overhead with respect to the computation 
time. This communication is lessened in the 5000x5000 
multiplication as the computation time gets larger with 
respect to the communication overhead. Similar to the 
OpenMP test, the Intel compiler outperformed PGI in both 
4000 and 5000 iterations.  

To magnify the effect of MPI communication overhead 
with respect to computation time, we extended the MPI 
matrix multiplication benchmark runs to 32 nodes. Figure 5 
shows the effect of this communication overhead as the 
number of nodes increases.  

 
Figure 5: MPI scalability in 5000x5000 and 4000x4000 cells matrix 

multiplication using up to 32 nodes 
 

IV. CONCLUSION 
Intel and Portland Group have been designing their 

parallel compilers to leverage the rich set of performance 
enabling features in modern CPUs and parallel systems. 
This is achieved by tightly integrating OpenMP directives 
and advanced MPI optimizations to generate efficient 
multithreaded code for exploiting parallelism at various 
levels. In this paper, we evaluated the performance of two 
commonly used parallel compilers, Intel and Portland’s 
PGI, using a state-of-the-art Intel Westmere-based HPC 
cluster. The performance evaluation was based on two sets 
of experiments, once evaluating the compilers’ performance 
using an MPI-based code, and another using OpenMP. Our 
results show that, for scientific applications that are 
matrices-dependant, the MPI and OpenMP features of the 
Intel compiler supersede PGI when using the defined HPC 
cluster. 

Our future work includes testing both compilers using 
hybrid OpenMP and MPI codes and evaluating the 
scalability and efficiency of each on the high performance 
computing cluster. 
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