
Abstract—The Smart Grid Infrastructure (SGI) provides for 
sustainable, affordable and uninterrupted electricity supply to 
consumers. The communications infrastructure of the SGI is 
prone to several malicious attacks identified in the recent past. 
Customer-specific electricity readings are communicated up the 
SGI hierarchy from consumer devices to centralized servers 
through intermediary devices such as smart meters and data 
concentrators/aggregators. In this paper, we model the attacks 
against the home area network of the SGI, through definition 
and generation of routine device behaviors. Any observed 
deviation from the defined normal profile is labeled as a 
malicious attack. Subsequently, we propose a Self-Organizing 
Map (SOM)-based approach towards training and testing of 
centralized SGI devices to qualify them for identifying 
anomalies accurately. The proposed scheme is capable of 
detecting anomalous readings within a consumer’s household,
with reasonable accuracies. 

Keywords—Smart Grid Communications, Anomaly Detection, 
Self-Organizing Maps, Intrusion Detection.

I. INTRODUCTION

The Smart Grid Infrastructure (SGI) provides a necessary 
platform for intelligent processing of all activity associated 
with power generation, transmission and consumption, 
through a blend of the strengths of computing, intelligence, 
and high speed data communication [1]. It provides an 
enhanced and efficient mechanism for energy consumption 
management by electricity utility customers. In addition, it 
facilitates better management at the utility provider level 
through advanced information delivery mechanisms and 
timely electricity grid fault diagnosis, for ensuring 
provisioning of high quality service. 
The SGI broadly consists of three types of networks, namely, 
Home Area Network (HANs), Neighborhood Area Network 
(NAN), and Wide Area Networks (WAN). Each network is 
interconnected with other networks, and a complex 
communication hierarchy thus emerges. While the SGI has 
become a necessity for efficient operations of the 
contemporary electricity grids, a plethora of malicious attacks 
may also be perpetrated against it. The malicious intent of 

such attacks may be either to diminish average electricity 
consumption at a consumer's end, so as to gain from menial 
electricity bills, or to maliciously jack up a consumer's bill for 
adversely affecting the consumer’s confidence in a particular 
utility provider, invariably affecting its business. Other 
attacks may intend to cause large-scale disruption of routine 
SGI operations. The SGI interconnectivity to the Internet 
opens up many entry points for launching both simple as well 
as sophisticated malicious attacks. Moreover, interconnected 
network links are vulnerable to cascading failures, wherein, a 
single transmission line failure may disrupt several other 
components of the SGI and cause a grid black-out. [2] 
Due to the nature of the SGI, contemporary security solutions 
may not be directly implementable to protect the grid from 
the omnipresent threat of malicious attacks.  
Through this paper, we contribute in the following three 
ways. First, we model routine behavior of home area network 
devices and generate data for a 24-hour period for a typical 
household, based on device types, and empirical power 
consumption readings. Second, we merge the normal
behavior data samples with anomalous device behavior data, 
to form a dataset. The labeling of data samples is done 
through the definition of distinct rules. The anomalous data 
samples are generated based on rules which assume that hoax 
devices or compromised appliances of a home area network 
(HAN) are capable of generating malicious electricity 
utilization data for subsequent delivery to the smart meter, 
thereby resulting in incorrect electricity usage bill of a client.  
Third, we propose the use of Self Organizing Maps (SOM), 
for data clustering, to facilitate classification of SGI data into 
either the normal class or the anomalous class. Considering 
the unsupervised nature of the SOM algorithm, a segment of 
the unlabeled dataset is introduced to the n x n SOM at 
training time. The resulting map at the end of training has 
nodes with fixed vector values (weights) assigned at training 
time. The testing of the map was conducted through the 
introduction of unlabeled data samples, and a study of the 
accuracy in selection, of the appropriate winning SOM node 
based on a Euclidean distance comparison between the two 
weights.

The rest of the paper is organized as follows. Section 2 
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presents a background on the smart grid architecture and 
related work on intelligent security for the smart grid. In 
Section 3, we present the dataset generation mechanism with 
illustrations of data samples. Section 4 provides details on the 
SOM workings. We present our simulation results and 
analysis in Section 5 and conclude the paper in Section 6.

II. BACKGROUND

The smart grid infrastructure facilitates enhanced degree of 
control in terms of service provisioning and customer 
satisfaction, over the electricity grid so as to provide both 
producers and consumers of electricity with an intelligent and 
mutually beneficial platform for sustained electricity grid 
operations [1]. As with all network infrastructures, there 
exists a potential threat of malicious attacks to affect the 
smooth operations of the smart grid infrastructure. As a 
consequence of such attacks, the profitability of the electricity 
providers is diminished, and the consumer confidence in the 
affected providers plummets i.e., affects the reputation index 
of the utility provider. Several attack scenarios and 
countermeasures have been proposed in the literature to 
address the growing numbers of threats against the SGI. 
Several intelligent techniques have been proposed for 
anomaly detection through data classification in the SGI.  
SGDIDS was proposed as a distributed intrusion detection 
system for the smart grid, in [3]. The system consists of an 
analyzing module (AM) placed at each of the three layers of 
the smart grid hierarchy; Home Area Network (HAN), 
Neighborhood Area Network (NAN), and the Wide Area 
Network (WAN). Support vector machines (SVM) and 
Artificial Immune System (AIS)-based algorithms were used 
as intelligent techniques for detection and classification of 
smart grid data. In [4], a scheme based on classification of 
compressed smart meter readings into normal or anomalous, 
was proposed. A similar approach was proposed in [5] to 
handle intrusion threats aimed at the advanced metering 
infrastructure (AMI). A specification-based intrusion 
detection system is proposed as part of the scheme. A second 
approach based on specification IDS to perform real time 
screening of smart meters to access point traffic was proposed 
in [6]. To ensure smooth system operations in the presence of 
malicious meters and the threat of DoS (Denial of Service) 
attacks, the authors defined a set of four monitoring rules. 
The formulated rules are tested in a realistic environment and 
a formal verification of the specifications and monitoring 
operations is carried out at the application layer. 
Self-Organizing Maps (SOMs) are a data visualization and 
mining technique for clustering similar data within 
predefined numbers of clusters or nodes [7]. They map higher 
dimension data into 2-dimensional arrays of SOM nodes or 
neurons. Neighborhood relationship is established through 
building a topology-preserving map based on the introduced 
data samples from the dataset. SOMs have been applied to a 
wide range of areas ranging from pattern recognition to 
image analysis as well as intrusion detection. It is an 
unsupervised learning technique, as the data labels of the 

dataset samples are not required at training time for 
placement of data samples within predefined SOM nodes.  
SOMs are implemented within 2-dimensional planes, with n
x n nodes, initially assigned with random feature vector 
values.  
At several places in the literature, SOMs have been applied 
for clustering network traffic into normal or anomalous.  
In [8], one of the first works on SOMs for intrusion detection 
was proposed. The proposed scheme, ANDSOM, provided a 
framework for classifying network traffic based on six 
dimensions i.e. traffic features. Different classes of traffic; 
DNS, SMTP, and HTTP, were used for building SOMs. 
Experiments were conducted to test the scheme's effectiveness 
in network traffic classification. 
In [9], an integrated SOM-k means clustering approach is 
proposed for refining the network traffic coarsely through the 
use of a SOM, and subsequent fine refining through k-means 
clustering.  In [10], a SOM is introduced to identify buffer 
overflow attacks in a network. Although, reasonable 
accuracies in attack detection were reported, a long delay in 
map training was advised as being a disadvantage of using 
SOMs for intrusion detection. In [11], Radial Basis Functions 
(RBFs) were used for intrusion detection. The training of the 
hidden RBF layers was performed through the use of SOMs. 
It is claimed by the authors that such an approach will boost 
the effectiveness in attack detection. The experimental results 
show improved attack detection accuracies through the use of 
such an approach. Through our work, we propose the use of 
SOMs for clustering smart grid into normal and anomalous. 

III. SMART GRID DEVICE BEHAVIOR DATASET 

A dataset is modeled based on the operating patterns of 
home appliances in a typical household network of the smart 
grid infrastructure. The modeled dataset consists of 108,000 
data samples. Each data sample consists of 10 appliances,
each of which is represented by three parameters (features).
These features are: device_id, randomly generated energy 
values appertaining to device operation during a given time 
frame of a day, and a difference category. In addition, each 
data sample also consists of a label to classify the data sample 
as either normal (representing routine home network 
operations), or anomalous, based on the extremity in the 
readings (too high or too low), when observed collectively.

Table 2 highlights the normal energy consumption in Kwh 
for devices listed in Table 1. The formula for estimating 
energy consumption is provided in Equation 1. 

(kWh)n ConsumptioEnergy Daily  =
(1)     1000 ÷ Day)Per Operation  of Hours × (Wattage
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It may be noted that not all appliances/devices are active 
during all time frames of a day. Therefore, we intuitively 
describe a combination of devices that are simultaneously 
active during any given time interval of a particular day. The 
overall energy consumption during an interval is taken as the 
aggregated sum of energy consumed by all active devices.  

Random values are generated for each device identified as 
being active during a time interval. An inactive device is 
given an energy feature value of ‘0’ which indicates a don’t 
care, and this value is ignored during determination of the 
sample class. 

The randomly generated energy values are then compared 
with the estimated normal energy consumption values in 
Table 2 and a label is assigned to each device. The label 
assigned may be extreme, marginal or medium, based on the 
difference between the two energy values (expected and 
actual):

• Marginal, if the difference is ≤ 15%, 
• Medium, if difference is between 15% - 35%, and 
• Extreme, if the difference is ≥ 35%.

This criterion is applied to all dataset samples. 
 A device is known to behave normally if it is labeled as 
either marginal or medium in the previous step. As such, 
several instances of the dataset were generated with varying 
percentages of devices used for defining a particular dataset 
sample. A total of 5 datasets were thus generated based on the 
criteria for labeling the dataset samples. For example, one 
dataset that was used in our experiments had samples labeled 
as normal if 25% (4 out of 10) devices exhibited normal 
energy values, and was labeled as an attack instance 
otherwise. Table 3 highlights the distribution of normal and 
attack instances in the dataset variants used for our 
simulations. 

It can be concluded from the above statistics that most 

datasets are imbalanced in favor of either class. This implies 
that the identification accuracy of the model will be affected 
since the learning algorithm will encounter more samples 
from the dominant class of the dataset in question. For 
instance, the 65% dataset is heavily biased towards the attack 
class with nearly twice as many attack rows as the normal 

rows. In order to minimize the effect of the bias, we select the 
55% dataset as it has the lowest difference between the two 
classes. 

IV. SELF-ORGANIZING MAPS FOR INTRUSION DETECTION

The datasets generated in the previous section were 
introduced to a Self Organizing Map for training. The 
resulting map provides a clustered visualization of data, 
through established node relationships. 
Training begins on a SOM whose nodes have already been 

assigned random values for their respective local vectors 

(weights). The SOM training algorithm operates iteratively, 
with samples introduced to the SOM one at a time, and the 
best matching node of the SOM selected as a winner, for a 
given iteration. The length of the input vector is dependent on 
the number of features that represent the data in question. 
The training process is iteratively executed, with the winner 
node selected based on its closest proximity to the incoming 
data sample, when compared to the proximities of other 
nodes. Subsequently, all nodes within the neighborhood of the 
winning node have their respective weights updated so as to 
closely fit the data sample which led to this particular node's 
win. The winning node and its neighbors have their 
respective feature vector values modified based on a 
predefined formulation. The SOM map settles to a certain 
'good fit' state after all iterations (equal to the number of data 
samples that were introduced), are completed. The resulting 
map is organized inherently in a way such that nodes with 
mutual similarities in terms of their respective weights will be 
clustered close to each other. 
We assign meaning to the nodes of the maps through 
introduction of labels. Post training, the SOM nodes are 
labeled as being either normal or anomalous, based on the 

TABLE I
POWER RATINGS FOR COMMON HOUSEHOLD DEVICES

Device Power (Watts)

Air Conditioner
100 Watt bulbs

Microwave  Oven
Dish Washer

Washing Machine
Kettle
Iron

Desktop PC
Laptop

Television

1500
100
1700
1000
1000
3000
2000
300
100
600

TABLE 2
ENERGY CONSUMPTION (KWH) OF HOME APPLIANCES

Device Power (Watts) Energy Consumption

Air Conditioner
100 Watt bulbs

Microwave  Oven
Dish Washer

Washing Machine
Kettle
Iron

Desktop PC
Laptop

Television

1500
100

1700
1000
1000
3000
2000
300
100
600

1.5
0.06
1.7
1
1
3
2

0.3
0.1
0.6

TABLE 3
BASIC DATASET CHARACTERISTICS

Dataset
Type Normal Rows Attack Rows

25%
35%
45%
55%
65%

79036
79017
76884
43443
39834

28964
28983
31116
64557
68166
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majority in the number of samples of each type that are 
assigned to a particular winning SOM node during training. 
The testing of the SOM is conducted through the introduction 
of unlabelled data samples to the SOM, and observation of the 
class labels of the best matching nodes. 
Following are the steps of execution of the SOM training 
algorithm: 

Step 1: Construct a weight matrix 
Step 2: Initialize the weight matrix with randomly selected 
input vectors 
Step 3: For each input vector x, 

3.1 Compute Euclidean distance between each node's 
weight vector and the current input vector: 

3.2 Choose the winner as the neuron c, such that the 
distance between the input vector and the neuron is 
smallest. 

Step 4: Adjust the weights for the winner and all its 
neighbors: W(t + 1) = W(t) + θ(t) ⋅ L(t) | V(t) − W(t)| where 
L(t) is the learning rate, and θ(t) is the neighborhood 
kernel function centered on the winner unit 
Step 5: Decrease the learning rate and neighborhood size 
Step 6: Repeat steps (2)-(5) until the convergence criterion 
is satisfied. 

Algorithm 1: SOM Training Steps 

In order to assign labels to SOM neurons we maintain a hit 
ratio between the neuron and the training set row. After a 
neuron is selected as a winning neuron it is tested against the 
training set to determine its class. If the neuron wins for 
larger number of attack samples as compared to normal data 
samples, it is classified as an attack, and vice versa. 

V.RESULTS AND ANALYSIS

A. SOM training parameters 
Simulations were performed to test the ability of our proposed 
approach to accurately classify smart grid data into normal 
and anomalous. In Table 4, we provide the SOM training 
phase parameters selected for running the simulations. 

B. True Positives versus False Positives
Figs. 1- 5 present a comparison of the true positives and 

the false positives generated through simulation, for the five 
varying dataset labels (as elaborated in Section III). It can be 
observed that varying the size of the SOM map has an effect 
on the detection rate. It can be concluded from the results 
obtained that the dataset where 45% of devices in a sample 
behave normally provides the best true positive rate and this 
rate is achieved for a map size of 4 x 4. Also it can be noted 
that for almost all datasets the maximum true positives are 
reported for the 4x4 map size. For a 25% ratio dataset, the 

highest detection rate was observed to be 57% at the cost of 
49% false positives. For larger map sizes, the false positives 
were found to outweigh the detection rates. A similar trend 
was observed for the other datasets tested. For the 25%, 35%, 
and the 45% datasets, a common trend observed was of 
having the detection rate of a 5 x 5 map outperforming other 
map sizes. However, for the 55% and 65% datasets, the trend 
did not continue, and a consistent detection rate of 40% was 
observed regardless of map size, for a constant set of false 
positives of 60% generated. 

C.True Positives versus False Positives (Fixed Attack to 
Normal Ratio)

A second set of experiments were conducted by varying the 
percentage of attack instances in the training set while 
maintaining a 50-50 ratio between attack and normal 
instances within the test set. The number of attack instances 
within the training set was varied from 20% to 70%. It was 
observed that the results obtained for all the experiments were 
identical, as illustrated in Fig. 6. There was a 100% detection 
rate for the entire test set. However, while all the attack 
instances are detected as true positives, all the normal 
instances are detected as false positives. In this experiment,
the variation of learning rate had no effect on the final 
outcome. It can be inferred from these results that the SOM 
neurons are over-trained with attack instances and hence are 
unable to detect any of the normal instances in the dataset. 

Fig. 1 True Positives and False Positives for a 25% ratio dataset for 
varying map sizes (ranging from 2x2 to 10x10) 
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TABLE 4
SOM TRAINING PARAMETERS

Parameter Value

Initial  L(t)
SOM Map size (Variable)

L(t) decay function
Training Iterations

Neighborhood Function
Topology

0.5
2 x 2 to 10 x 10
L(t) = L0exp(-t/λ)

75600
Gaussian
Matrix
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Fig. 2 True Positives and False Positives for a 35% ratio dataset for 
varying map sizes (ranging from 2x2 to 10x10) 

Fig. 3 True Positives and False Positives for a 45% ratio dataset 

Fig. 4 True Positives and False Positives for a 55% ratio dataset for 
varying map sizes (ranging from 2x2 to 10x10) 

D.True Positives versus False Positives For UMass Smart* 
Home Data Set
A third set of experiments were conducted on the UMass 
Smart* Home Data Set [12]. This dataset is composed of a 
wide variety of environmental and operational data from three 
real home area networks. We have only considered data from 
one of the homes in our experiments, namely, Home B. The 
dataset contains information about home electricity usage 
parameters such as average household electricity usage every 
second, as well as electricity usage at each circuit and nearly 

every plug load, electricity generation data from on-site solar 
panels and wind turbines, outdoor weather data, temperature 
and humidity data in indoor rooms, and, finally, data for a 
range of important binary events, e.g., at wall switches, the 
HVAC system, doors, and from motion sensors. 

Fig. 5 True Positives and False Positives for a 65% ratio dataset for 
varying map sizes (ranging from 2x2 to 10x10) 

Fig 6 True Positives and False Positives for a 50% ratio dataset for 

varying map sizes (ranging from 2x2 to 10x10) 

Fig. 7: True Positives and False Positives for a 25% ratio dataset for 
Smart* dataset 

Figs. 7- 8 present a comparison of the true positives and the 
false positives generated through simulation, for the five 
varying dataset labels of the Smart* Home dataset, when a 
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Self-Organizing Map was used for training and testing. A
sample split of 70-30% was considered for the simulations, 
similar to the previous runs. It can be inferred from the 
obtained results that varying the dataset has negligible effect 
on detection rates for map sizes of 2x2 and 3x3. Even for a 
map size 4x4 the detection rate remains similar until the 55% 
ratio dataset is chosen, where the number of true positives is 
significantly greater than the false positives. An overall 
analysis of the results reveals that the dataset in which 55% of 
the devices are behaving normally provides the highest true 
positive rate and this rate is achieved at a map size of 8x8. It 
can be observed that for most datasets the best true positives 
rates are achieved at large map sizes of 7x7 and above except 
for the 25% dataset where the best true positive rate is found 
when a map of size 5x5 is chosen.   

Fig. 8: True Positives and False Positives for a 45% ratio dataset for 
Smart* dataset for varying map sizes (ranging from 2x2 to 10x10) 

The highest true the highest detection rate was observed to be 
78% at the cost of 57% false positives. In most cases for 
larger map sizes, the false positives were found to outweigh 
the detection rates except for the 35% dataset and 65% 
dataset. 

E. Execution Times 
The size of the SOM a direct impact on the delays incurred at 
time of training. In Fig. 9, an illustration of the execution 
time for the SOM training for varying map sizes is provided. 
As may be observed, for map sizes of 5 x 5 and below, the 
training time is less than 1000 seconds, whereas, for larger 
map sizes, the time required to train the map for the same 
dataset is exceedingly high, with 9000 seconds being the peak 
value observed for a 10 x 10 map.  

VI. CONCLUSION

In this paper, we modeled device activity in the smart grid.
Secondly, we proposed a SOM-based data clustering approach 
towards classification of the modeled smart grid data into 
normal or anomalous. The approach was subsequently tested 
for specific parameters and varying map sizes. From the 
results obtained, our proposed approach was found to provide 
reasonable accuracies of close to 60% when a map of size 5 x 
5 was selected, for two datasets. The overhead of the scheme 

was found to be relatively high for large map sizes, but within 
bounds (< 1000 seconds) for smaller map sizes of 5 x 5 and 
less.

Fig. 9: The Execution Time for Training i.e. Map building of the 
SOM – for both datasets 
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