

M. Al-Mulhem, S. Sait

Department of Computer Science, KFUPM
{mulhem, sait}@kfupm.edu.sa

R. Al-Shaikh
EXPEC Computer Center, Saudi Aramco

raed.shaikh@aramco.com

Abstract - In recent years, we have witnessed a growing
interest in optimizing the parallel and distributed computing
solutions using scaled-out hardware designs and scalable
parallel programming paradigms. This interest is driven by the
fact that the microchip technology is gradually reaching its
physical limitations in terms of heat dissipation and power
consumption. Therefore and as an extension to Moore’s law,
recent trends in high performance and grid computing have
shown that future increases in performance can only be
reached through increases in systems scale using a larger
number of components, supported by scalable parallel
programming models. In this paper, we evaluate the
performance of two commonly used parallel compilers, Intel
and Portland’s PGI, using a state-of-the-art Intel Westmere-
based HPC cluster. The performance evaluation is based on
two sets of experiments, once evaluating the compilers’
performance using an MPI-based code, and another using
OpenMP. Our results show that, for scientific applications that
are matrices-dependant, the MPI and OpenMP features of the
Intel compiler supersede PGI when using the defined HPC
cluster.

Index Terms— HPC, Intel, PGI, compilers, Infiniband.

I. INTRODUCTION
In recent years, we have witnessed a growing interest in

optimizing the parallel and distributed computing solutions
using scaled-out hardware designs and scalable parallel
programming paradigms. This interest is driven by the fact
that single CPU-chips are reaching their physical limits in
terms of heat dissipation and power consumption. Therefore
and as a continuation to Moore’s law, recent trends in high
performance and grid computing have shown that future
increases in performance can only be achieved through
increases in systems scale using a larger number of
components, which are supported by scalable parallel
programming models. Accordingly, scaled-out computing is
clearly becoming the trend.

In terms of the underlying hardware, multi-cores CPUs
and ultra-fast interconnects are today’s ingredients for the
High Performance Computing systems. Intel and AMD are
still the leaders in the CPU industry, dominating the
top500.org list of the most powerful supercomputers
worldwide, and taking over 80% of HPC as of 2010 [9].
Nowadays, most of the high performance clusters use multi-
core CPUs in their compute nodes, ranging from 2 to 4
cores per nodes, while 6-cores sockets will become more
common on clusters as Intel and AMD released their

Westmere and Phenom II multi-core CPUs, respectively [7].
On the HPC interconnects side, there are several network
interconnects that provide ultra-low latency (less than 1
microsecond) and high bandwidth (several gigabytes per
second). Some of these interconnects may even provide
flexibility by permitting user-level access to the network
interface cards for performing communication, and also
supporting access to remote processes’ memory address
spaces [1]. Examples of these interconnects are Myrinet
from Myricom, Quadrics and Infiniband [1]. The
experiments in this paper are done on the Infiniband
architecture, which is one of the latest industry standards,
offering low latency and high bandwidth as well as many
advanced features such as Remote Direct Memory Access
(RDMA), atomic operations, multicast and QoS [2].
Currently, available Infiniband products can achieve latency
of 200 nanoseconds for small messages and a bandwidth of
up to 3-4 GB/s [1]. As a result, it is becoming increasingly
popular as a high-speed interconnect technology option for
building high performance clusters.

On the parallel programming level, MPI and OpenMP
have become the de facto standard to express parallelism in
a program. OpenMP provides a fork-and-join execution
model, in which a program begins execution as a single
process or thread. This thread executes sequentially until a
parallelization directive for a parallel region is found. At
this time, the thread creates a team of threads and becomes
the master thread of the new team. All threads execute the
statements until the end of the parallel region. Work-sharing
directives are provided to divide the execution of the
enclosed code region among the threads. The advantage of
OpenMP is that an existing code can be easily parallelized
by placing OpenMP directives around time consuming
loops which do not contain data dependences, leaving the
source code unchanged. The disadvantage is that it is a big
challenge to scale OpenMP codes to tens or hundreds of
processors. One of the difficulties is a result of limited
parallelism that can be exploited on a single level of loop
nest.

Another program parallelization can be achieved through
the message passing programming paradigm, which can be
employed within and across several nodes. The Message
Passing Interface (MPI) [4] is a widely accepted standard
for writing message passing programs. MPI provides the
user with a programming model where processes
communicate with other processes by calling library
routines to send and receive messages. The advantage of the

Performance Evaluation of Intel and Portland Compilers Using
Intel Westmere Processor

MPI programming model is that the user has complete
control over data distribution and process synchronization,
permitting the optimization of data locality and workflow.
The disadvantage is that existing sequential applications
require a fair amount of restructuring for parallelization
based on MPI.

Our objective in this paper is to evaluate the performance
of two commonly used parallel compilers, Intel and
Portland’s PGI, using a state-of-the-art HPC cluster. As
described in the evaluation section, the performance
evaluation is based on two sets of experiments, once
evaluating the compilers’ performance using an MPI-based
code (between cluster nodes), and another using OpenMP-
based code (using a single cluster node with dual hexa-cores
Westmere sockets). To the best of our knowledge, this is the
first paper that discusses Intel and PGI compilers’
performance based on the latest Intel’s Westmere
technology and Infiniband QDR interconnect.

The rest of the paper is organized as follows: In section 2,
we briefly shed some light on the compilers, the Infiniband
interconnect technology, the Intel Westmere CPU
architecture, and the MPI implementations used to
benchmark our compilers, while in section 3 we describe
our experimental evaluation and interprets the benchmark
results. We state our conclusion and future work in the last
section.

II. BACKGROUND
In this section, we briefly describe the characteristics of

both the Intel and PGI compilers. Also, we will shed light
on the technologies used to benchmark the two compilers.
These are: the Quad Data Rate (QDR) Infiniband
interconnect technology, the Intel Westmere architecture,
and the MPI implementations.

A. Intel and PGI Compilers
Both Intel C and Fortran compilers support compilation

for IA-32, Intel 64, Itanium 2, processors and certain non-
Intel but compatible processors, such as certain AMD
processors [7]. The Intel compiler further supports both
OpenMP 3.0 and automatic parallelization for SMP. With
the add-on capability Cluster OpenMP, the compiler can
also automatically generate MPI calls for distributed
memory multiprocessing from OpenMP directives.

Similar to the Intel compilers, PGI C/C++ includes native
parallelizing/optimizing OpenMP C++ and ANSI C
compilers. In addition, PGI’s server version includes the
OpenMP and MPI parallel graphical debugger (PGDBG)
and the OpenMP and MPI parallel graphical performance
profiler (PGPROF) that can debug and profile up to 16 local
MPI processes. PGI Server also includes a precompiled
MPICH message passing library.

Both Intel and Portland Group Inc. (PGI) continuously
tune their compilers to optimize for hardware platforms to
minimize stalls and to produce code that executes in the
fewest number of cycles. Both compilers share many

technical features and high-level optimizations, such as:
interprocedural optimization (IPO), profile-guided
optimization (PGO), and high-level optimizations (HLO) [7,
8]. High-level optimizations are optimizations performed on
a version of the program that more closely represents the
source code, such as loop interchange, loop unrolling, loop
distribution and data-prefetch. These optimizations are
usually very expensive and may take considerable
compilation time.

Interprocedural optimization applies typical compiler
optimization that may affect multiple procedures, multiple
files, or the entire program. IPO aims to reduce or eliminate
duplicate calculations, inefficient use of memory, and to
simplify iterations such as loops. In addition, IPO reorders
the procedures for better memory utilization and locality.
IPO also incorporates typical compiler optimizations on the
entire program, for example, removing codes that are never
executed in a program.

Profile-guided optimization, on the other hand, refers to a
mode of optimization where the compiler performs a sample
run of the program across a representative input set. The
data would then indicate which sections of the program are
executed more frequently, and which areas are accessed less
frequently. All optimizations benefit from profile-guided
feedback because they are less reliant on heuristics when
making compilation decisions.

B. Infiniband Architecture
Infiniband is a technology that provides a high bandwidth

I/O communication over a high speed serial data bus. It uses
a switched fabric topology, as opposed to a hierarchical
switched network like Ethernet [2]. It is designed to directly
route data from one point to another point through a switch,
where all transmissions begin or end at a channel adapter
(HCA). Each Infiniband processor contains a host channel
adapter (HCA) and each peripheral has a target channel
adapter (TCA).[3] The Infiniband serial connection
signaling rate is 2.5 Gbit/s in single data rate (SDR)
technology, 5.0 Gbit/s in double data rate (DDR) technology
or 10 Gbit/s in quad data rate (QDR), in each direction per
connection. Moreover, the links can be aggregated in units
of 4 or 12, designated as 4X and 12X. However, Infiniband
uses 8B/10B encoding, which implies four fifths of the
traffic is useful, therefore DDR 4X link curries 20 Gbit/s
raw, or 16 Gbit/s of useful data. Table-1 summarizes the
different Infiniband technologies with their associated
theoretical performance numbers.

Table 1: Performance numbers of different Infiniband technologies

IB
technology

SD IB Data
Rate

DD IB Date
Rate

QDR IB
Data Rate

1x 2Gbps 4Gbps 8Gbps
4x 8Gbps 16Gbps 32Gbps
12x 24Gbps 48Gbps 96Gpbs

http://www.pgroup.com/products/pgprof.htm�

Infiniband uses a hardware-offload protocol stack [3].
Extra memory copies that are sent from the application to an
adapter can be avoided by the zero copy mechanism that
optimizes the message transfer time. Moreover, Infiniband
allows moving data from local memory to remote memory
using RDMA (Remote Direct Memory Access), which
allows the zero copy mechanism without involving the
receiver host processor [2]. The number of user-kernel
context switching and memory copies can be reduced by the
direct access to the Infiniband HCA. Obviously, enabling
communication between devices and hosts, without the
traditional system resource overhead associated with
network protocols, off-loads data movement from the server
CPUs to the Infiniband HCA. Through virtual lanes (VLs),
Infiniband offers traffic management, creating multiple
virtual links within a single physical link that allows a pair
of linked devices to isolate communication interference
from other connected devices.

C. Intel Westmere Specifications
Westmere is the code name for the latest in the series of

multi-core processors by Intel. This is Intel’s true hexa-core
processor with L2 cache sharing and utilizing the
revolutionary Quick Path Interconnect (QPI) architecture [7]
that provides two separate lanes for the communication
between the CPU and the chipset. The QPI technology
allows the CPU to transmit and receive I/O data in parallel,
as opposed to the traditional architecture using a single
external bus where the external bus is used for both input
and output operations reads and writes cannot be done at the
same time. The latest version of the QPI works with a clock
rate of 3.2 GHz, transferring two data per clock cycle
(Double Data Rate), making the bus to work as if it was
using a 6.4 GHz clock rate.

Further, Intel Westmere generation is equipped with
Turbo Boost Technology [7] that automatically allows
processor cores to run faster than the base operating
frequency if it's operating below power, current, and
temperature specification limits. This frequency change is
dependent on the number of active cores, estimated current
consumption, estimated power consumption and processor
temperature. When the processor is operating below these
limits and the user's workload demands additional
performance, the processor frequency will dynamically
increase by 133 MHz on short and regular intervals until the
upper limit is met or the maximum possible upside for the
number of active cores is reached.

D. MVAPICH MPI Implementation
The Message Passing Interface (MPI) is the dominant

programming model for parallel scientific applications.
Given the role of the MPI library as the communication
substrate for application communication, the library must
ensure to provide scalability both in performance and in
resource usage. In our experiments, we used MVAPICH,
one of the most commonly used MPI implementations in the

HPC industry. MVAPICH [12] implementation is mainly
known for its support for Infiniband interconnect
technologies as well as having high performance scalability
support for clusters running thousands of cores. As for the
Intel MPI, MVAPICH also supports various runtime
environments such as SLURM and PBS.

III. PERFORMANCE EVALUATION AND RESULTS
To perform benchmark evaluation, a DELL cluster of

PowerEdge M610 Blade Servers was used. The cluster
consisted of 32 nodes with dual sockets and Intel hexa-Core
x5670 (Westmere) 2.93GHz processors. The operating
system running on the nodes was RedHat Enterprise Linux
Server 5.3 with the 2.6.18-128.el5 kernel. Each node was
equipped with an Infiniband Host Channel Adapter (HCA)
supporting 4x Quad Data Rate (QDR) connections with the
speed of 32Gbps. Each node also had 24 GB (6 x 4GB)
DDR3 1333Mhz of memory, thus the total amount of
memory the system had was around 786 GB.

The physical layout of the cluster consisted of two
chassis, and each chassis hosts up to 16 blade nodes. From
each node we had a 4x-QDR Infiniband connection going to
a central 32-port Qlogic Infiniband switch. Figure 1 shows
the Infiniband interconnection design as described. It is
important to mention that this design is considered non-
blocking as each node guarantees to have the full 4x QDR
32Gbps interconnect speed. This fast interconnect would
drive the cluster to a higher utilization, which in theory, may
affect the diskless concept.

Our Infiniband interconnect topology uses three switches:
A top-level switch and other two leaf switches. Under this
configuration, IPC communication among nodes of 12 sub-
clusters is localized to one leaf switch, but for the cluster of
16 nodes, the top-level switch is involved to support more
nodes.

Infiniband
Top-level switch

2 Blade
 enclosures
(32 compute

nodes)

16 IB interconnect
fabric from each

enclosure

Figure 1: The DDR Infiniband interconnect for a 32 nodes cluster

In order to evaluate the performance of the two compilers,
the benchmarks were run on the cluster nodes starting with
one thread and scaling up to 12 threads for the OpenMP
tests, and ranging from one node and up to 12 nodes for the
MPI experiments.

In our experiments, we used two versions of matrix
multiplication algorithms [13, 14] to benchmark the two
compilers. Beside it is computationally intensive with

)(3nO iterations, we chose the matrix multiplication since

it is a fundamental operation in many numerical linear
algebra applications. Its efficient implementation on parallel

computers is an issue of prime importance when providing
such systems with scientific software libraries.

1. #include <omp.h>
2. #include <stdio.h>
3. #include <stdlib.h>
4. #define NRA 4000 /* # rows in matrix A */
5. #define NCA 4000 /* # columns in matrix A */
6. #define NCB 4000 /* # columns in matrix B */
7. int main (int argc, char *argv[])
8. {
9. int tid, nthreads, i, j, k, chunk;
10. double a[NRA][NCA], /* matrix A to be multiplied */

 b[NCA][NCB], /* matrix B to be multiplied */
 c[NRA][NCB]; /* result matrix C */

11. chunk = 10; /* set loop iteration chunk size */
12. /*** Spawn a parallel region explicitly scoping all variables ***/
13. #pragma omp parallel shared(a,b,c,nthreads,chunk) private(tid,i,j,k)
14. {
15. tid = omp_get_thread_num();
16. if (tid == 0)
17. {
18. nthreads = omp_get_num_threads();
19. printf("Starting matrix multiple example with %d threads\n",nthreads);
20. printf("Initializing matrices...\n");
21. }
22. /*** Initialize matrices ***/
23. #pragma omp for schedule (static, chunk)
24. for (i=0; i<NRA; i++)
25. for (j=0; j<NCA; j++)
26. a[i][j]= i+j;
27. #pragma omp for schedule (static, chunk)
28. for (i=0; i<NCA; i++)
29. for (j=0; j<NCB; j++)
30. b[i][j]= i*j;
31. #pragma omp for schedule (static, chunk)
32. for (i=0; i<NRA; i++)
33. for (j=0; j<NCB; j++)
34. c[i][j]= 0;
35. /*** Do matrix multiply sharing iterations on outer loop ***/
36. /*** Display who does which iterations ***/
37. printf("Thread %d starting matrix multiply...\n",tid);
38. #pragma omp for schedule (static, chunk)
39. for (i=0; i<NRA; i++)
40. {
41. printf("Thread=%d did row=%d\n",tid,i);
42. for(j=0; j<NCB; j++)
43. for (k=0; k<NCA; k++)

c[i][j] += a[i][k] * b[k][j];
44. }
45. } /*** End of parallel region ***/
46. /*** Print results ***/
47. printf("Result Matrix:\n");
48. for (i=0; i<NRA; i++)
49. {
50. for (j=0; j<NCB; j++)
51. printf("%6.2f ", c[i][j]);
52. printf("\n");
53. }
54. printf ("Done.\n"); }

Figure 2: Matrix multiplication in C with OpenMP directives

Figure 2 shows the OpenMP C code for matrix
multiplication. The routine omp_get_num_threads in line
15 is responsible for returning the number of threads that are
currently in the team executing the parallel region from

which it is called, while the omp for (static, chunk)
schedule directive divides the iterations in the loop into
pieces of size “chunk” and then statically assigns them to
threads.

Figure 3: Intel vs. PGI using OpenMP directives in matrix multiplication

The OpenMP code was compiled using –openmp and –mp

options for Intel and PGI compilers, respectively, while all
other advance options were ignored to achieve a fair
comparison. Figure 3 shows the performance benchmark of
both Intel and PGI for multiplying 4000x4000 and
5000x5000 size matrices. Initially, all runs were
significantly improved when adding more cores, while their
improvement slowed down when reaching 6 cores. It was
also observed that when the size of the matrices were
increased from 4000 to 5000, the Intel-compiled code run
time was increased by 79% in average, while PGI-compiled
code was increased by 85%. In this OpenMP set of tests, the
Intel compiler superseded PGI in all iterations.

0
25
50
75

100
125
150
175
200

1 2 3 4 5 6 7 8 9 10 11 12

Intel (5000x5000) PGI (5000x5000)

Intel (4000x4000) PGI (4000x4000)

T
im

e
 (

se
c)

Number of nodes

Figure 4: Intel vs. PGI using MPI in matrix multiplication

Figure 4 shows performance of the Intel and PGI

compiled code using MPI routines. In this test, the C code
(too long to be included in the paper, but can be found in
[15]) was compiled using MVAPICH with Intel and PGI
parallel mpicc compilers. Similarly, all advance options
were ignored. It is noticeable that the Intel compiled MPI-
run on a single node/core took around 165 seconds, whereas
it took only 150 seconds when running OpenMP on a single
core. This is due to the fact that the MPI-based matrix
multiplication C code has more routines and functions to
call, making the code more complex, and thus more time to
run. Another observation is the slight increase in the run
time when multiplying the 4000x4000 size matrices on 11

and 12 cores. This increase is related to the additional
communication overhead with respect to the computation
time. This communication is lessened in the 5000x5000
multiplication as the computation time gets larger with
respect to the communication overhead. Similar to the
OpenMP test, the Intel compiler outperformed PGI in both
4000 and 5000 iterations.

To magnify the effect of MPI communication overhead
with respect to computation time, we extended the MPI
matrix multiplication benchmark runs to 32 nodes. Figure 5
shows the effect of this communication overhead as the
number of nodes increases.

Figure 5: MPI scalability in 5000x5000 and 4000x4000 cells matrix

multiplication using up to 32 nodes

IV. CONCLUSION
Intel and Portland Group have been designing their

parallel compilers to leverage the rich set of performance
enabling features in modern CPUs and parallel systems.
This is achieved by tightly integrating OpenMP directives
and advanced MPI optimizations to generate efficient
multithreaded code for exploiting parallelism at various
levels. In this paper, we evaluated the performance of two
commonly used parallel compilers, Intel and Portland’s
PGI, using a state-of-the-art Intel Westmere-based HPC
cluster. The performance evaluation was based on two sets
of experiments, once evaluating the compilers’ performance
using an MPI-based code, and another using OpenMP. Our
results show that, for scientific applications that are
matrices-dependant, the MPI and OpenMP features of the
Intel compiler supersede PGI when using the defined HPC
cluster.

Our future work includes testing both compilers using
hybrid OpenMP and MPI codes and evaluating the
scalability and efficiency of each on the high performance
computing cluster.

0
20
40
60
80

100
120
140
160
180

1 2 3 4 5 6 7 8 9 10 11 12

Intel (5000x5000) PGI (5000x5000)

Intel (4000x4000) PGI (4000x4000)

Ti
m

e
(s

ec
)

No. of cores

0

15

30

45

60

75

8 16 32

Intel (5000x5000) PGI (5000x5000)

Intel (4000x4000) PGI (4000x4000)

Ti
m

e
(s

ec
)

Number of nodes

REFERENCES

[1] R. AlShaikh, M. Ghuson, M. Baddourah, “Performance Evaluation of
Myrinet and Cisco Infiniband Using Intel MPI Middleware", the 9th
LCI International Conference on High Performance Computing,
NCSA, Univerity of Illinois, USA, May 2008.

[2] V. Tipparaju, G. Santhanaraman, J. Nieplocha, and D. K. Panda,
“Host-Assisted Zero-Copy Remote Memory Access Communication
on InfiniBand”, Int’l Parallel and Distributed Processing Symposium
(IPDPS 04), April, 2004.

[3] C. Bell, D. Bonachea, Y. Cote and et al. “An Evaluation of Current
High-Performance Networks”, Int’l Parallel and Distributed
Processing Symposium (IPDPS’03), April 2003.

[4] J. Liu, B. Chandrasekaran, J. Wu and et al. “Performance
Comparison of MPI Implementations over InfiniBand, Myrinet and
Quadrics”, Supercomputing, ACM/IEEE, pages 58- 58, Nov. 2003.

[5] Myrinet, Myricom. Available at: http://www.myri.com
[6] R. Fatoohi, K. Kardys, S. Koshy and el at. “Performance evaluation

of high-speed interconnects using dense communication patterns”,
Parallel Computing Volume 32, Issue 11-12, pages 794-807, 2006.

[7] Intel Inc. Available at: http://www.intel.com
[8] Portland PGI. Available at: http://www.pgroup.com/
[9] The top500 supercomputers. Available at: http://www.top500.org
[10] MVAPICH: MPI over InfiniBand and iWARP. Available at:

http://mvapich.cse.ohio-state.edu
[11] T. Typou, V. Stefanidis, P.D. Michailidis and K.G, “ Margaritis,

Implementing Matrix Multiplication on an MPI Cluster of
Workstations”, in Proceedings of the 1st In’t Conference "From
Scientific Computing to Computational Engineering" (IC-
SCCE'2004), Athens, Greece, vol. II, pp. 631-639, 2004

[12] B. Madani, R. Al-Shaikh, “Performance Modeling and MPI
Evaluation Using Westmere-based Infiniband HPC Cluster”, 4th
European Modelling Symposium on Mathematical Modelling and
Computer Simulation, Pisa, Italy, 2010

[13] Lawrence Livermore National Laboratory – OpenMP tutorial.
Available at: https://computing.llnl.gov/tutorials/openMP/

[14] Simple matrix multiplication on MPI. Available at:
http://sushpa.wordpress.com/2008/05/20/simple-matrix-
multiplication-on-mpi/

http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=10619�
http://www.myri.com/�
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/k/Kardys:Ken.html�
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/k/Koshy:Sumy.html�
http://www.intel.com/�
http://www.pgroup.com/�
http://www.top500.org/�
http://mvapich.cse.ohio-state.edu/�
https://computing.llnl.gov/tutorials/openMP/�
http://sushpa.wordpress.com/2008/05/20/simple-matrix-multiplication-on-mpi/�
http://sushpa.wordpress.com/2008/05/20/simple-matrix-multiplication-on-mpi/�

	I. INTRODUCTION
	II. BACKGROUND
	A. Intel and PGI Compilers
	B. Infiniband Architecture
	C. Intel Westmere Specifications
	D. MVAPICH MPI Implementation

	III. PERFORMANCE EVALUATION AND RESULTS
	IV. CONCLUSION

